Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Am J Hum Genet ; 111(3): 487-508, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38325380

Pathogenic variants in multiple genes on the X chromosome have been implicated in syndromic and non-syndromic intellectual disability disorders. ZFX on Xp22.11 encodes a transcription factor that has been linked to diverse processes including oncogenesis and development, but germline variants have not been characterized in association with disease. Here, we present clinical and molecular characterization of 18 individuals with germline ZFX variants. Exome or genome sequencing revealed 11 variants in 18 subjects (14 males and 4 females) from 16 unrelated families. Four missense variants were identified in 11 subjects, with seven truncation variants in the remaining individuals. Clinical findings included developmental delay/intellectual disability, behavioral abnormalities, hypotonia, and congenital anomalies. Overlapping and recurrent facial features were identified in all subjects, including thickening and medial broadening of eyebrows, variations in the shape of the face, external eye abnormalities, smooth and/or long philtrum, and ear abnormalities. Hyperparathyroidism was found in four families with missense variants, and enrichment of different tumor types was observed. In molecular studies, DNA-binding domain variants elicited differential expression of a small set of target genes relative to wild-type ZFX in cultured cells, suggesting a gain or loss of transcriptional activity. Additionally, a zebrafish model of ZFX loss displayed an altered behavioral phenotype, providing additional evidence for the functional significance of ZFX. Our clinical and experimental data support that variants in ZFX are associated with an X-linked intellectual disability syndrome characterized by a recurrent facial gestalt, neurocognitive and behavioral abnormalities, and an increased risk for congenital anomalies and hyperparathyroidism.


Hyperparathyroidism , Intellectual Disability , Neurodevelopmental Disorders , Male , Female , Animals , Humans , Intellectual Disability/pathology , Zebrafish/genetics , Mutation, Missense/genetics , Transcription Factors/genetics , Phenotype , Neurodevelopmental Disorders/genetics
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 3387-3393, 2019 Jul.
Article En | MEDLINE | ID: mdl-31946607

Imaging fluorescent disease biomarkers in tissues and skin is a non-invasive method to screen for health conditions. We report an automated process that combines intraoral fluorescent porphyrin biomarker imaging, clinical examinations and machine learning for correlation of systemic health conditions with periodontal disease. 1215 intraoral fluorescent images, from 284 consenting adults aged 18-90, were analyzed using a machine learning classifier that can segment periodontal inflammation. The classifier achieved an AUC of 0.677 with precision and recall of 0.271 and 0.429, respectively, indicating a learned association between disease signatures in collected images. Periodontal diseases were more prevalent among males (p=0.0012) and older subjects (p=0.0224) in the screened population. Physicians independently examined the collected images, assigning localized modified gingival indices (MGIs). MGIs and periodontal disease were then cross-correlated with responses to a medical history questionnaire, blood pressure and body mass index measurements, and optic nerve, tympanic membrane, neurological, and cardiac rhythm imaging examinations. Gingivitis and early periodontal disease were associated with subjects diagnosed with optic nerve abnormalities (p<; 0.0001) in their retinal scans. We also report significant co-occurrences of periodontal disease in subjects reporting swollen joints (p=0.0422) and a family history of eye disease (p=0.0337). These results indicate cross-correlation of poor periodontal health with systemic health outcomes and stress the importance of oral health screenings at the primary care level. Our screening process and analysis method, using images and machine learning, can be generalized for automated diagnoses and systemic health screenings for other diseases.


Health Status , Machine Learning , Oral Health , Periodontal Diseases/complications , Adolescent , Adult , Aged , Aged, 80 and over , Eye Diseases/complications , Gingivitis/complications , Gingivitis/diagnosis , Humans , Joints/physiopathology , Male , Middle Aged , Optic Nerve Diseases/complications , Periodontal Diseases/diagnosis , Physical Examination , Young Adult
3.
Am J Hum Genet ; 98(4): 667-79, 2016 Apr 07.
Article En | MEDLINE | ID: mdl-27018473

Genetic studies of autism spectrum disorder (ASD) have established that de novo duplications and deletions contribute to risk. However, ascertainment of structural variants (SVs) has been restricted by the coarse resolution of current approaches. By applying a custom pipeline for SV discovery, genotyping, and de novo assembly to genome sequencing of 235 subjects (71 affected individuals, 26 healthy siblings, and their parents), we compiled an atlas of 29,719 SV loci (5,213/genome), comprising 11 different classes. We found a high diversity of de novo mutations, the majority of which were undetectable by previous methods. In addition, we observed complex mutation clusters where combinations of de novo SVs, nucleotide substitutions, and indels occurred as a single event. We estimate a high rate of structural mutation in humans (20%) and propose that genetic risk for ASD is attributable to an elevated frequency of gene-disrupting de novo SVs, but not an elevated rate of genome rearrangement.


Autism Spectrum Disorder/genetics , Gene Deletion , Gene Duplication , Alleles , Amino Acid Sequence , Base Sequence , Case-Control Studies , Child , DNA Copy Number Variations , Female , Gene Frequency , Gene Rearrangement , Genetic Loci , Genome, Human , Genotyping Techniques , Humans , INDEL Mutation , Male , Microarray Analysis , Molecular Sequence Data , Pedigree , Reproducibility of Results , Sensitivity and Specificity
...