Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
BMC Pregnancy Childbirth ; 24(1): 65, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225564

ABSTRACT

BACKGROUND: Observational studies and randomized controlled trials have found evidence that higher maternal circulating cortisol levels in pregnancy are associated with lower offspring birth weight. However, it is possible that the observational associations are due to residual confounding. METHODS: We performed two-sample Mendelian Randomisation (MR) using a single genetic variant (rs9989237) associated with morning plasma cortisol (GWAS; sample 1; N = 25,314). The association between this maternal genetic variant and offspring birth weight, adjusted for fetal genotype, was obtained from the published EGG Consortium and UK Biobank meta-analysis (GWAS; sample 2; N = up to 406,063) and a Wald ratio was used to estimate the causal effect. We also performed an alternative analysis using all GWAS reported cortisol variants that takes account of linkage disequilibrium. We also tested the genetic variant's effect on pregnancy cortisol and performed PheWas to search for potential pleiotropic effects. RESULTS: The estimated effect of maternal circulating cortisol on birth weight was a 50 gram (95% CI, -109 to 10) lower birth weight per 1 SD higher log-transformed maternal circulating cortisol levels, using a single variant. The alternative analysis gave similar results (-33 grams (95% CI, -77 to 11)). The effect of the cortisol variant on pregnancy cortisol was 2-fold weaker than in the original GWAS, and evidence was found of pleiotropy. CONCLUSIONS: Our findings provide some evidence that higher maternal morning plasma cortisol causes lower birth weight. Identification of more independent genetic instruments for morning plasma cortisol are necessary to explore the potential bias identified.


Subject(s)
Hydrocortisone , Mendelian Randomization Analysis , Female , Humans , Pregnancy , Birth Weight/genetics , Causality , Genome-Wide Association Study , Genotype , Mendelian Randomization Analysis/methods , Polymorphism, Single Nucleotide , Infant, Newborn
2.
Fungal Syst Evol ; 5: 77-98, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32467915

ABSTRACT

The present paper represents the fifth contribution in the Genera of Fungi series, linking type species of fungal genera to their morphology and DNA sequence data. This paper focuses on 11 genera of microfungi, for seven of which the type species are neo- or epitypified here: Arthrinium (Arthrinium caricicola; Apiosporaceae, Xylariales, Sordariomycetes), Ceratosphaeria (Ceratosphaeria lampadophora; Magnaporthaceae, Magnaporthales, Sordariomycetes), Dimerosporiopsis (Dimerosporiopsis engleriana; Venturiaceae, Venturiales, Dothideomycetes), Hormodochis (Hormodochis melanochlora; Stictidaceae, Ostropales, Ostropomycetidae, OSLEUM clade, Lecanoromycetes), Lecanostictopsis (Lecanostictopsis kamatii; Mycosphaerellaceae, Capnodiales, Dothideomycetes), Lembosina (Lembosina aulographoides; Lembosinaceae fam. nov., Lembosinales ord. nov., Dothideomycetes), Neomelanconium (Neomelanconium gelatosporum; Cenangiaceae, Helotiales, Leotiomycetes), Phragmotrichum (Phragmotrichum chailletii; Melanommataceae, Pleosporales, Pleosporomycetidae, Dothideomycetes), Pseudomelanconium gen. nov. (Pseudomelanconium spartii; incertae sedis, Pezizomycotina), Rutola (Rutola graminis; Torulaceae, Pleosporales, Pleosporomycetidae, Dothideomycetes), and Trullula (Trullula oreoselini; incertae sedis, Pezizomycotina).

3.
Fungal Syst Evol ; 3: 57-134, 2019 Jun.
Article in English | MEDLINE | ID: mdl-32467898

ABSTRACT

One order, seven families, 28 new genera, 72 new species, 13 new combinations, four epitypes, and interesting new host and / or geographical records are introduced in this study. Pseudorobillardaceae is introduced for Pseudorobillarda (based on P. phragmitis). New genera include: Jeremyomyces (based on J. labinae) on twigs of Salix alba (Germany); Neodothidotthia (based on N. negundinicola) on Acer negundo (Ukraine); Neomedicopsis (based on N. prunicola) on fallen twigs of Prunus padus (Ukraine); Neophaeoappendicospora (based on N. leucaenae) on Leucaena leucocephala (France) (incl. Phaeoappendicosporaceae); Paradevriesia (incl. Paradevriesiaceae) (based on P. americana) from air (USA); Phaeoseptoriella (based on P. zeae) on leaves of Zea mays (South Africa); Piniphoma (based on P. wesendahlina) on wood debris of Pinus sylvestris (Germany); Pseudoconiothyrium (based on P. broussonetiae) on branch of Broussonetia papyrifera (Italy); Sodiomyces (based on S. alkalinus) from soil (Mongolia), and Turquoiseomyces (incl. Turquoiseomycetales and Turquoiseomycetaceae) (based on T. eucalypti) on leaves of Eucalyptus leptophylla (Australia); Typhicola (based on T. typharum) on leaves of Typha sp. (Germany); Xenodevriesia (incl. Xenodevriesiaceae) (based on X. strelitziicola) on leaves of Strelitzia sp. (South Africa). New species include: Bacillicladium clematidis on branch of Clematis vitalbae (Austria); Cercospora gomphrenigena on leaves of Gomphrena globosa (South Africa); Cyphellophora clematidis on Clematis vitalba (Austria); Exophiala abietophila on bark of Abies alba (Norway); Exophiala lignicola on fallen decorticated trunk of Quercus sp. (Ukraine); Fuscostagonospora banksiae on Banksia sp. (Australia); Gaeumannomycella caricicola on dead leaf of Carex remota (Germany); Hansfordia pruni on Prunus persica twig (Italy) (incl. Hansfordiaceae); Microdochium rhopalostylidis on Rhopalostylis sapida (New Zealand); Neocordana malayensis on leaves of Musa sp. (Malaysia); Neocucurbitaria prunicola on fallen twigs of Prunus padus (Ukraine); Neocucurbitaria salicis-albae on Salix alba twig (Ukraine); Neohelicomyces deschampsiae on culm base of dead leaf sheath of Deschampsia cespitosa (Germany); Pararoussoella juglandicola on twig of Juglans regia (Germany); Pezicula eucalyptigena on leaves of Eucalyptus sp. (South Africa); Phlogicylindrium dunnii on leaves of Eucalyptus dunnii (Australia); Phyllosticta hagahagaensis on leaf litter of Carissa bispinosa (South Africa); Phyllosticta austroafricana on leaf spots of unidentified deciduous tree host (South Africa); Pseudosigmoidea alnicola on Alnus glutinosa leaf litter (Germany); Pseudoteratosphaeria africana on leaf spot on unidentified host (Angola); Porodiplodia vitis on canes of Vitis vinifera (USA); Sodiomyces alkalinus from soil (Mongolia), Sodiomyces magadiensis and Sodiomyces tronii from soil (Kenya), Sympodiella quercina on fallen leaf of Quercus robur (Germany) and Zasmidium hakeicola on leaves of Hakea corymbosa (Australia). Epitypes are designated for: Cryptostictis falcata on leaves of E. alligatrix (Australia), Hendersonia phormii on leaves of Phormium tenax (New Zealand), Sympodiella acicola on needles of Pinus sylvestris (Netherlands), and Sphaeria scirpicola var. typharum on leaf of Typha sp. (Germany). Several taxa originally described from rocks are validated in this study. New taxa include: Extremaceae fam. nov., and new genera, Arthrocatena, Catenulomyces, Constantinomyces, Extremus, Hyphoconis, Incertomyces, Lapidomyces, Lithophila, Monticola, Meristemomyces, Oleoguttula, Perusta, Petrophila, Ramimonilia, Saxophila and Vermiconidia. New species include: Arthrocatena tenebrosa, Catenulomyces convolutus, Constantinomyces virgultus, C. macerans, C. minimus, C. nebulosus, C. virgultus, Exophiala bonariae, Extremus adstrictus, E. antarcticus, Hyphoconis sterilis, Incertomyces perditus, Knufia karalitana, K. marmoricola, K. mediterranea, Lapidomyces hispanicus, Lithophila guttulata, Monticola elongata, Meristemomyces frigidus, M. arctostaphyli, Neodevriesia bulbillosa, N. modesta, N. sardiniae, N. simplex, Oleoguttula mirabilis, Paradevriesia compacta, Perusta inaequalis, Petrophila incerta, Rachicladosporium alpinum, R. inconspicuum, R. mcmurdoi, R. monterosanum, R. paucitum, Ramimonilia apicalis, Saxophila tyrrhenica, Vermiconidia antarctica, V. calcicola, V. foris, and V. flagrans.

4.
Stud Mycol ; 92: 47-133, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29997401

ABSTRACT

This paper represents the second contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information regarding the pathology, distribution, hosts and disease symptoms for the treated genera. In addition, primary and secondary DNA barcodes for the currently accepted species are included. This second paper in the GOPHY series treats 20 genera of phytopathogenic fungi and their relatives including: Allantophomopsiella, Apoharknessia, Cylindrocladiella, Diaporthe, Dichotomophthora, Gaeumannomyces, Harknessia, Huntiella, Macgarvieomyces, Metulocladosporiella, Microdochium, Oculimacula, Paraphoma, Phaeoacremonium, Phyllosticta, Proxypiricularia, Pyricularia, Stenocarpella, Utrechtiana and Wojnowiciella. This study includes the new genus Pyriculariomyces, 20 new species, five new combinations, and six typifications for older names.

5.
Sci Rep ; 8(1): 12975, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30154500

ABSTRACT

Wrist worn raw-data accelerometers are used increasingly in large-scale population research. We examined whether sleep parameters can be estimated from these data in the absence of sleep diaries. Our heuristic algorithm uses the variance in estimated z-axis angle and makes basic assumptions about sleep interruptions. Detected sleep period time window (SPT-window) was compared against sleep diary in 3752 participants (range = 60-82 years) and polysomnography in sleep clinic patients (N = 28) and in healthy good sleepers (N = 22). The SPT-window derived from the algorithm was 10.9 and 2.9 minutes longer compared with sleep diary in men and women, respectively. Mean C-statistic to detect the SPT-window compared to polysomnography was 0.86 and 0.83 in clinic-based and healthy sleepers, respectively. We demonstrated the accuracy of our algorithm to detect the SPT-window. The value of this algorithm lies in studies such as UK Biobank where a sleep diary was not used.


Subject(s)
Accelerometry , Algorithms , Sleep , Wearable Electronic Devices , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
6.
Stud Mycol ; 86: 99-216, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28663602

ABSTRACT

Genera of Phytopathogenic Fungi (GOPHY) is introduced as a new series of publications in order to provide a stable platform for the taxonomy of phytopathogenic fungi. This first paper focuses on 21 genera of phytopathogenic fungi: Bipolaris, Boeremia, Calonectria, Ceratocystis, Cladosporium, Colletotrichum, Coniella, Curvularia, Monilinia, Neofabraea, Neofusicoccum, Pilidium, Pleiochaeta, Plenodomus, Protostegia, Pseudopyricularia, Puccinia, Saccharata, Thyrostroma, Venturia and Wilsonomyces. For each genus, a morphological description and information about its pathology, distribution, hosts and disease symptoms are provided. In addition, this information is linked to primary and secondary DNA barcodes of the presently accepted species, and relevant literature. Moreover, several novelties are introduced, i.e. new genera, species and combinations, and neo-, lecto- and epitypes designated to provide a stable taxonomy. This first paper includes one new genus, 26 new species, ten new combinations, and four typifications of older names.

7.
Persoonia ; 37: 37-56, 2016 12.
Article in English | MEDLINE | ID: mdl-28232760

ABSTRACT

Species belonging to the Coryneliaceae and parasitizing Podocarpaceae hosts were collected from different locations in South Africa and studied morphologically by light microscopy and molecularly by obtaining partial nrDNA (ITS-1/5.8S/ITS-2, 18S and 28S) gene sequences. The position of the Coryneliaceae within the Eurotiomycetidae was not confirmed and a new subclass, Coryneliomycetidae, was introduced. While Eurotiomycetidae usually form cleistothecia/gymnothecia with evanescent, unitunicate asci, and Chaetothyriomycetidae mostly perithecia with bitunicate/fissitunicate to evanescent asci, Coryneliomycetidae form pseudothecial mazaedial ascomata, initially with double-walled asci with the outer layer deliquescing, resulting in passive ascospore release. The Coryneliomycetidae thus occupies a unique position in the Eurotiomycetes. Furthermore, epitypes were designated for Corynelia uberata, the type species of Corynelia (type genus of the family, order and subclass), Lagenulopsis bispora, the type species of Lagenulopsis, and Tripospora tripos the type species of Tripospora, with Lagenulopsis and Tripospora confirmed as belonging to the Coryneliaceae. Corynelia uberata resolved into three clades, one on Afrocarpus (= Podocarpus) falcatus and A. gracilior, and two clades occurring on P. latifolius, herein described as C. africana and C. fructigena. Morphologically these three species are not readily distinguishable, although they differ in spore dimensions, ascomata shape, ornamentation and DNA phylogeny. It is likely that several more species from other parts of the world are currently erroneously placed in C. uberata.

8.
Persoonia ; 32: 184-306, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25264390

ABSTRACT

Novel species of microfungi described in the present study include the following from South Africa: Cercosporella dolichandrae from Dolichandra unguiscati, Seiridium podocarpi from Podocarpus latifolius, Pseudocercospora parapseudarthriae from Pseudarthria hookeri, Neodevriesia coryneliae from Corynelia uberata on leaves of Afrocarpus falcatus, Ramichloridium eucleae from Euclea undulata and Stachybotrys aloeticola from Aloe sp. (South Africa), as novel member of the Stachybotriaceae fam. nov. Several species were also described from Zambia, and these include Chaetomella zambiensis on unknown Fabaceae, Schizoparme pseudogranati from Terminalia stuhlmannii, Diaporthe isoberliniae from Isoberlinia angolensis, Peyronellaea combreti from Combretum mossambiciensis, Zasmidium rothmanniae and Phaeococcomyces rothmanniae from Rothmannia engleriana, Diaporthe vangueriae from Vangueria infausta and Diaporthe parapterocarpi from Pterocarpus brenanii. Novel species from the Netherlands include: Stagonospora trichophoricola, Keissleriella trichophoricola and Dinemasporium trichophoricola from Trichophorum cespitosum, Phaeosphaeria poae, Keissleriella poagena, Phaeosphaeria poagena, Parastagonospora poagena and Pyrenochaetopsis poae from Poa sp., Septoriella oudemansii from Phragmites australis and Dendryphion europaeum from Hedera helix (Germany) and Heracleum sphondylium (the Netherlands). Novel species from Australia include: Anungitea eucalyptorum from Eucalyptus leaf litter, Beltraniopsis neolitseae and Acrodontium neolitseae from Neolitsea australiensis, Beltraniella endiandrae from Endiandra introrsa, Phaeophleospora parsoniae from Parsonia straminea, Penicillifer martinii from Cynodon dactylon, Ochroconis macrozamiae from Macrozamia leaf litter, Triposporium cycadicola, Circinotrichum cycadis, Cladosporium cycadicola and Acrocalymma cycadis from Cycas spp. Furthermore, Vermiculariopsiella dichapetali is described from Dichapetalum rhodesicum (Botswana), Ophiognomonia acadiensis from Picea rubens (Canada), Setophoma vernoniae from Vernonia polyanthes and Penicillium restingae from soil (Brazil), Pseudolachnella guaviyunis from Myrcianthes pungens (Uruguay) and Pseudocercospora neriicola from Nerium oleander (Italy). Novelties from Spain include: Dendryphiella eucalyptorum from Eucalyptus globulus, Conioscypha minutispora from dead wood, Diplogelasinospora moalensis and Pseudoneurospora canariensis from soil and Inocybe lanatopurpurea from reforested woodland of Pinus spp. Novelties from France include: Kellermania triseptata from Agave angustifolia, Zetiasplozna acaciae from Acacia melanoxylon, Pyrenochaeta pinicola from Pinus sp. and Pseudonectria rusci from Ruscus aculeatus. New species from China include: Dematiocladium celtidicola from Celtis bungeana, Beltrania pseudorhombica, Chaetopsina beijingensis and Toxicocladosporium pini from Pinus spp. and Setophaeosphaeria badalingensis from Hemerocallis fulva. Novel genera of Ascomycetes include Alfaria from Cyperus esculentus (Spain), Rinaldiella from a contaminated human lesion (Georgia), Hyalocladosporiella from Tectona grandis (Brazil), Pseudoacremonium from Saccharum spontaneum and Melnikomyces from leaf litter (Vietnam), Annellosympodiella from Juniperus procera (Ethiopia), Neoceratosperma from Eucalyptus leaves (Thailand), Ramopenidiella from Cycas calcicola (Australia), Cephalotrichiella from air in the Netherlands, Neocamarosporium from Mesembryanthemum sp. and Acervuloseptoria from Ziziphus mucronata (South Africa) and Setophaeosphaeria from Hemerocallis fulva (China). Several novel combinations are also introduced, namely for Phaeosphaeria setosa as Setophaeosphaeria setosa, Phoma heteroderae as Peyronellaea heteroderae and Phyllosticta maydis as Peyronellaea maydis. Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.

9.
Persoonia ; 33: 212-89, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25737601

ABSTRACT

Novel species of fungi described in the present study include the following from South Africa: Alanphillipsia aloeicola from Aloe sp., Arxiella dolichandrae from Dolichandra unguiscati, Ganoderma austroafricanum from Jacaranda mimosifolia, Phacidiella podocarpi and Phaeosphaeria podocarpi from Podocarpus latifolius, Phyllosticta mimusopisicola from Mimusops zeyheri and Sphaerulina pelargonii from Pelargonium sp. Furthermore, Barssia maroccana is described from Cedrus atlantica (Morocco), Codinaea pini from Pinus patula (Uganda), Crucellisporiopsis marquesiae from Marquesia acuminata (Zambia), Dinemasporium ipomoeae from Ipomoea pes-caprae (Vietnam), Diaporthe phragmitis from Phragmites australis (China), Marasmius vladimirii from leaf litter (India), Melanconium hedericola from Hedera helix (Spain), Pluteus albotomentosus and Pluteus extremiorientalis from a mixed forest (Russia), Rachicladosporium eucalypti from Eucalyptus globulus (Ethiopia), Sistotrema epiphyllum from dead leaves of Fagus sylvatica in a forest (The Netherlands), Stagonospora chrysopyla from Scirpus microcarpus (USA) and Trichomerium dioscoreae from Dioscorea sp. (Japan). Novel species from Australia include: Corynespora endiandrae from Endiandra introrsa, Gonatophragmium triuniae from Triunia youngiana, Penicillium coccotrypicola from Archontophoenix cunninghamiana and Phytophthora moyootj from soil. Novelties from Iran include Neocamarosporium chichastianum from soil and Seimatosporium pistaciae from Pistacia vera. Xenosonderhenia eucalypti and Zasmidium eucalyptigenum are newly described from Eucalyptus urophylla in Indonesia. Diaporthe acaciarum and Roussoella acacia are newly described from Acacia tortilis in Tanzania. New species from Italy include Comoclathris spartii from Spartium junceum and Phoma tamaricicola from Tamarix gallica. Novel genera include (Ascomycetes): Acremoniopsis from forest soil and Collarina from water sediments (Spain), Phellinocrescentia from a Phellinus sp. (French Guiana), Neobambusicola from Strelitzia nicolai (South Africa), Neocladophialophora from Quercus robur (Germany), Neophysalospora from Corymbia henryi (Mozambique) and Xenophaeosphaeria from Grewia sp. (Tanzania). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.

10.
Persoonia ; 31: 188-296, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24761043

ABSTRACT

Novel species of microfungi described in the present study include the following from South Africa: Camarosporium aloes, Phaeococcomyces aloes and Phoma aloes from Aloe, C. psoraleae, Diaporthe psoraleae and D. psoraleae-pinnatae from Psoralea, Colletotrichum euphorbiae from Euphorbia, Coniothyrium prosopidis and Peyronellaea prosopidis from Prosopis, Diaporthe cassines from Cassine, D. diospyricola from Diospyros, Diaporthe maytenicola from Maytenus, Harknessia proteae from Protea, Neofusicoccum ursorum and N. cryptoaustrale from Eucalyptus, Ochrocladosporium adansoniae from Adansonia, Pilidium pseudoconcavum from Greyia radlkoferi, Stagonospora pseudopaludosa from Phragmites and Toxicocladosporium ficiniae from Ficinia. Several species were also described from Thailand, namely: Chaetopsina pini and C. pinicola from Pinus spp., Myrmecridium thailandicum from reed litter, Passalora pseudotithoniae from Tithonia, Pallidocercospora ventilago from Ventilago, Pyricularia bothriochloae from Bothriochloa and Sphaerulina rhododendricola from Rhododendron. Novelties from Spain include Cladophialophora multiseptata, Knufia tsunedae and Pleuroascus rectipilus from soil and Cyphellophora catalaunica from river sediments. Species from the USA include Bipolaris drechsleri from Microstegium, Calonectria blephiliae from Blephilia, Kellermania macrospora (epitype) and K. pseudoyuccigena from Yucca. Three new species are described from Mexico, namely Neophaeosphaeria agaves and K. agaves from Agave and Phytophthora ipomoeae from Ipomoea. Other African species include Calonectria mossambicensis from Eucalyptus (Mozambique), Harzia cameroonensis from an unknown creeper (Cameroon), Mastigosporella anisophylleae from Anisophyllea (Zambia) and Teratosphaeria terminaliae from Terminalia (Zimbabwe). Species from Europe include Auxarthron longisporum from forest soil (Portugal), Discosia pseudoartocreas from Tilia (Austria), Paraconiothyrium polonense and P. lycopodinum from Lycopodium (Poland) and Stachybotrys oleronensis from Iris (France). Two species of Chrysosporium are described from Antarctica, namely C. magnasporum and C. oceanitesii. Finally, Licea xanthospora is described from Australia, Hypochnicium huinayensis from Chile and Custingophora blanchettei from Uruguay. Novel genera of Ascomycetes include Neomycosphaerella from Pseudopentameris macrantha (South Africa), and Paramycosphaerella from Brachystegia sp. (Zimbabwe). Novel hyphomycete genera include Pseudocatenomycopsis from Rothmannia (Zambia), Neopseudocercospora from Terminalia (Zambia) and Neodeightoniella from Phragmites (South Africa), while Dimorphiopsis from Brachystegia (Zambia) represents a novel coelomycetous genus. Furthermore, Alanphillipsia is introduced as a new genus in the Botryosphaeriaceae with four species, A. aloes, A. aloeigena and A. aloetica from Aloe spp. and A. euphorbiae from Euphorbia sp. (South Africa). A new combination is also proposed for Brachysporium torulosum (Deightoniella black tip of banana) as Corynespora torulosa. Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.

11.
Diabetologia ; 55(8): 2193-204, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22538361

ABSTRACT

AIMS/HYPOTHESIS: Multiple genetic variants are associated with type 2 diabetes-related traits in Europeans, but their role in South Asian populations needs further study. We hypothesised that genetic variants associated with diabetes-related traits in Europeans would explain a similar proportion of phenotypic variance in a Pakistani population and could be used in Mendelian randomisation analyses. METHODS: We used data from 2,131 individuals from the Control of Blood Pressure and Risk Attenuation Trial (COBRA) in Karachi, Pakistan. Individuals were aged 40 years or older. RESULTS: Combining information from multiple genetic variants showed that fasting glucose, BMI, triacylglycerol, and systolic and diastolic blood pressure variants explained 2.9%, 0.7%, 5.5%, 1.2% and 1.8% of the variance in those traits respectively. Genetic risk scores of fasting glucose, triacylglycerol, BMI, systolic blood pressure and diastolic blood pressure variants were associated with these traits, with per allele SD effects of 0.057 (95% CI 0.041, 0.074), p=3.44 × 10(-12), 0.130 (95% CI 0.105, 0.155), p=2.9 × 10(-21), 0.04 (95% CI 0.014, 0.072), p=0.004, 0.031 (95% CI 0.016, 0.047), p=7.9 × 10(-5), 0.028 (95% CI 0.015, 0.042), p = 5.5 × 10(-5), respectively. These effects are consistent with those observed in Europeans, except that the effect of triacylglycerol variants in South Asians was slightly lower. Mendelian randomisation provided evidence that genetically influenced, raised triacylglycerol levels do not causally affect type 2 diabetes risk to the extent predicted from observational data (p=0.0003 for difference between observed and instrumental variables correlations). CONCLUSIONS/INTERPRETATION: Genetic variants identified in Europeans are associated with type 2 diabetes-related traits in Pakistanis, with comparable effect sizes. Larger studies are needed to perform adequately powered Mendelian randomisation and help dissect the relationships between type 2 diabetes-related traits in diverse South Asian subgroups.


Subject(s)
Diabetes Mellitus, Type 2/ethnology , Diabetes Mellitus, Type 2/genetics , Polymorphism, Single Nucleotide , White People/genetics , Analysis of Variance , Blood Glucose/genetics , Blood Pressure/genetics , Body Mass Index , Diabetes Mellitus, Type 2/blood , Fasting , Female , Genetic Predisposition to Disease , Humans , Male , Mendelian Randomization Analysis , Middle Aged , Pakistan/ethnology , Phenotype , Risk Factors , Triglycerides/genetics , United Kingdom/epidemiology
12.
J Gen Virol ; 90(Pt 4): 970-977, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19264672

ABSTRACT

The GIF protein of orf virus (ORFV) binds and inhibits the ovine cytokines granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-2 (IL-2). An equivalent protein has so far not been found in any of the other poxvirus genera and we therefore investigated whether it was conserved in the parapoxviruses. The corresponding genes from both the bovine-specific pseudocowpox virus (PCPV) and bovine papular stomatitis virus (BPSV) were cloned and sequenced. The predicted amino acid sequences of the PCPV and BPSV proteins shared 88 and 37 % identity, respectively, with the ORFV protein. Both retained the six cysteine residues and the WSXWS-like motif that are required for biological activity of the ORFV protein. However, an analysis of the biological activity of the two recombinant proteins revealed that, whilst the PCPV GIF protein bound to both ovine and bovine GM-CSF and IL-2 with very similar binding affinities to the ORFV GIF protein, no GM-CSF- or IL-2-binding activity was found for the BPSV protein.


Subject(s)
Conserved Sequence , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interleukin-2/metabolism , Parapoxvirus , Viral Proteins , Amino Acid Sequence , Animals , Cattle , Cloning, Molecular , Genetic Variation , Molecular Sequence Data , Orf virus/genetics , Orf virus/metabolism , Parapoxvirus/classification , Parapoxvirus/genetics , Parapoxvirus/metabolism , Pseudocowpox Virus/genetics , Pseudocowpox Virus/metabolism , Sequence Analysis, DNA , Sheep , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
13.
Stud Mycol ; 64: 17-47S7, 2009.
Article in English | MEDLINE | ID: mdl-20169022

ABSTRACT

The Capnodiales incorporates plant and human pathogens, endophytes, saprobes and epiphytes, with a wide range of nutritional modes. Several species are lichenised, or occur as parasites on fungi, or animals. The aim of the present study was to use DNA sequence data of the nuclear ribosomal small and large subunit RNA genes to test the monophyly of the Capnodiales, and resolve families within the order. We designed primers to allow the amplification and sequencing of almost the complete nuclear ribosomal small and large subunit RNA genes. Other than the Capnodiaceae (sooty moulds), and the Davidiellaceae, which contains saprobes and plant pathogens, the order presently incorporates families of major plant pathological importance such as the Mycosphaerellaceae, Teratosphaeriaceae and Schizothyriaceae. The Piedraiaceae was not supported, but resolves in the Teratosphaeriaceae. The Dissoconiaceae is introduced as a new family to accommodate Dissoconium and Ramichloridium. Lichenisation, as well as the ability to be saprobic or plant pathogenic evolved more than once in several families, though the taxa in the upper clades of the tree lead us to conclude that the strictly plant pathogenic, nectrotrophic families evolved from saprobic ancestors (Capnodiaceae), which is the more primitive state.

14.
Stud Mycol ; 64: 1-15S10, 2009.
Article in English | MEDLINE | ID: mdl-20169021

ABSTRACT

We present a comprehensive phylogeny derived from 5 genes, nucSSU, nucLSU rDNA, TEF1, RPB1 and RPB2, for 356 isolates and 41 families (six newly described in this volume) in Dothideomycetes. All currently accepted orders in the class are represented for the first time in addition to numerous previously unplaced lineages. Subclass Pleosporomycetidae is expanded to include the aquatic order Jahnulales. An ancestral reconstruction of basic nutritional modes supports numerous transitions from saprobic life histories to plant associated and lichenised modes and a transition from terrestrial to aquatic habitats are confirmed. Finally, a genomic comparison of 6 dothideomycete genomes with other fungi finds a high level of unique protein associated with the class, supporting its delineation as a separate taxon.

15.
Plant Dis ; 93(3): 322, 2009 Mar.
Article in English | MEDLINE | ID: mdl-30764194

ABSTRACT

Imperata cylindrica (L.) Raeusch. (Poaceae) is indigenous to the old world but is a problem weed in tropical areas throughout the world (1). A smut fungus was observed frequently on this grass at a single site near Pretoria (25°44'19″S, 28°15'39″E), South Africa during April of 2006. On the basis of the following characteristics, it was identified as Sporisorium schweinfurthianum (Thüm.) K. Vánky (2). Panicles were systemically infected and all ovaries in infected inflorescences were replaced by spores. Spores were globose or subglobose, brown, 10 to 14 × 9 to 12 µm (average 11.2 × 9.8 µm; n = 25), wall 1 µm thick, and finely verruculose. Hyaline, thin-walled sterile cells were present. This identification was confirmed by K. Vánky (personal communication to A. R. Wood). To our knowledge, this is the first report of this smut species from southern Africa. A voucher specimen has been deposited in the South African National Collection of Fungi, ARC-Plant Protection Research Institute (PREM 59895). To test pathogenicity, soil in 15 pots with individual 1-month-old seedlings was drenched with an aqueous suspension of 1 × 108 spores ml-1 amended with 0.1% Tween 80. Before treatment, the pots were placed on pot trays and remained immersed in the spore suspension in the trays at 28°C (relative humidity <80%) for 24 h. To maintain the spore concentration in the soil, the pots were not watered until 7 days after inoculation. Distilled water amended with 0.1% Tween 80 was applied as control treatments to a further 15 pots with plants. Five of the treated plants produced panicles within 4 months of inoculation. Of these, all the ovaries of four emerging inflorescences were completely replaced with a brown, powdery mass of teliospores. No smutted panicles developed on the control plants. This smut fungus may have potential as a classical biological control agent for use against I. cylindrica by reducing dispersal by seed. References: (1) L. G. Holm et al. The World's Worst Weeds: Distribution and Biology. University Press of Hawaii. Honolulu, 1977. (2) K. Vánky. Australas. Plant Pathol. 29:155, 2000.

16.
Persoonia ; 22: 139-61, 2009 Jun.
Article in English | MEDLINE | ID: mdl-20198145

ABSTRACT

The recently generated molecular phylogeny for the kingdom Fungi, on which a new classification scheme is based, still suffers from an under representation of numerous apparently asexual genera of microfungi. In an attempt to populate the Fungal Tree of Life, fresh samples of 10 obscure genera of hyphomycetes were collected. These fungi were subsequently established in culture, and subjected to DNA sequence analysis of the ITS and LSU nrRNA genes to resolve species and generic questions related to these obscure genera. Brycekendrickomyces (Herpotrichiellaceae) is introduced as a new genus similar to, but distinct from Haplographium and Lauriomyces. Chalastospora is shown to be a genus in the Pleosporales, with two new species, C. ellipsoidea and C. obclavata, to which Alternaria malorum is added as an additional taxon under its oldest epithet, C. gossypii. Cyphellophora eugeniae is newly described in Cyphellophora (Herpotrichiellaceae), and distinguished from other taxa in the genus. Dictyosporium is placed in the Pleosporales, with one new species, D. streliziae. The genus Edenia, which was recently introduced for a sterile endophytic fungus isolated in Mexico, is shown to be a hyphomycete (Pleosporales) forming a pyronellea-like synanamorph in culture. Thedgonia is shown not to represent an anamorph of Mycosphaerella, but to belong to the Helotiales. Trochophora, however, clustered basal to the Pseudocercospora complex in the Mycosphaerellaceae, as did Verrucisporota. Vonarxia, a rather forgotten genus of hyphomycetes, is shown to belong to the Herpotrichiellaceae and Xenostigmina is confirmed as synanamorph of Mycopappus, and is shown to be allied to Seifertia in the Pleosporales. Dichotomous keys are provided for species in the various genera treated. Furthermore, several families are shown to be polyphyletic within some orders, especially in the Capnodiales, Chaetothyriales and Pleosporales.

17.
Persoonia ; 21: 135-46, 2008 Dec.
Article in English | MEDLINE | ID: mdl-20396583

ABSTRACT

Species of Encephalartos, commonly known as bread trees, bread palms or cycads are native to Africa; the genus encompasses more than 60 species and represents an important component of the indigenous African flora. Recently, a leaf blight disease was noted on several E. altensteinii plants growing at the foot of Table Mountain in the Kirstenbosch Botanical Gardens of South Africa. Preliminary isolations from dead and dying leaves of E. alten-steinii, E. lebomboensis and E. princeps, collected from South Africa, revealed the presence of several novel microfungi on this host. Novelties include Phaeomoniella capensis, Saccharata kirstenboschensis, Teratosphaeria altensteinii and T. encephalarti. New host records of species previously only known to occur on Proteaceae include Cladophialophora proteae and Catenulostroma microsporum, as well as a hyperparasite, Dactylaria leptosphaeriicola, occurring on ascomata of T. encephalarti.

18.
Plant Dis ; 92(7): 1133, 2008 Jul.
Article in English | MEDLINE | ID: mdl-30769515

ABSTRACT

Rust symptoms were first observed on daylily plants (Hemerocallis spp.) during February 2007 in a garden near Paarl in the Western Cape (WC) Province of South Africa. Another occurrence was found during November 2007 on daylily plants in a garden near Franschhoek (WC). Upon further investigation, diseased daylily plants were found during February 2008 in nurseries in Stellenbosch, Buffeljagsrivier, and George (WC). The cultivars that have been infected include Laura Lane, Anna Mae Hager, and Russian Rhapsody. Symptoms included yellow-to-brown streaks on the leaves. Leaves had small chlorotic spots on the adaxial side, and on the abaxial side, were many small orange-to-yellow erumpent pustules with yellow-to-orange, pulverulent urediniospores. The rust fungus was identified as Puccinia hemerocallidis Thüm. The morphology matches that given in Hernández et al. (1). Urediniospores were globose to ellipsoid with yellow contents and measured 22 to 31 × 16 to 26 µm (mean 25.5 × 22 µm, n = 25). Spore walls were echinulate, hyaline, 2 to 3 µm thick, and with obscure germ pores. No teliospores were observed. Herbarium specimens have been lodged in the South African National Fungus Collection in Pretoria (PREM 59814, 59855, and 59856). The alternative host, Patrinia spp., is not endemic to South Africa and according to several nurseries in the WC, also not sold. P. hemerocallidis has previously been reported from eastern Asia, the United States, and Costa Rica (1,2). To our knowledge, this is the first report of P. hemerocallidis on daylilies in South Africa. References: (1) J. R. Hernandez et al. Plant Dis. 86:1194, 2002. (2) J. L. Williams-Woodward et al. Plant Dis. 85:1121, 2001.

19.
J Virol ; 79(17): 11205-13, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16103172

ABSTRACT

Orf virus (ORFV), the type species of the family Parapoxviridae, encodes a protein (GIF) that binds and inhibits the ovine cytokines granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-2 (IL-2). There is no obvious sequence homology between the ORFV protein and any known mammalian GM-CSF- or IL-2-binding proteins. We demonstrate here that many of the biochemical properties of mammalian GM-CSF receptors that are required for efficient binding of GM-CSF are also critical to the GIF protein for binding to ovine GM-CSF (ovGM-CSF). Site-directed mutagenesis of the GIF protein demonstrated, first, the importance of disulfide bonds, and second, that a sequence motif (WDPWV), related to the WSXWS motif of the type 1 cytokine receptor superfamily, was necessary for biological activity. Finally, glycosylation of the GIF protein was also critical for binding to GM-CSF.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interleukin-2/metabolism , Orf virus/physiology , Viral Proteins/chemistry , Viral Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Disulfides , Glycosylation , Molecular Sequence Data , Protein Binding , Sequence Alignment , Structure-Activity Relationship , Viral Proteins/genetics , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...