Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 75(6): 621-9, 2001 Dec 20.
Article in English | MEDLINE | ID: mdl-11745139

ABSTRACT

Loss of cell viability, through engagement of apoptotic cell death, represents a limitation to maintenance of high levels of productivity of recombinant animal cells in culture. The ability to monitor the status of recombinant cells, and to define indicators of their "well-being," would present a valuable approach to permit a rational intervention at appropriate times during culture. Growth arrest and DNA damage gene 153 (GADD153) is a member of the CCAAT/enhancer-binding protein (C/EBP) family of transcription factors and has been associated with apoptosis. We have examined the expression of GADD153 in conditions associated with apoptosis of recombinant CHO cells in batch culture. GADD153 expression is very low in CHO cells growing in the exponential phase of batch culture but is activated as cells enter the decline phase. Depletion of nutrients (glucose or glutamine) causes activation of GADD153 expression as does the imposition of endoplasmic reticulum stress. In all cases, there is a good relationship between the extent of apoptosis that occurs in response to each stress and the degree of GADD153 expression. In addition, nutrient refeeding or reversal of stress produces a concomitant decrease in expression of GADD153 and the susceptibility to apoptosis. Thus, GADD153 appears to offer a valid indicator of apoptosis and illustrates the potential for definition of monitors of cellular status related to the likelihood of apoptosis of cell populations.


Subject(s)
Apoptosis , CCAAT-Enhancer-Binding Proteins/genetics , Transcription Factors/genetics , Animals , Base Sequence , CHO Cells , Cricetinae , Culture Media , DNA Primers , Endoplasmic Reticulum/metabolism , Transcription Factor CHOP
2.
J Biol Chem ; 274(23): 16077-84, 1999 Jun 04.
Article in English | MEDLINE | ID: mdl-10347159

ABSTRACT

Human CC chemokines macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, and RANTES (regulated on activation normal T cell expressed) self-associate to form high-molecular mass aggregates. To explore the biological significance of chemokine aggregation, nonaggregating variants were sought. The phenotypes of 105 hMIP-1alpha variants generated by systematic mutagenesis and expression in yeast were determined. hMIP-1alpha residues Asp26 and Glu66 were critical to the self-association process. Substitution at either residue resulted in the formation of essentially homogenous tetramers at 0.5 mg/ml. Substitution of identical or analogous residues in homologous positions in both hMIP-1beta and RANTES demonstrated that they were also critical to aggregation. Our analysis suggests that a single charged residue at either position 26 or 66 is insufficient to support extensive aggregation and that two charged residues must be present. Solution of the three-dimensional NMR structure of hMIP-1alpha has enabled comparison of these residues in hMIP-1beta and RANTES. Aggregated and disaggregated forms of hMIP-1alpha, hMIP-1beta, and RANTES generally have equivalent G-protein-coupled receptor-mediated biological potencies. We have therefore generated novel reagents to evaluate the role of hMIP-1alpha, hMIP-1beta, and RANTES aggregation in vitro and in vivo. The disaggregated chemokines retained their human immunodeficiency virus (HIV) inhibitory activities. Surprisingly, high concentrations of RANTES, but not disaggregated RANTES variants, enhanced infection of cells by both M- and T-tropic HIV isolates/strains. This observation has important implications for potential therapeutic uses of chemokines implying that disaggregated forms may be necessary for safe clinical investigation.


Subject(s)
Amino Acids/analysis , Chemokine CCL5/chemistry , Macrophage Inflammatory Proteins/chemistry , Amino Acid Sequence , Cell Line , Chemokine CCL3 , Chemokine CCL4 , Chemokine CCL5/genetics , HIV Infections/metabolism , HIV-1 , Humans , Macrophage Inflammatory Proteins/genetics , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Peptide Library , Protein Conformation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...