Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neuro Oncol ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970818

ABSTRACT

PET imaging, particularly using amino acid tracers, has become a valuable adjunct to anatomical MRI in the clinical management of patients with glioma. Collaborative international efforts have led to the development of clinical and technical guidelines for PET imaging in gliomas. The increasing readiness of statutory health insurance agencies, especially in European countries, to reimburse amino acid PET underscores its growing importance in clinical practice. Integrating artificial intelligence and radiomics in PET imaging of patients with glioma may significantly improve tumor detection, segmentation, and response assessment. Efforts are ongoing to facilitate the clinical translation of these techniques. Considerable progress in computer technology developments (eg quantum computers) may be helpful to accelerate these efforts. Next-generation PET scanners, such as long-axial field-of-view PET/CT scanners, have improved image quality and body coverage and therefore expanded the spectrum of indications for PET imaging in Neuro-Oncology (eg PET imaging of the whole spine). Encouraging results of clinical trials in patients with glioma have prompted the development of PET tracers directing therapeutically relevant targets (eg the mutant isocitrate dehydrogenase) for novel anticancer agents in gliomas to improve response assessment. In addition, the success of theranostics for the treatment of extracranial neoplasms such as neuroendocrine tumors and prostate cancer has currently prompted efforts to translate this approach to patients with glioma. These advancements highlight the evolving role of PET imaging in Neuro-Oncology, offering insights into tumor biology and treatment response, thereby informing personalized patient care. Nevertheless, these innovations warrant further validation in the near future.

2.
J Nucl Med ; 65(6): 838-844, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38664020

ABSTRACT

PET using the radiolabeled amino acid O-(2-[18F]fluoroethyl)-l-tyrosine (18F-FET) has been shown to be of value for treatment monitoring in patients with brain metastases after multimodal therapy, especially in clinical situations with equivocal MRI findings. As medical procedures must be justified socioeconomically, we determined the effectiveness and cost-effectiveness of 18F-FET PET for treatment monitoring of multimodal therapy, including checkpoint inhibitors, targeted therapies, radiotherapy, and combinations thereof in patients with brain metastases secondary to melanoma or non-small cell lung cancer. Methods: We analyzed already-published clinical data and calculated the associated costs from the German statutory health insurance system perspective. Two clinical scenarios were considered: decision tree model 1 determined the effectiveness of 18F-FET PET alone for identifying treatment-related changes, that is, the probability of correctly identifying patients with treatment-related changes confirmed by neuropathology or clinicoradiographically using the Response Assessment in Neuro-Oncology criteria for immunotherapy. The resulting cost-effectiveness ratio showed the cost for each correctly identified patient with treatment-related changes in whom MRI findings remained inconclusive. Decision tree model 2 calculated the effectiveness of both 18F-FET PET and MRI, that is, the probability of correctly identifying nonresponders to treatment. The incremental cost-effectiveness ratio was calculated to determine cost-effectiveness, that is, the cost for each additionally identified nonresponder by 18F-FET PET who would have remained undetected by MRI. One-way deterministic and probabilistic sensitivity analyses tested the robustness of the results. Results: 18F-FET PET identified 94% of patients with treatment-related changes, resulting in €1,664.23 (€1.00 = $1.08 at time of writing) for each correctly identified patient. Nonresponders were correctly identified in 60% by MRI and in 80% by 18F-FET PET, resulting in €3,292.67 and €3,915.83 for each correctly identified nonresponder by MRI and 18F-FET PET, respectively. The cost to correctly identify 1 additional nonresponder by 18F-FET PET, who would have remained unidentified by MRI, was €5,785.30. Conclusion: Given the considerable annual cost of multimodal therapy, the integration of 18F-FET PET can potentially improve patient care while reducing costs.


Subject(s)
Brain Neoplasms , Cost-Benefit Analysis , Magnetic Resonance Imaging , Positron-Emission Tomography , Tyrosine , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/secondary , Brain Neoplasms/therapy , Positron-Emission Tomography/economics , Magnetic Resonance Imaging/economics , Tyrosine/analogs & derivatives , Tyrosine/therapeutic use , Combined Modality Therapy , Multimodal Imaging/economics , Male , Female , Cost-Effectiveness Analysis
4.
J Neurooncol ; 162(3): 481-488, 2023 May.
Article in English | MEDLINE | ID: mdl-36577872

ABSTRACT

PET imaging using radiolabeled amino acids in addition to MRI has become a valuable diagnostic tool in the clinical management of patients with brain tumors. This review provides a comprehensive overview of PET studies in glioma patients with a mutation in the isocitrate dehydrogenase gene (IDH). A considerable fraction of these tumors typically show no contrast enhancement on MRI, especially when classified as grade 2 according to the World Health Organization classification of Central Nervous System tumors. Major diagnostic challenges in this situation are differential diagnosis, target definition for diagnostic biopsies, delineation of glioma extent for treatment planning, differentiation of treatment-related changes from tumor progression, and the evaluation of response to alkylating agents. The main focus of this review is the role of amino acid PET in this setting. Furthermore, in light of clinical trials using IDH inhibitors targeting the mutated IDH enzyme for treating patients with IDH-mutant gliomas, we also aim to give an outlook on PET probes specifically targeting the IDH mutation, which appear potentially helpful for response assessment.


Subject(s)
Brain Neoplasms , Glioma , Humans , Isocitrate Dehydrogenase/genetics , Glioma/diagnostic imaging , Glioma/genetics , Glioma/therapy , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Positron-Emission Tomography , Mutation , Amino Acids/genetics
5.
Neuro Oncol ; 25(5): 984-994, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36215231

ABSTRACT

BACKGROUND: We evaluated O-(2-[18F]fluoroethyl)-l-tyrosine (FET) PET and MRI for early response assessment in recurrent glioma patients treated with lomustine-based chemotherapy. METHODS: Thirty-six adult patients with WHO CNS grade 3 or 4 gliomas (glioblastoma, 69%) at recurrence (median number of recurrences, 1; range, 1-3) were retrospectively identified. Besides MRI, serial FET PET scans were performed at baseline and early after chemotherapy initiation (not later than two cycles). Tumor-to-brain ratios (TBR), metabolic tumor volumes (MTV), the occurrence of new distant hotspots with a mean TBR >1.6 at follow-up, and the dynamic parameter time-to-peak were derived from all FET PET scans. PET parameter thresholds were defined using ROC analyses to predict PFS of ≥6 months and OS of ≥12 months. MRI response assessment was based on RANO criteria. The predictive values of FET PET parameters and RANO criteria were subsequently evaluated using univariate and multivariate survival estimates. RESULTS: After treatment initiation, the median follow-up time was 11 months (range, 3-71 months). Relative changes of TBR, MTV, and RANO criteria predicted a significantly longer PFS (all P ≤ .002) and OS (all P ≤ .045). At follow-up, the occurrence of new distant hotspots (n ≥ 1) predicted a worse outcome, with significantly shorter PFS (P = .005) and OS (P < .001). Time-to-peak changes did not predict a significantly longer survival. Multivariate survival analyses revealed that new distant hotspots at follow-up FET PET were most potent in predicting non-response (P < .001; HR, 8.578). CONCLUSIONS: Data suggest that FET PET provides complementary information to RANO criteria for response evaluation of lomustine-based chemotherapy early after treatment initiation.


Subject(s)
Brain Neoplasms , Glioma , Adult , Humans , Lomustine/therapeutic use , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Retrospective Studies , Radiopharmaceuticals/metabolism , Glioma/diagnostic imaging , Glioma/drug therapy , Glioma/metabolism , Magnetic Resonance Imaging , Positron-Emission Tomography , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL