Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Gut ; 72(10): 1971-1984, 2023 10.
Article in English | MEDLINE | ID: mdl-37541771

ABSTRACT

OBJECTIVE: Exhausted T cells with limited effector function are enriched in chronic hepatitis B and C virus (HBV and HCV) infection. Metabolic regulation contributes to exhaustion, but it remains unclear how metabolism relates to different exhaustion states, is impacted by antiviral therapy, and if metabolic checkpoints regulate dysfunction. DESIGN: Metabolic state, exhaustion and transcriptome of virus-specific CD8+ T cells from chronic HBV-infected (n=31) and HCV-infected patients (n=52) were determined ex vivo and during direct-acting antiviral (DAA) therapy. Metabolic flux and metabolic checkpoints were tested in vitro. Intrahepatic virus-specific CD8+ T cells were analysed by scRNA-Seq in a HBV-replicating murine in vivo model of acute and chronic infection. RESULTS: HBV-specific (core18-27, polymerase455-463) and HCV-specific (NS31073-1081, NS31406-1415, NS5B2594-2602) CD8+ T cell responses exhibit heterogeneous metabolic profiles connected to their exhaustion states. The metabolic state was connected to the exhaustion profile rather than the aetiology of infection. Mitochondrial impairment despite intact glucose uptake was prominent in severely exhausted T cells linked to elevated liver inflammation in chronic HCV infection and in HBV polymerase455-463 -specific CD8+ T cell responses. In contrast, relative metabolic fitness was observed in HBeAg-negative HBV infection in HBV core18-27-specific responses. DAA therapy partially improved mitochondrial programmes in severely exhausted HCV-specific T cells and enriched metabolically fit precursors. We identified enolase as a metabolic checkpoint in exhausted T cells. Metabolic bypassing improved glycolysis and T cell effector function. Similarly, enolase deficiency was observed in intrahepatic HBV-specific CD8+ T cells in a murine model of chronic infection. CONCLUSION: Metabolism of HBV-specific and HCV-specific T cells is strongly connected to their exhaustion severity. Our results highlight enolase as metabolic regulator of severely exhausted T cells. They connect differential bioenergetic fitness with distinct exhaustion subtypes and varying liver disease, with implications for therapeutic strategies.


Subject(s)
Hepatitis B, Chronic , Hepatitis C, Chronic , Hepatitis C , Humans , Animals , Mice , CD8-Positive T-Lymphocytes/metabolism , Antiviral Agents/therapeutic use , Persistent Infection , Hepatitis C, Chronic/drug therapy , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/metabolism , Hepatitis C/drug therapy , Hepatitis Viruses , Hepatitis B virus
2.
Cancer Cell ; 41(8): 1498-1515.e10, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37451271

ABSTRACT

Type 1 conventional dendritic cells (cDC1) can support T cell responses within tumors but whether this determines protective versus ineffective anti-cancer immunity is poorly understood. Here, we use imaging-based deep learning to identify intratumoral cDC1-CD8+ T cell clustering as a unique feature of protective anti-cancer immunity. These clusters form selectively in stromal tumor regions and constitute niches in which cDC1 activate TCF1+ stem-like CD8+ T cells. We identify a distinct population of immunostimulatory CCR7neg cDC1 that produce CXCL9 to promote cluster formation and cross-present tumor antigens within these niches, which is required for intratumoral CD8+ T cell differentiation and expansion and promotes cancer immune control. Similarly, in human cancers, CCR7neg cDC1 interact with CD8+ T cells in clusters and are associated with patient survival. Our findings reveal an intratumoral phase of the anti-cancer T cell response orchestrated by tumor-residing cDC1 that determines protective versus ineffective immunity and could be exploited for cancer therapy.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Receptors, CCR7/metabolism , Neoplasms/therapy , Antigens, Neoplasm , Dendritic Cells
3.
Immunity ; 56(6): 1341-1358.e11, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37315536

ABSTRACT

Type 1 conventional dendritic cells (cDC1s) are critical for anti-cancer immunity. Protective anti-cancer immunity is thought to require cDC1s to sustain T cell responses within tumors, but it is poorly understood how this function is regulated and whether its subversion contributes to immune evasion. Here, we show that tumor-derived prostaglandin E2 (PGE2) programmed a dysfunctional state in intratumoral cDC1s, disabling their ability to locally orchestrate anti-cancer CD8+ T cell responses. Mechanistically, cAMP signaling downstream of the PGE2-receptors EP2 and EP4 was responsible for the programming of cDC1 dysfunction, which depended on the loss of the transcription factor IRF8. Blockade of the PGE2-EP2/EP4-cDC1 axis prevented cDC1 dysfunction in tumors, locally reinvigorated anti-cancer CD8+ T cell responses, and achieved cancer immune control. In human cDC1s, PGE2-induced dysfunction is conserved and associated with poor cancer patient prognosis. Our findings reveal a cDC1-dependent intratumoral checkpoint for anti-cancer immunity that is targeted by PGE2 for immune evasion.


Subject(s)
Dinoprostone , Neoplasms , Humans , Antibodies , CD8-Positive T-Lymphocytes , Dendritic Cells , Receptors, Prostaglandin E
4.
Cell Mol Gastroenterol Hepatol ; 16(2): 201-221, 2023.
Article in English | MEDLINE | ID: mdl-37054914

ABSTRACT

BACKGROUND & AIMS: A single hepatitis B virus (HBV) particle is sufficient to establish chronic infection of the liver after intravenous injection, suggesting that the virus targets hepatocytes via a highly efficient transport pathway. We therefore investigated whether HBV uses a physiological liver-directed pathway that supports specific host-cell targeting in vivo. METHODS: We established the ex vivo perfusion of intact human liver tissue that recapitulates the liver physiology to investigate HBV liver targeting. This model allowed us to investigate virus-host cell interactions in a cellular microenvironment mimicking the in vivo situation. RESULTS: HBV was rapidly sequestered by liver macrophages within 1 hour after a virus pulse perfusion but was detected in hepatocytes only after 16 hours. We found that HBV associates with lipoproteins in serum and within machrophages. Electron and immunofluorescence microscopy corroborated a co-localization in recycling endosomes within peripheral and liver macrophages. Recycling endosomes accumulated HBV and cholesterol, followed by transport of HBV back to the cell surface along the cholesterol efflux pathway. To reach hepatocytes as final target cells, HBV was able to utilize the hepatocyte-directed cholesterol transport machinery of macrophages. CONCLUSIONS: Our results propose that by binding to liver targeted lipoproteins and using the reverse cholesterol transport pathway of macrophages, HBV hijacks the physiological lipid transport pathways to the liver to most efficiently reach its target organ. This may involve transinfection of liver macrophages and result in deposition of HBV in the perisinusoidal space from where HBV can bind its receptor on hepatocytes.


Subject(s)
Hepatitis B virus , Hepatitis B , Humans , Hepatitis B virus/physiology , Hepatocytes/metabolism , Cholesterol/metabolism , Lipoproteins/metabolism , Lipids
5.
J Hepatol ; 78(4): 820-835, 2023 04.
Article in English | MEDLINE | ID: mdl-36681162

ABSTRACT

BACKGROUND & AIMS: Hepatocyte growth and proliferation depends on membrane phospholipid biosynthesis. Short-chain fatty acids (SCFAs) generated by bacterial fermentation, delivered through the gut-liver axis, significantly contribute to lipid biosynthesis. We therefore hypothesized that dysbiotic insults like antibiotic treatment not only affect gut microbiota, but also impair hepatic lipid synthesis and liver regeneration. METHODS: Stable isotope labeling and 70% partial hepatectomy (PHx) was carried out in C57Bl/6J wild-type mice, in mice treated with broad-spectrum antibiotics, in germ-free mice and mice colonized with minimal microbiota. The microbiome was analyzed by 16S rRNA gene sequencing and microbial culture. Gut content, liver, blood and primary hepatocyte organoids were tested by mass spectrometry-based lipidomics, quantitative reverse-transcription PCR (qRT-PCR), immunoblot and immunohistochemistry for expression of proliferative and lipogenic markers. Matched biopsies from hyperplastic and hypoplastic liver tissue of patients subjected to surgical intervention to induce hyperplasia were analyzed by qRT-PCR for lipogenic enzymes. RESULTS: Three days of antibiotic treatment induced persistent dysbiosis with significantly decreased beta-diversity and richness, but a massive increase of Proteobacteria, accompanied by decreased colonic SCFAs. After PHx, antibiotic-treated mice showed delayed liver regeneration, increased mortality, impaired hepatocyte proliferation and decreased hepatic phospholipid synthesis. Expression of the lipogenic enzyme SCD1 was upregulated after PHx but delayed by antibiotic treatment. Germ-free mice essentially recapitulated the phenotype of antibiotic treatment. Phospholipid biosynthesis, hepatocyte proliferation, liver regeneration and survival were rescued in gnotobiotic mice colonized with a minimal SCFA-producing microbial community. SCFAs induced the growth of murine hepatocyte organoids and hepatic SCD1 expression in mice. Further, SCD1 was required for proliferation of human hepatoma cells and was associated with liver regeneration in human patients. CONCLUSION: Gut microbiota are pivotal for hepatic membrane phospholipid biosynthesis and liver regeneration. IMPACT AND IMPLICATIONS: Gut microbiota affect hepatic lipid metabolism through the gut-liver axis, but the underlying mechanisms are poorly understood. Perturbations of the gut microbiome, e.g. by antibiotics, impair the production of bacterial metabolites, which normally serve as building blocks for membrane lipids in liver cells. As a consequence, liver regeneration and survival after liver surgery is severely impaired. Even though this study is preclinical, its results might allow physicians in the future to improve patient outcomes after liver surgery, by modulation of gut microbiota or their metabolites.


Subject(s)
Cell Membrane , Gastrointestinal Microbiome , Hepatocytes , Liver Regeneration , Phospholipids , Animals , Humans , Mice , Anti-Bacterial Agents/pharmacology , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Hyperplasia/metabolism , Hyperplasia/pathology , Liver/pathology , Liver Regeneration/physiology , Mice, Inbred C57BL , Phospholipids/biosynthesis , Phospholipids/metabolism , RNA, Ribosomal, 16S , Hepatocytes/metabolism , Cell Membrane/metabolism
6.
JHEP Rep ; 4(5): 100465, 2022 May.
Article in English | MEDLINE | ID: mdl-35462860

ABSTRACT

Background & Aims: Increased sensitivity towards tumor necrosis factor (TNF)-induced cell death in virus-infected hepatocytes has revealed a so far unrecognized hepatocyte-intrinsic antiviral immune surveillance mechanism, for which no in vitro or ex vivo model is available. We aimed to establish precision-cut liver slices (PCLS) as a model system to study hepatocyte-intrinsic regulation of apoptosis. Methods: Preparation of PCLS from mouse and human liver tissue was optimized for minimal procedure-associated apoptosis. Functionality of liver cells in PCLS was characterized using extracellular flux analysis to determine mitochondrial respiration, and viral infection with recombinant adenovirus and lymphocytic choriomeningitis virus (LCMV) was used to probe for hepatocyte-intrinsic sensitivity towards apoptosis in PCLS. Apoptosis was detected by immunohistochemical staining for cleaved-caspase 3 and quantified by detection of effector caspase activity in PCLS. Results: We established an optimized protocol for preparation of PCLS from human and mouse models using agarose-embedding of liver tissue to improve precision cutting and using organ-protective buffer solutions to minimize procedure-associated cell death. PCLS prepared from virus-infected livers showed preserved functional metabolic properties. Importantly, in PCLS from adenovirus- and LCMV-infected livers we detected increased induction of apoptosis after TNF challenge ex vivo. Conclusion: We conclude that PCLS can be used as model system to ex vivo characterize hepatocyte-intrinsic sensitivity to cell death. This may also enable researchers to characterize human hepatocyte sensitivity to apoptosis in PCLS prepared from patients with acute or chronic liver diseases. Lay summary: Virus-infected hepatocytes in vivo show an increased sensitivity towards induction of cell death signaling through the TNF receptor. Studying this hepatocyte-intrinsic antiviral immune surveillance mechanism has been hampered by the absence of model systems that reciprocate the in vivo finding of increased apoptosis of virus-infected hepatocytes challenged with TNF. Herein, we report that an optimized protocol for generation of precision-cut liver slices can be used to study this hepatocyte-intrinsic surveillance mechanism ex vivo.

7.
Annu Rev Anal Chem (Palo Alto Calif) ; 15(1): 1-16, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35303775

ABSTRACT

Cellular organelles are highly specialized compartments with distinct functions. With the increasing resolution of detection methods, it is becoming clearer that same organelles may have different functions or properties not only within different cell populations of a tissue but also within the same cell. Dysfunction or altered function affects the organelle itself and may also lead to malignancies or undesirable cell death. To understand cellular function or dysfunction, it is therefore necessary to analyze cellular components at the single-organelle level. Here, we review the recent advances in analyzing cellular function at single-organelle resolution using high-parameter flow cytometry or multicolor confocal microscopy. We focus on the analysis of mitochondria, as they are organelles at the crossroads of various cellular signaling pathways and functions. However, most of the applied methods/technologies are transferable to any other organelle, such as the endoplasmic reticulum, lysosomes, or peroxisomes.


Subject(s)
Endoplasmic Reticulum , Mitochondria , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Lysosomes/metabolism , Lysosomes/pathology , Microscopy, Confocal , Mitochondria/metabolism , Mitochondria/pathology , Peroxisomes/metabolism , Peroxisomes/pathology
8.
Nat Commun ; 12(1): 6918, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34824277

ABSTRACT

While viral replication processes are largely understood, comparably little is known on cellular mechanisms degrading viral RNA. Some viral RNAs bear a 5'-triphosphate (PPP-) group that impairs degradation by the canonical 5'-3' degradation pathway. Here we show that the Nudix hydrolase 2 (NUDT2) trims viral PPP-RNA into monophosphorylated (P)-RNA, which serves as a substrate for the 5'-3' exonuclease XRN1. NUDT2 removes 5'-phosphates from PPP-RNA in an RNA sequence- and overhang-independent manner and its ablation in cells increases growth of PPP-RNA viruses, suggesting an involvement in antiviral immunity. NUDT2 is highly homologous to bacterial RNA pyrophosphatase H (RppH), a protein involved in the metabolism of bacterial mRNA, which is 5'-tri- or diphosphorylated. Our results show a conserved function between bacterial RppH and mammalian NUDT2, indicating that the function may have adapted from a protein responsible for RNA turnover in bacteria into a protein involved in the immune defense in mammals.


Subject(s)
Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , RNA Stability , RNA, Viral/metabolism , Adaptation, Physiological , Animals , Antiviral Agents , Bone Marrow Cells , CRISPR-Cas Systems , Exonucleases , Exoribonucleases , Female , Gene Knockout Techniques , HEK293 Cells , HeLa Cells , Humans , Immunity, Innate , Male , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins , Polyphosphates , RNA, Bacterial , RNA, Messenger , Virus Replication
9.
Viruses ; 13(11)2021 11 13.
Article in English | MEDLINE | ID: mdl-34835079

ABSTRACT

Immunity against hepatitis B virus (HBV) infection is complex and not entirely understood so far, including the decisive factors leading to the development of chronic hepatitis B. This lack of a mechanistic understanding of HBV-specific immunity is also caused by a limited number of suitable animal models. Here, we describe the generation of a recombinant adenovirus expressing an HBV 1.3-overlength genome linked to luciferase (Ad-HBV-Luc) allowing for precise analysis of the quantity of infected hepatocytes. This enables sensitive and close-meshed monitoring of HBV-specific CD8 T cells and the onset of anti-viral immunity in mice. A high dose of Ad-HBV-Luc developed into chronic hepatitis B accompanied by dysfunctional CD8 T cells characterized by high expression of PD1 and TOX and low expression of KLRG1 and GzmB. In contrast, a low dose of Ad-HBV-Luc infection resulted in acute hepatitis with CD8 T cell-mediated elimination of HBV-replicating hepatocytes associated with elevated sALT levels and increased numbers of cytotoxic HBV-specific CD8 T cells. Thus, the infectious dose was a critical factor to induce either acute self-limited or chronic HBV infection in mice. Taken together, the new Ad-HBV-Luc vector will allow for highly sensitive and time-resolved analysis of HBV-specific immune responses during acute and chronic infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Hepatitis B virus/immunology , Hepatitis B, Chronic/immunology , Virus Replication/immunology , Adenoviridae/genetics , Animals , CD8-Positive T-Lymphocytes/metabolism , Hepatitis B virus/genetics , Hepatitis B, Chronic/genetics , Hepatitis B, Chronic/virology , Hepatocytes/immunology , Liver/immunology , Liver/metabolism , Liver/pathology , Liver/virology , Male , Mice , Mice, Inbred C57BL
10.
Vaccines (Basel) ; 9(11)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34835264

ABSTRACT

Chronic hepatitis B affects more than 250 million individuals worldwide, putting them at risk of developing liver cirrhosis and liver cancer. While antiviral immune responses are key to eliminating hepatitis B virus (HBV) infections, insufficient antiviral immunity characterized by failure to eliminate HBV-infected hepatocytes is associated with chronic hepatitis B. Prophylactic vaccination against hepatitis B successfully established protective immunity against infection with the hepatitis B virus and has been instrumental in controlling hepatitis B. However, prophylactic vaccination schemes have not been successful in mounting protective immunity to eliminate HBV infections in patients with chronic hepatitis B. Here, we discuss the current knowledge on the development and efficacy of therapeutic vaccination strategies against chronic hepatitis B with particular emphasis on the pathogenetic understanding of dysfunctional anti-viral immunity. We explore the development of additional immune stimulation measures within tissues, in particular activation of immunogenic myeloid cell populations, and their use for combination with therapeutic vaccination strategies to improve the efficacy of therapeutic vaccination against chronic hepatitis B.

11.
Xenotransplantation ; 27(6): e12634, 2020 11.
Article in English | MEDLINE | ID: mdl-32808410

ABSTRACT

BACKGROUND: Ubiquitous expression of T-cell regulatory transgenes such as the cytotoxic T lymphocyte-associated antigen 4 (CTLA4) or the high-affinity variant LEA29Y improves xeno graft survival. Such donor pigs are however immunocompromised and susceptible to infection. Continous high expression of CTLA4 or LEA29Y in the graft could also compromise the health status of recipients. The novel "Smart Graft" strategy is likely to avoid these problems by controlling the expression of T-cell regulatory transgenes as and when required. METHODS: Candidate promoters inducible by inflammatory cytokines were identified by in silico screening for potential NF-κB binding sites. Basal promoter levels and responsiveness to TNFα and IL1ß were quantified by expression of secreted embryonic alkaline phosphatase in cultured cells. Promoters were modified to increase responsiveness by removing regulatory elements or adding SP-1 or NF-κB binding sites and again tested in vitro. The most promising promoters were then assessed in vivo. Porcine cells expressing inducible Renilla luciferase constructs were transplanted into immunodeficient NOD-Scid-IL2 receptor gammanull (NSG) mice. Following engraftment, the recipient's immune system was reconstituted by splenocyte transfer raising an immune response to the porcine xenograft. The resulting induction of promoter activity was detected by in vivo bioimaging. RESULTS: Three human (hTNFAIP1, hVCAM1 and hCCL2), and one porcine promoter (pA20) were chosen for in vitro tests. In all experiments, the semi-synthetic and inducible ELAM promoter as well as the CAG promoter were used as references. In contrast to hTNFAIP1 and hVCAM1 the ELAM, hCCL2 and pA20 promoters showed significant induction after cytokine challenge. The hCCL2 and pA20 promoters were further optimized, resulting in increased responsiveness to TNFα and IL1ß. Cytokine-dependent upregulation of promoter activity was tested in vivo, where the ELAM and the optimized hCCL2 promoters showed a 2-fold upregulation, while one of the improved A20 promoters showed almost 10-fold upregulation. Our results also revealed more than 4-fold cytokine inducibility of the CAG promoter. CONCLUSION: This is the first in vivo comparison of existing and newly designed cytokine-inducible promoters. Optimization of promoter structure resulted in almost 10-fold inducibility of promoter activity. Such a rapid and dynamically regulated response to inflammation and cell damage could reduce initial graft rejection, making the "Smart Graft" approach a useful means of modulating the expression of immune regulatory transgenes to avoid deleterious effects on porcine and human health. Expressing transgenes in this fashion could provide a safer organ for transplantation.


Subject(s)
Cytokines , Promoter Regions, Genetic , Transgenes , Transplantation, Heterologous , Animals , Gene Expression , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Swine
12.
Cells ; 9(7)2020 06 29.
Article in English | MEDLINE | ID: mdl-32610710

ABSTRACT

In this study we report the functional comparison of T cell receptor (TCR)-engineered major histocompatibility complex (MHC) class I-restricted CD4+ versus CD8+ T cells targeting a peptide from six transmembrane epithelial antigen of the prostate 1 (STEAP1) in the context of HLA-A*02:01. STEAP1 is a tumor-associated antigen, which is overexpressed in many cancers, including Ewing sarcoma (EwS). Based on previous observations, we postulated strong antitumor potential of tumor-redirected CD4+ T cells transduced with an HLA class I-restricted TCR against a STEAP1-derived peptide. We compared CD4+ T cell populations to their CD8+ counterparts in vitro using impedance-based xCELLigence and cytokine/granzyme release assays. We further compared antitumor activity of STEAP130-TCR transgenic (tg) CD4+ versus CD8+ T cells in tumor-bearing xenografted Rag2-/-gc-/- mice. TCR tgCD4+ T cells showed increased cytotoxic features over time with similar functional avidity compared to tgCD8+ cells after 5-6 weeks of culture. In vivo, local tumor control was equal. Assessing metastatic organotropism of intraveniously (i.v.) injected tumors, only tgCD8+ cells were associated with reduced metastases. In this analysis, EwS-redirected tgCD4+ T cells contribute to local tumor control, but fail to control metastatic outgrowth in a model of xenografted EwS.


Subject(s)
Antigens, Neoplasm/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Oxidoreductases/metabolism , Sarcoma, Ewing/metabolism , Animals , Cells, Cultured , Computational Biology , DNA-Binding Proteins/metabolism , Flow Cytometry , Humans , Mice, Inbred BALB C , Mice, Mutant Strains , Xenograft Model Antitumor Assays
13.
J Hepatol ; 73(6): 1347-1359, 2020 12.
Article in English | MEDLINE | ID: mdl-32598967

ABSTRACT

BACKGROUND & AIMS: Selective elimination of virus-infected hepatocytes occurs through virus-specific CD8 T cells recognizing peptide-loaded MHC molecules. Herein, we report that virus-infected hepatocytes are also selectively eliminated through a cell-autonomous mechanism. METHODS: We generated recombinant adenoviruses and genetically modified mouse models to identify the molecular mechanisms determining TNF-induced hepatocyte apoptosis in vivo and used in vivo bioluminescence imaging, immunohistochemistry, immunoblot analysis, RNAseq/proteome/phosphoproteome analyses, bioinformatic analyses, mitochondrial function tests. RESULTS: We found that TNF precisely eliminated only virus-infected hepatocytes independently of local inflammation and activation of immune sensory receptors. TNF receptor I was equally relevant for NF-kB activation in healthy and infected hepatocytes, but selectively mediated apoptosis in infected hepatocytes. Caspase 8 activation downstream of TNF receptor signaling was dispensable for apoptosis in virus-infected hepatocytes, indicating an unknown non-canonical cell-intrinsic pathway promoting apoptosis in hepatocytes. We identified a unique state of mitochondrial vulnerability in virus-infected hepatocytes as the cause for this non-canonical induction of apoptosis through TNF. Mitochondria from virus-infected hepatocytes showed normal biophysical and bioenergetic functions but were characterized by reduced resilience to calcium challenge. In the presence of unchanged TNF-induced signaling, reactive oxygen species-mediated calcium release from the endoplasmic reticulum caused mitochondrial permeability transition and apoptosis, which identified a link between extrinsic death receptor signaling and cell-intrinsic mitochondrial-mediated caspase activation. CONCLUSION: Our findings reveal a novel concept in immune surveillance by identifying a cell-autonomous defense mechanism that selectively eliminates virus-infected hepatocytes through mitochondrial permeability transition. LAY SUMMARY: The liver is known for its unique immune functions. Herein, we identify a novel mechanism by which virus-infected hepatocytes can selectively eliminate themselves through reduced mitochondrial resilience to calcium challenge.


Subject(s)
Caspase 8/metabolism , Hepatocytes , Mitochondria, Liver , Receptors, Tumor Necrosis Factor, Type I/metabolism , Animals , Apoptosis/immunology , Calcium Signaling , Cells, Cultured , Hepatocytes/metabolism , Hepatocytes/virology , Humans , Mice , Mitochondria, Liver/immunology , Mitochondria, Liver/metabolism , Mitochondrial Transmembrane Permeability-Driven Necrosis , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
14.
FASEB J ; 34(6): 8125-8138, 2020 06.
Article in English | MEDLINE | ID: mdl-32329113

ABSTRACT

The effectiveness of liver regeneration limits surgical therapies of hepatic disorders and determines patient outcome. Here, we investigated the role of the neuropeptide calcitonin gene-related peptide (CGRP) for liver regeneration after acute or chronic injury. Mice deficient for the CGRP receptor component receptor activity-modifying protein 1 (RAMP1) were subjected to a 70% partial hepatectomy or repeated intraperitoneal injections of carbon tetrachloride. RAMP1 deficiency severely impaired recovery of organ mass and hepatocyte proliferation after both acute and chronic liver injury. Mechanistically, protein expression of the transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) was decreased in regenerating livers of RAMP1-deficient mice. Lack of RAMP1 was associated with hyperphosphorylation of YAP on Ser127 and Ser397, which regulates YAP functional activity and protein levels. Consequently, expression of various YAP-controlled cell cycle regulators and hepatocyte proliferation were severely reduced in the absence of RAMP1. In vitro, CGRP treatment caused increased YAP protein expression and a concomitant decline of YAP phosphorylation in liver tissue slice cultures of mouse and human origin and in primary human hepatocytes. Thus, our results indicate that sensory nerves represent a crucial control element of liver regeneration after acute and chronic injury acting through the CGRP-RAMP1 pathway, which stimulates YAP/TAZ expression and activity.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Liver Regeneration/physiology , Receptor Activity-Modifying Protein 1/metabolism , Receptors, Calcitonin Gene-Related Peptide/metabolism , Animals , Calcitonin Gene-Related Peptide/metabolism , Cell Cycle/physiology , Cell Proliferation/physiology , Hepatectomy/methods , Hepatocytes/metabolism , Humans , Liver/metabolism , Liver Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Phosphorylation/physiology , Signal Transduction/physiology , YAP-Signaling Proteins
15.
Int J Mol Sci ; 21(7)2020 Apr 05.
Article in English | MEDLINE | ID: mdl-32260486

ABSTRACT

The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) regulates target gene expression upon ligand binding. Apart from its effects on metabolism, PPARγ activity can inhibit the production of pro-inflammatory cytokines by several immune cells, including dendritic cells and macrophages. In chronic inflammatory disease models, PPARγ activation delays the onset and ameliorates disease severity. Here, we investigated the effect of PPARγ activation by the agonist Pioglitazone on the function of hepatic immune cells and its effect in a murine model of immune-mediated hepatitis. Cytokine production by both liver sinusoidal endothelial cells (IL-6) and in T cells ex vivo (IFNγ) was decreased in cells from Pioglitazone-treated mice. However, PPARγ activation did not decrease pro-inflammatory tumor necrosis factor alpha TNFα production by Kupffer cells after Toll-like receptor (TLR) stimulation ex vivo. Most interestingly, although PPARγ activation was shown to ameliorate chronic inflammatory diseases, it did not improve hepatic injury in a model of immune-mediated hepatitis. In contrast, Pioglitazone-induced PPARγ activation exacerbated D-galactosamine (GalN)/lipopolysaccharide (LPS) hepatitis associated with an increased production of TNFα by Kupffer cells and increased sensitivity of hepatocytes towards TNFα after in vivo Pioglitazone administration. These results unravel liver-specific effects of Pioglitazone that fail to attenuate liver inflammation but rather exacerbate liver injury in an experimental hepatitis model.


Subject(s)
Hepatitis, Autoimmune/immunology , PPAR gamma/agonists , Pioglitazone/pharmacology , Animals , Cells, Cultured , Interferon-gamma/metabolism , Kupffer Cells/drug effects , Kupffer Cells/immunology , Lymphocyte Activation , Macrophage Activation , Mice , Mice, Inbred C57BL , PPAR gamma/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Toll-Like Receptors/metabolism , Tumor Necrosis Factor-alpha/metabolism
16.
J Hepatol ; 72(5): 960-975, 2020 05.
Article in English | MEDLINE | ID: mdl-31954207

ABSTRACT

BACKGROUND & AIMS: Hepatic innate immune control of viral infections has largely been attributed to Kupffer cells, the liver-resident macrophages. However, hepatocytes, the parenchymal cells of the liver, also possess potent immunological functions in addition to their known metabolic functions. Owing to their abundance in the liver and known immunological functions, we aimed to investigate the direct antiviral mechanisms employed by hepatocytes. METHODS: Using lymphocytic choriomeningitis virus (LCMV) as a model of liver infection, we first assessed the role of myeloid cells by depletion prior to infection. We investigated the role of hepatocyte-intrinsic innate immune signaling by infecting mice lacking canonical NF-κB signaling (IkkßΔHep) specifically in hepatocytes. In addition, mice lacking hepatocyte-specific interferon-α/ß signaling-(IfnarΔHep), or interferon-α/ß signaling in myeloid cells-(IfnarΔMyel) were infected. RESULTS: Here, we demonstrate that LCMV activates NF-κB signaling in hepatocytes. LCMV-triggered NF-κB activation in hepatocytes did not depend on Kupffer cells or TNFR1 signaling but rather on Toll-like receptor signaling. LCMV-infected IkkßΔHep livers displayed strongly elevated viral titers due to LCMV accumulation within hepatocytes, reduced interferon-stimulated gene (ISG) expression, delayed intrahepatic immune cell influx and delayed intrahepatic LCMV-specific CD8+ T cell responses. Notably, viral clearance and ISG expression were also reduced in LCMV-infected primary hepatocytes lacking IKKß, demonstrating a hepatocyte-intrinsic effect. Similar to livers of IkkßΔHep mice, enhanced hepatocytic LCMV accumulation was observed in livers of IfnarΔHep mice, whereas IfnarΔMyel mice were able to control LCMV infection. Hepatocytic NF-κB signaling was also required for efficient ISG induction in HDV-infected dHepaRG cells and interferon-α/ß-mediated inhibition of HBV replication in vitro. CONCLUSIONS: Together, these data show that hepatocyte-intrinsic NF-κB is a vital amplifier of interferon-α/ß signaling, which is pivotal for strong early ISG responses, immune cell infiltration and hepatic viral clearance. LAY SUMMARY: Innate immune cells have been ascribed a primary role in controlling viral clearance upon hepatic infections. We identified a novel dual role for NF-κB signaling in infected hepatocytes which was crucial for maximizing interferon responses and initiating adaptive immunity, thereby efficiently controlling hepatic virus replication.


Subject(s)
Hepacivirus/genetics , Hepatitis C, Chronic/genetics , Hepatitis C, Chronic/immunology , Hepatocytes/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/physiology , NF-kappa B p50 Subunit/genetics , Polymorphism, Single Nucleotide , Transcription Factor RelA/metabolism , Virus Replication/genetics , Adult , Animals , Cells, Cultured , Disease Models, Animal , Female , Gene Knockout Techniques , Genotype , Hepatitis C, Chronic/virology , Humans , I-kappa B Kinase/deficiency , I-kappa B Kinase/genetics , Lymphocytic Choriomeningitis/virology , Male , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction , Young Adult
17.
Cancer Cell ; 36(3): 250-267.e9, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31526758

ABSTRACT

How lymphoma cells (LCs) invade the brain during the development of central nervous system lymphoma (CNSL) is unclear. We found that NF-κB-induced gliosis promotes CNSL in immunocompetent mice. Gliosis elevated cell-adhesion molecules, which increased LCs in the brain but was insufficient to induce CNSL. Astrocyte-derived CCL19 was required for gliosis-induced CNSL. Deleting CCL19 in mice or CCR7 from LCs abrogated CNSL development. Two-photon microscopy revealed LCs transiently entering normal brain parenchyma. Astrocytic CCL19 enhanced parenchymal CNS retention of LCs, thereby promoting CNSL formation. Aged, gliotic wild-type mice were more susceptible to forming CNSL than young wild-type mice, and astrocytic CCL19 was observed in both human gliosis and CNSL. Therefore, CCL19-CCR7 interactions may underlie an increased age-related risk for CNSL.


Subject(s)
Aging/pathology , Central Nervous System Neoplasms/pathology , Chemokine CCL19/metabolism , Gliosis/pathology , Lymphoma/pathology , Adolescent , Adult , Aged , Animals , Astrocytes/metabolism , Astrocytes/pathology , Blood-Brain Barrier/cytology , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/pathology , Cell Line, Tumor/transplantation , Central Nervous System Neoplasms/diagnostic imaging , Central Nervous System Neoplasms/surgery , Chemokine CCL19/genetics , Chemokine CXCL12 , Disease Models, Animal , Female , Gliosis/diagnostic imaging , Humans , Intravital Microscopy , Lymphoma/diagnostic imaging , Lymphoma/surgery , Male , Mice , Mice, Transgenic , Microscopy, Fluorescence, Multiphoton , Middle Aged , NF-kappa B/metabolism , Receptors, CCR7/genetics , Receptors, CCR7/metabolism , Time-Lapse Imaging , Young Adult
18.
Nature ; 571(7764): 265-269, 2019 07.
Article in English | MEDLINE | ID: mdl-31207605

ABSTRACT

Cytotoxic T cells are essential mediators of protective immunity to viral infection and malignant tumours and are a key target of immunotherapy approaches. However, prolonged exposure to cognate antigens often attenuates the effector capacity of T cells and limits their therapeutic potential1-4. This process, known as T cell exhaustion or dysfunction1, is manifested by epigenetically enforced changes in gene regulation that reduce the expression of cytokines and effector molecules and upregulate the expression of inhibitory receptors such as programmed cell-death 1 (PD-1)5-8. The underlying molecular mechanisms that induce and stabilize the phenotypic and functional features of exhausted T cells remain poorly understood9-12. Here we report that the development and maintenance of populations of exhausted T cells in mice requires the thymocyte selection-associated high mobility group box (TOX) protein13-15. TOX is induced by high antigen stimulation of the T cell receptor and correlates with the presence of an exhausted phenotype during chronic infections with lymphocytic choriomeningitis virus in mice and hepatitis C virus in humans. Removal of its DNA-binding domain reduces the expression of PD-1 at the mRNA and protein level, augments the production of cytokines and results in a more polyfunctional T cell phenotype. T cells with this deletion initially mediate increased effector function and cause more severe immunopathology, but ultimately undergo a massive decline in their quantity, notably among the subset of TCF-1+ self-renewing T cells. Altogether, we show that TOX is a critical factor for the normal progression of T cell dysfunction and the maintenance of exhausted T cells during chronic infection, and provide a link between the suppression of effector function intrinsic to CD8 T cells and protection against immunopathology.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Hepatitis C, Chronic/immunology , Hepatitis C, Chronic/virology , High Mobility Group Proteins/metabolism , Homeodomain Proteins/metabolism , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Animals , Cell Proliferation , Chronic Disease , Cytokines/immunology , Cytokines/metabolism , Epigenesis, Genetic , Female , Gene Expression Regulation/immunology , Hepacivirus/immunology , Hepatocyte Nuclear Factor 1-alpha/metabolism , Humans , Immunologic Memory , Lymphocytic choriomeningitis virus/immunology , Male , Mice , Phenotype , Thymocytes/cytology , Thymocytes/immunology , Transcription, Genetic
19.
Sci Rep ; 9(1): 8492, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31186476

ABSTRACT

Mitochondria are key for cellular metabolism and signalling processes during viral infection. We report a methodology to analyse mitochondrial properties at the single-organelle level during viral infection using a recombinant adenovirus coding for a mitochondrial tracer protein for tagging and detection by multispectral flow cytometry. Resolution at the level of tagged individual mitochondria revealed changes in mitochondrial size, membrane potential and displayed a fragile phenotype during viral infection of cells. Thus, single-organelle and multi-parameter resolution allows to explore altered energy metabolism and antiviral defence by tagged mitochondria selectively in virus-infected cells and will be instrumental to identify viral immune escape and to develop and monitor novel mitochondrial-targeted therapies.


Subject(s)
Mitochondria, Liver/metabolism , Virus Diseases/metabolism , Animals , HEK293 Cells , Hepatocytes/ultrastructure , Hepatocytes/virology , Humans , Membrane Potential, Mitochondrial , Mice, Inbred C57BL , Mitochondria, Liver/ultrastructure , Mitochondria, Liver/virology , Organelle Size
20.
Hepatology ; 68(6): 2089-2105, 2018 12.
Article in English | MEDLINE | ID: mdl-29729204

ABSTRACT

The liver bears unique immune properties that support both immune tolerance and immunity, but the mechanisms responsible for clearance versus persistence of virus-infected hepatocytes remain unclear. Here, we dissect the factors determining the outcome of antiviral immunity using recombinant adenoviruses that reflect the hepatropism and hepatrophism of hepatitis viruses. We generated replication-deficient adenoviruses with equimolar expression of ovalbumin, luciferase, and green fluorescent protein driven by a strong ubiquitous cytomegalovirus (CMV) promoter (Ad-CMV-GOL) or by 100-fold weaker, yet hepatocyte-specific, transthyretin (TTR) promoter (Ad-TTR-GOL). Using in vivo bioluminescence to quantitatively and dynamically image luciferase activity, we demonstrated that Ad-TTR-GOL infection always persists, whereas Ad-CMV-GOL infection is always cleared, independent of the number of infected hepatocytes. Failure to clear Ad-TTR-GOL infection involved mechanisms acting during initiation as well as execution of antigen-specific immunity. First, hepatocyte-restricted antigen expression led to delayed and curtailed T-cell expansion-10,000-fold after Ad-CMV-GOL versus 150-fold after Ad-TTR-GOL-infection. Second, CD8 T-cells primed toward antigens selectively expressed by hepatocytes showed high PD-1/Tim-3/LAG-3/CTLA-4/CD160 expression levels similar to that seen in chronic hepatitis B. Third, Ad-TTR-GOL but not Ad-CMV-GOL-infected hepatocytes escaped being killed by effector T-cells while still inducing high PD-1/Tim-3/LAG-3/CTLA-4/CD160 expression, indicating different thresholds of T-cell receptor signaling relevant for triggering effector functions compared with exhaustion. Conclusion: Our study identifies deficits in the generation of CD8 T-cell immunity toward hepatocyte-expressed antigens and escape of infected hepatocytes expressing low viral antigen levels from effector T-cell killing as independent factors promoting viral persistence. This highlights the importance of addressing both the restauration of CD8 T-cell dysfunction and overcoming local hurdles of effector T-cell function to eliminate virus-infected hepatocytes.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Hepatitis, Viral, Animal/immunology , Hepatocytes/immunology , Adenoviridae , Animals , Antigens/metabolism , Cytomegalovirus/genetics , Gene Expression , Lymphocyte Activation , Mice, Inbred C57BL , Mice, Transgenic , Prealbumin/genetics , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL