Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem Toxicol ; 191: 114862, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986833

ABSTRACT

This study investigates concentrations of toxic and potentially toxic elements (PTEs) in organic and conventional wheat flour and grains marketed in Las Vegas. Geographic origins of the samples were evaluated using Linear Discriminant Analysis (LDA). Monte Carlo Simulation technique was also employed to evaluate non-carcinogenic risk in four life stages. Concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, Sr, and Zn were determined using inductively coupled plasma mass spectrometry (ICP-MS) following hot block-assisted digestion. Obtained results showed non-significant differences in contents of toxic and PTEs between conventional and organic wheat grains/flour. Using LDA, metal (loid)s were found to be indicative of geographical origin. The LDA produced a total correct classification rate of 95.8% and 100% for US and West Pacific Region samples, respectively. The results of the present study indicate that the estimated non-carcinogenic risk associated with toxic element intakes across the four life stages were far lower than the threshold value (Target Hazard Quotient (THQ) > 1). However, the probability of exceeding the threshold value for Mn is approximately 32% in children aged between 5 and 8 years. The findings of this study can aid in understanding dietary Mn exposure in children in Las Vegas.

2.
Biol Trace Elem Res ; 202(3): 1305-1315, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37369964

ABSTRACT

Among the most renowned Ethiopian food crops, teff (Eragrostis tef (Zucc.)Trotter) is the most nutritious and gluten-free cereal. Because of the increase in demand for teff, it is necessary to establish geographic origin authentication of traditional teff brands based on multi-element fingerprint. For this purpose, a total of 60 teff samples were analysed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Accuracy of the laboratory procedure was verified by the analysis of rice flour standard reference material (NIST SRM 1568b). In this context, four traditional teff brands (Ada'a, Ginchi, Gojam and Tulu Bolo) were analytically characterized using multi-element fingerprint and further treated statistically using linear discriminant analysis (LDA). Due to obvious extrinsic Fe, Al and V contamination, these elements were excluded from the discriminant model. Five elements (Cu, Mo, Se, Sr, and Zn) significantly contributed to discriminate the geographical origin of white teff. On the other hand, Mn, Mo, Se and Sr were used as discriminant variables for brown teff. LDA revealed 90 and 100% correct classifications for white and brown teff, respectively. Overall, multi-element fingerprint coupled with LDA can be considered a suitable tool for geographic origin discrimination of traditional teff brands.


Subject(s)
Eragrostis , Eragrostis/chemistry , Spectrum Analysis , Metals , Crops, Agricultural , Edible Grain
3.
Biol Trace Elem Res ; 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37952013

ABSTRACT

Concentrations of metal(loid)s, Ag, Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Se, Sr, V and Zn, were determined in rice on sale in Las Vegas. The rice samples were grown in five different countries, the USA, Thailand, India, Pakistan, and Bangladesh. The elemental concentrations in rice grain were determined using inductively coupled plasma mass spectrometry (ICP-MS) following hot block-assisted digestion. The accuracy of the laboratory procedure was verified by the analysis of rice flour standard reference material (NIST SRM 1568b). The mean metal(loid) contents in rice of various geographic origins were 3.18-5.91 mg kg-1 for Al, 0.05-0.12 mg kg-1 for As, 3.64-41 µg kg-1 for Cd, 5.11-12 µg kg-1 for Co, 0.12-0.14 mg kg-1 for Cr, 1.5-1.91 mg kg-1 for Cu, 3.04-4.98 mg kg-1 for Fe, 4.2-10.4 mg kg-1 for Mn, 0.21-0.41 mg kg-1 for Ni, 0.02-0.07 mg kg-1 for Se, 0.68-0.88 mg kg-1 for Sr, 3.64-5.26 µg kg-1 for V, and 16.6-19.9 mg kg-1 for Zn. respectively. The mean concentration of As in US rice was significantly higher than in Indian, Pakistani, and Bangladeshi rice. On the other hand, it was found a significantly low mean level of Cd in US-grown rice. It was also found that the concentrations of metal(loid)s in black and brown rice on sale in Las Vegas were statistically similar, except for Mn and Se. The geographic origin traceability of rice grain involved the use of ICP-MS analysis coupled with chemometrics that allowed their differentiation based on the rice metal(loid) profile, thus confirming their origins. Data were processed by linear discriminant analysis, and US and Thai rice samples were cross-validated with higher accuracy (100%). This authentication quickly discriminates US rice from the other regions and adds verifiable food safety measures for consumers.

4.
SN Appl Sci ; 4(1): 32, 2022.
Article in English | MEDLINE | ID: mdl-34957376

ABSTRACT

Kitchen gardening is considered a way to reconnect with agriculture and complement the cereal-based relief food offered to refugees in East Africa. This work aimed at profiling mineral content of okra in four refugee camps and settlements located in Ethiopia and Uganda and its contribution to adequate intake (AIs) or recommended dietary allowances (RDAs) for young children and pregnant and lactating women (PLW). The study also evaluated the applicability of portable X-ray fluorescence (PXRF) as compared with inductively coupled plasma mass spectrometry (ICP-MS) for mineral profiling of okra powder samples. The contents of minerals (mg kg-1) from the ICP-MS readings were in the following ranges: K (14,385-33,294), Ca (2610-14,090), P (3178-13,248), Mg (3896-7986), Cu (3.81-19.3), Fe (75.7-1243), Zn (33-141) and Mn (23.1-261). Regardless of geographic origin, at low-end consumption probability (17 g day-1 for young children and 68 g day-1 for PLW), okra could contribute ˂ 15% (2.7-12.9%) AI for macro-minerals (K and Ca). In addition, the contributions to RDA values for Fe and Zn, elements of known public health interest, ranged from 4.5 to 34.7% for young children. Interestingly, regression lines revealed strong agreement between ICP-MS and PXRF readings for Mn and Zn, with R2 values > 0.91. This information is useful in support of nutrition-sensitive kitchen gardening programs through scaling culturally important crops in refugee settings. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s42452-021-04898-6.

5.
Environ Geochem Health ; 43(9): 3597-3613, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33594639

ABSTRACT

Khat (Catha edulis) chewing is widespread in the region of East Africa. Even low levels of organochlorine pesticides (OCPs) in khat could induce public health concern. In a market-based study, from five popular khat varieties, a total of 35 composite khat samples were analyzed for dichlorodiphenyltrichloroethane (DDT) and its main transformation products, and four hexachlorocyclohexane (HCH) isomers. Extraction was carried out by quick, easy, cheap, effective, rugged and safe method (QuEChERS). OCP concentrations were determined by head space solid phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME-GC-MS). Every sample contained ß-HCH above the maximum residue limit set by the European Commission. For total DDT, this was the case for 25.7% of the samples. The ratios of (p,p'-DDD + p,p'-DDE) to p,p'-DDT were less than one for 85% of khat samples, demonstrating recent use of DDT in khat farmlands. Conversely, the ratio of ß-HCH to total HCH varied from 0.56 to 0.96, implying historical input of technical HCH. Assuming a daily chewable portion of 100 g, dietary intakes of p,p'-DDT, total DDT and total HCH by adults ranged from 3.12 to 57.9, 6.49 to 80.2 and 39.2 to 51.9 ng (kg body weight)-1 day-1, respectively. These levels are below acceptable levels suggested by international organizations. Chewing khat showed lower non-cancer health risk, but showed relatively higher cancer risk in terms of OCPs. Because khat is chewed without being subjected to any treatment, uncertainties associated with estimated intakes and health risks should be low. Therefore, this practice is of great concern.


Subject(s)
Hydrocarbons, Chlorinated , Pesticides , Catha , DDT/analysis , Environmental Monitoring , Ethiopia , Hexachlorocyclohexane/analysis , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis
6.
Biol Trace Elem Res ; 198(2): 732-743, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32281073

ABSTRACT

The traditional Ethiopian flat bread, injera, is a regular component of daily diets in Ethiopia and Eritrea. This bread is also popular among urban refugees particularly Eritreans in Addis Ababa. The levels of metal(loid)s in 40 composite (120 sub-samples) injera samples, representing 4 types of market establishments in Addis Ababa, were determined using inductively coupled plasma-mass spectrometry (ICP-MS) and portable X-ray fluorescence (PXRF). For ICP-MS analysis, the accuracy of the method was evaluated by the analysis of a certified reference material and recovery experiments. It was found that the correlations between the mean levels of Al and Fe and between Al and Mn in injera were highly significant (p < 0.001). It was also found that 1.5 fresh injeras would cover 48-75% of recommended dietary allowance (RDA) for Mg, 17-21% of RDA for K, 19-23% of RDA for Ca, and 60-72% of RDA for P for an adult group aged between 19 and 50. Daily intakes of Al, Fe, and Mn were found to be above the provisional tolerable daily intake (PTDI)/maximum tolerable daily intake (MTDI) values. The mean target hazard quotient (THQ) values for Fe and Mn were greater than 1. The total THQ values varied from 6.52 to 8.53 among market establishments. Estimating carcinogenic risk due to exposure to As, Cr, and Pb indicated that perennial injera consumers might remain at cancer risk. This would further escalate if other staple food items and spices are considered. Hence, there is a need for home-based strategies to reduce extrinsic soil-Al-Fe-Mn in injera/tef batter.


Subject(s)
Bread , Soil , Eating , Ethiopia , Risk Assessment
7.
Springerplus ; 5: 397, 2016.
Article in English | MEDLINE | ID: mdl-27047723

ABSTRACT

To assess the efficiency of seven treatments including biochars produced from dried faecal matter and manures as stabilizing agents of cadmium (Cd)-spiked soils, lettuce was grown in glasshouse on two contrasting soils. The soils used were moderately fertile silty loam and less fertile sandy loam and the applied treatments were 7 % w/w. The reduction of bioavailable Cd (ammonium nitrate extractable) and its phytoavailability for lettuce were used as assessment criteria in the evaluation of stabilization performance of each treatment. Moreover, the agronomic values of the treatments were also investigated. Ammonium nitrate extraction results indicated that faecal matter biochar, cow manure biochar and lime significantly reduced bioavailable Cd by 84-87, 65-68 and 82-91 %, respectively, as compared to the spiked controls. Unpredictably, coffee husk biochar induced significant increment of Cd in NH4NO3 extracts. The immobilization potential of faecal matter biochar and lime were superior than the other treatments. However, lime and egg shell promoted statistically lower yield and P, K and Zn concentrations response of lettuce plants compared to the biochar treatments. The lowest Cd and highest P tissue concentrations of lettuce plants were induced by faecal matter and cow manure biochar treatments in both soils. Additionally, the greatest Cd phytoavailability reduction for lettuce was induced by poultry litter and cow manure biochars in the silty loam soil. Our results indicate that faecal matter and animal manure biochars have shown great potential to promote Cd immobilization and lettuce growth response in heavily contaminated agricultural fields.

SELECTION OF CITATIONS
SEARCH DETAIL