Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pharm Biol ; 61(1): 89-99, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36565036

ABSTRACT

CONTEXT: Thai Mucuna pruriens (L.) DC. var. pruriens (Fabaceae) or T-MP seed extract has been shown to improve sexual performance and sperm quality. OBJECTIVE: This study investigates the preventive effects of T-MP against seminal vesicle damage, apoptotic and Nrf2 protein expression in mice under chronic unpredictable mild stress (CUMS). MATERIALS AND METHODS: Forty-eight male ICR mice were divided into four groups: control, CUMS, T-MP300 + CUMS and T-MP600 + CUMS. Mice in control and CUMS groups received distilled water, while those in treated groups were pretreated with T-MP extract (300 or 600 mg/kg BW) for 14 consecutive days. The CMUS and co-treated groups were exposed to one random stressor (of 12 total) each day for 43 days. Components and histopathology of the seminal vesicle were examined, along with localization of androgen receptor (AR) and caspase 3. Expression of seminal AR, tyrosine phosphorylated (TyrPho), heat shock protein 70 (Hsp70), caspases (3 and 9) and nuclear factor erythroid 2-related factor 2 (Nrf2) proteins was investigated. RESULTS: T-MP extract at a dose of 600 mg/kg BW improved seminal epithelial damage and secretion of fluid containing essential substances and proteins in CUMS mice. It also increased the expression of AR and TyrPho proteins. Additionally, T-MP increased expression of Nrf2 and inhibited seminal vesicular apoptosis through the suppression of Hsp70 and caspase expression. CONCLUSION: T-MP seeds have an antiapoptotic property in chronic stress seminal vesicle. It is possible to apply this extract for the enhancement of seminal plasma quality.


Subject(s)
Mucuna , Plant Extracts , Mice , Male , Animals , Plant Extracts/therapeutic use , Seminal Vesicles , NF-E2-Related Factor 2/metabolism , Mice, Inbred ICR , Seeds
2.
Pharm Biol ; 60(1): 1935-1943, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36205598

ABSTRACT

CONTEXT: Although Dolichandrone serrulata (Wall. ex DC.) Seem (Bignoniaceae) flower (DSF) improves hyperglycaemia, testicular damage and sperm quality in type 2 diabetes mellitus (T2DM) animals, its effects on the seminal vesicles, secreting seminal plasma, are unknown. OBJECTIVE: This study reports the protective effects of DSF on seminal dysfunction in T2DM rats. MATERIALS AND METHODS: Male Sprague-Dawley rats were divided into four groups (control, T2DM, T2DM + DSF200 and T2DM + DSF600; 10 animals/group). The control group was fed a low-fat diet for 14 days prior to single saline injection, whereas T2DM group was given a high-fat diet and injected with streptozocin (50 mg/kg body weight). The T2DM-induced rats were fed DSF orogastrically (200 and 600 mg/kg body weight) for 28 consecutive days. At the end of the experiment, biochemical components, malondialdehyde (MDA), histology and protein expression in seminal lysate were evaluated. RESULTS: DSF increased the levels of serum phosphorus (13.66 ± 0.59 mg/dL), ALP (11.85 ± 0.99 U/L), GOT (3938.23 ± 251.41 U/L) and GPT (34.16 ± 4.93), decreased MDA levels in seminal tissue, and elevated the serum testosterone in the T2DM rats. Treatment with DSF ameliorated histological damage, significantly increased seminal 44 and 31 kDa TyrPho protein expression, and decreased that of caspase 3 and 9. CONCLUSIONS: DSF extract was able to mitigate seminal dysfunction in T2DM rats via improvements of tyrosine phosphorylation, testosterone level and biochemical substances, as well as reductions of caspase proteins. DSF may be developed as an alternative medicine in treating of T2DM male subfertility and progressive complications.


Subject(s)
Bignoniaceae , Diabetes Mellitus, Type 2 , Animals , Blood Glucose/metabolism , Body Weight , Caspase 3 , Diet, High-Fat , Flowers/metabolism , Male , Malondialdehyde , Phosphorus , Plant Extracts , Rats , Rats, Sprague-Dawley , Seeds , Streptozocin , Testosterone , Tyrosine/metabolism
3.
J Integr Med ; 20(6): 534-542, 2022 11.
Article in English | MEDLINE | ID: mdl-36167706

ABSTRACT

OBJECTIVE: Although the protective effects of Momordica charantia L. (MC) extract on chemical-induced testicular damage have been studied, the preventive effects of MC extract on functional proteins in the epididymis under chronic stress have never been reported. This study investigated the protective effects of MC fruit extract on protein secretion, especially tyrosine-phosphorylated proteins, in the epididymis of rats exposed to chronic unpredictable stress (CUS). METHODS: Total phenolic compounds (TPC), total flavonoid compounds (TFC) and antioxidant capacities of MC extract were measured. Adult male rats were divided into 4 groups: control group, CUS group, and 2 groups of CUS that received different doses of MC extract (40 or 80 mg/kg). In treated groups, rats were given MC daily, followed by induction of CUS (1 stressor was randomly applied from a battery of 9 potential stressors) for 60 consecutive days. Plasma corticosterone and testosterone levels were analyzed after the end of experiment. Expressions of heat-shock protein 70 (HSP-70) and tyrosine-phosphorylated proteins present in the fluid of the head and tail of the epididymis were quantified using Western blot. RESULTS: MC extract contained TPC of (19.005 ± 0.270) mg gallic acid equivalents and TFC of (0.306 ± 0.012) mg catechin equivalents per gram, and had 2,2-diphenyl-1-picrylhydrazyl antioxidant capacity of (4.985 ± 0.086) mg trolox equivalents per gram, radical 50% inhibitory concentration of (2.011 ± 0.008) mg/mL and ferric reducing antioxidant power of (23.697 ± 0.819) µmol Fe(II) per gram. Testosterone level in the epididymis was significantly increased, while the corticosterone level was significantly improved in groups treated with MC extract, compared to the CUS animals. Particularly, an 80 mg/kg dose of MC extract prevented the impairments of HSP-70 and tyrosine-phosphorylated protein expressions in the luminal fluid of the epididymis of CUS rats. CONCLUSION: MC fruit extract had antioxidant activities and improved the functional proteins secreted from the head and tail of the epididymis. It is possible to develop the MC fruit extract as a male fertility supplement for enhancing functional sperm maturation in stressed men.


Subject(s)
Antioxidants , Tyrosine , Animals , Male , Rats , Antioxidants/pharmacology , Corticosterone , Fruit/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Seeds , Testosterone , Tyrosine/metabolism
4.
Pharm Biol ; 60(1): 374-383, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35180038

ABSTRACT

CONTEXT: Thai Mucuna pruriens (L.) DC. var. pruriens (Fabaceae) (TMP) is known to enrich reproduction but preventive effects on stress related adverse reproductive parameters are not documented. OBJECTIVE: This study investigates the protective property of TMP seed extract on reproductive damage under chronic stress (CS). MATERIALS AND METHODS: Male Sprague-Dawley rats were divided into four groups. The control and CS groups received distilled water, whereas the pre-treated rats received the aqueous TMP seed extract at doses of 150 and 300 mg/kg BW for 20 days before co-treatments with CS induction (immobilization and forced swimming) for 81 days. Serum was used to determine the cortisol and testosterone levels. Histology of testis and epididymis was observed with localization of androgen receptor (AR). Sperm parameters and the expression of steroidogenic acute regulatory (StAR), cytochrome P450 family 11 subfamily a member 1 (CYP11A1), AR, HSP70, caspases (3 and 9) and tyrosine phosphorylation (TyrPho) proteins were investigated. RESULTS: TMP extract improved cortisol level (0.84 ± 0.02 µg/dL) and protected against the damage of reproductive tissues and sperm parameters (count [49.78 ± 3.74 million sperm/mL], viability [90.01 ± 1.17%] and precocious acrosome reaction [1.38 ± 0.48%]). Expression of testicular StAR, CYP11A1, AR and HSP70 proteins was improved. Caspase expression was decreased in treated rats. TMP increased AR expression in CS sperm. Moreover, TyrPho protein expression was corrected after TMP administration. CONCLUSIONS: TMP seed protected against adverse reproductive parameters in CS via improvements of functionally testicular markers and reductions of apoptotic proteins. It is possible to develop the TMP beans as an alternative medicine in treating of male subfertility caused by CS.


Subject(s)
Mucuna/chemistry , Plant Extracts/pharmacology , Stress, Psychological/drug therapy , Testis/drug effects , Animals , Dose-Response Relationship, Drug , Epididymis/drug effects , Infertility, Male/drug therapy , Male , Plant Extracts/administration & dosage , Rats , Rats, Sprague-Dawley , Reproduction/drug effects , Seeds , Spermatozoa/drug effects , Stress, Psychological/complications , Thailand
5.
Andrologia ; 53(3): e13981, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33469986

ABSTRACT

Chronic stress (CS) is shown to decrease the semen quality with changed expression of tyrosine phosphorylated (TyrPho) proteins in testicular and seminal tissues. However, the alterations of such proteins and fluid contents in the epididymis, producing sperm maturation factors, have never been reported. Sixteen adult rats were randomly divided into 2 groups (n = 8). The control animals were not subjected to stressors whereas CS rats were immobilised within restraint cage (4 hr/day) before cold forced-water swimming (15 min/day) for 60 days. Corticosterone, testosterone, blood glucose level (BGL), malondialdehyde (MDA) and biochemical components in epididymal fluid were assayed. Expressions of heat shock protein 70 (HSP-70), androgen receptor (AR) and TyrPho protein were investigated in epididymal tissue and fluid. Significantly, CS increased the corticosterone and BGL but decreased testosterone and epididymal substance levels. MDA level in tail epididymal fluid and HSP-70 expression in both regions of epididymal tissues and fluids, except in head epididymal fluid of CS were increased. Epididymal tissues showed the decrease of AR expression. Presence and changes of many TyrPho proteins were observed in CS. In conclusion, CS could affect functional proteins particularly TyrPho in epididymis, resulted in low semen quality.


Subject(s)
Epididymis , Semen Analysis , Animals , Humans , Male , Rats , Sperm Maturation , Spermatozoa , Testis , Tyrosine
6.
Andrologia ; 53(3): e13966, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33427326

ABSTRACT

Although the fruit extract of Dolichandrone genus was shown to inhibit spermatogenesis, the reproductive toxicity of Dolichandrone serrulata flowers (DSFs) is not documented. Recent study aimed to evaluate the sub-chronic toxicity of DSF on male reproductive system. Antioxidant capacity and total phenolic contents of DSF extract were determined using Folin-Ciocalteu's, 2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power assays. The terpenoid components were determined using nuclear magnetic resonance spectrum. Adult male rats were treated orally with DSF (100, 300 or 600 mg/kg) for 48 days. Histopathology of testis and epididymis was observed. Sperm concentration, viability, acrosome status and morphology were also examined. Expressions of heat shock protein 70 (Hsp70), tyrosine-phosphorylated (TyrPho) proteins, androgen receptor (AR) and steroidogenic acute regulatory (StAR) protein in testis were investigated. Results showed that DSF contained phenolic compounds and terpenoids (phytoandrogens; rengyolone and cleroindicin B). No reproductive histopathology was observed in DSF-treated rats. Although DSF decreased the serum testosterone level, the sperm qualities were not affected. Particularly, sperm concentration of DSF-treated animals was significantly increased. DSF changed the testicular TyrPho proteins but the expression of AR, StAR or Hsp70 was not altered. In conclusion, DSF possesses antioxidant capacity with no toxicity on male reproductive system.


Subject(s)
Antioxidants , Terpenes , Animals , Antioxidants/pharmacology , Flowers , Humans , Male , Plant Extracts/toxicity , Rats , Sperm Count , Spermatogenesis , Spermatozoa , Terpenes/toxicity , Testis , Testosterone
SELECTION OF CITATIONS
SEARCH DETAIL
...