Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.205
Filter
1.
Front Cell Dev Biol ; 12: 1396890, 2024.
Article in English | MEDLINE | ID: mdl-38983788

ABSTRACT

Background: The Juan-Bi decoction (JBD) is a classic traditional Chinese medicines (TCMs) prescription for the treatment of rheumatoid arthritis (RA). However, the active compounds of the JBD in RA treatment remain unclear. Aim: The aim of this study is to screen effective compounds in the JBD for RA treatment using systems pharmacology and experimental approaches. Method: Botanical drugs and compounds in the JBD were acquired from multiple public TCM databases. All compounds were initially screened using absorption, distribution, metabolism, excretion, and toxicity (ADMET) and physicochemical properties, and then a target prediction was performed. RA pathological genes were acquired from the DisGeNet database. Potential active compounds were screened by constructing a compound-target-pathogenic gene (C-T-P) network and calculating the cumulative interaction intensity of the compounds on pathogenic genes. The effectiveness of the compounds was verified using lipopolysaccharide (LPS)-induced RAW.264.7 cells and collagen-induced arthritis (CIA) mouse models. Results: We screened 15 potentially active compounds in the JBD for RA treatment. These compounds primarily act on multiple metabolic pathways, immune pathways, and signaling transduction pathways. Furthermore, in vivo and in vitro experiments showed that bornyl acetate (BAC) alleviated joint damage, and inflammatory cells infiltrated and facilitated a smooth cartilage surface via the suppression of the steroid hormone biosynthesis. Conclusion: We screened potential compounds in the JBD for the treatment of RA using systems pharmacology approaches. In particular, BAC had an anti-rheumatic effect, and future studies are required to elucidate the underlying mechanisms.

2.
Chem Sci ; 15(27): 10547-10555, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38994415

ABSTRACT

In this work, we present a design concept of introducing linear structures into the orthogonal configuration of 9,9'-spirobifluorene (SBF), aiming to enhance carrier mobilities while maintaining high triplet energies (E T), which are two critical parameters for optimizing host materials in organic light-emitting diodes (OLEDs). To validate our proposed design, four pivotal model molecules of 1,4-diaryl SBFs were synthesized via interannular C-H arylation of bi(hetero)aryl-2-formaldehydes, a task challenging to accomplish using previous synthetic methodologies. The orthogonal configuration and the steric hindrance of SBF lead to high E T through the conjugation breaking at C1 and C4 positions, rendering 1,4-diaryl SBFs suitable as universal pure hydrocarbon (PHC) hosts for red, green, and blue (RGB) phosphorescent OLEDs (PhOLEDs). Meanwhile, the linearity and relatively good planarity of the para-quaterphenyl structure promote high carrier mobilities through orderly intermolecular packing. The synergistic effects of linearity and orthogonality in 1-(para-biphenyl)-4-phenyl-SBF result in exceptional device performance with external quantum efficiencies (EQEs) of 26.0%, 26.1%, and 22.5% for RGB PhOLEDs, respectively. Notably, the green PhOLED exhibits minimal efficiency roll-off, positioning its device performances among the state-of-the-art in PHC hosts.

3.
Nat Med ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992123

ABSTRACT

Immunochemotherapy is the first-line standard for extensive-stage small-cell lung cancer (ES-SCLC). Combining the regimen with anti-angiogenesis may improve efficacy. ETER701 was a multicenter, double-blind, randomized, placebo-controlled phase 3 trial that investigated the efficacy and safety of benmelstobart (a novel programmed death-ligand 1 (PD-L1) inhibitor) with anlotinib (a multi-target anti-angiogenic small molecule) and standard chemotherapy in treatment-naive ES-SCLC. The ETER701 trial assessed two primary endpoints: Independent Review Committee-assessed progression-free survival per RECIST 1.1 and overall survival (OS). Here the prespecified final progression-free survival and interim OS analysis is reported. Patients randomly received benmelstobart and anlotinib plus etoposide/carboplatin (EC; n = 246), placebo and anlotinib plus EC (n = 245) or double placebo plus EC ('EC alone'; n = 247), followed by matching maintenance therapy. Compared with EC alone, median OS was prolonged with benmelstobart and anlotinib plus EC (19.3 versus 11.9 months; hazard ratio 0.61; P = 0.0002), while improvement of OS was not statistically significant with anlotinib plus EC (13.3 versus 11.9 months; hazard ratio 0.86; P = 0.1723). The incidence of grade 3 or higher treatment-related adverse events was 93.1%, 94.3% and 87.0% in the benmelstobart and anlotinib plus EC, anlotinib plus EC, and EC alone groups, respectively. This study of immunochemotherapy plus multi-target anti-angiogenesis as first-line treatment achieved a median OS greater than recorded in prior randomized studies in patients with ES-SCLC. The safety profile was assessed as tolerable and manageable. Our findings suggest that the addition of anti-angiogenesis therapy to immunochemotherapy may represent an efficacious and safe approach to the management of ES-SCLC. ClinicalTrials.gov identifier: NCT04234607 .

4.
mLife ; 3(2): 219-230, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948147

ABSTRACT

Human microbiomes, considered as a new emerging and enabling cancer hallmark, are increasingly recognized as critical effectors in cancer development and progression. Manipulation of microbiome revitalizing anticancer therapy from natural products shows promise toward improving cancer outcomes. Herein, we summarize our current understanding of the human microbiome-driven molecular mechanisms impacting cancer progression and anticancer therapy. We highlight the potential translational and clinical implications of natural products for cancer prevention and treatment by developing targeted therapeutic strategies as adjuvants for chemotherapy and immunotherapy against tumorigenesis. The challenges and opportunities for future investigations using modulation of the microbiome for cancer treatment are further discussed in this review.

5.
Acc Chem Res ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950424

ABSTRACT

ConspectusMembranes are pivotal in a myriad of energy production processes and modern separation techniques. They are essential in devices for energy generation, facilities for extracting energy elements, and plants for wastewater treatment, each of which hinges on effective ion separation. While biological ion channels show exceptional permeability and selectivity, designing synthetic membranes with defined pore architecture and chemistry on the (sub)nanometer scale has been challenging. Consequently, a typical trade-off emerges: highly permeable membranes often sacrifice selectivity and vice versa. To tackle this dilemma, a comprehensive understanding and modeling of synthetic membranes across various scales is imperative. This lays the foundation for establishing design criteria for advanced membrane materials. Key attributes for such materials encompass appropriately sized pores, a narrow pore size distribution, and finely tuned interactions between desired permeants and the membrane. The advent of covalent-organic-framework (COF) membranes offers promising solutions to the challenges faced by conventional membranes in selective ion separation within the water-energy nexus. COFs are molecular Legos, facilitating the precise integration of small organic structs into extended, porous, crystalline architectures through covalent linkage. This unique molecular architecture allows for precise control over pore sizes, shapes, and distributions within the membrane. Additionally, COFs offer the flexibility to modify their pore spaces with distinct functionalities. This adaptability not only enhances their permeability but also facilitates tailored interactions with specific ions. As a result, COF membranes are positioned as prime candidates to achieve both superior permeability and selectivity in ion separation processes.In this Account, we delineate our endeavors aimed at leveraging the distinctive attributes of COFs to augment ion separation processes, tackling fundamental inquiries while identifying avenues for further exploration. Our strategies for fabricating COF membranes with enhanced ion selectivity encompass the following: (1) crafting (sub)nanoscale ion channels to enhance permselectivity, thereby amplifying energy production; (2) implementing a multivariate (MTV) synthesis method to control charge density within nanochannels, optimizing ion transport efficiency; (3) modifying the pore environment within confined mass transfer channels to establish distinct pathways for ion transport. For each strategy, we expound on its chemical foundations and offer illustrative examples that underscore fundamental principles. Our efforts have culminated in the creation of groundbreaking membrane materials that surpass traditional counterparts, propelling advancements in sustainable energy conversion, waste heat utilization, energy element extraction, and pollutant removal. These innovations are poised to redefine energy systems and industrial wastewater management practices. In conclusion, we outline future research directions and highlight key challenges that need addressing to enhance the ion/molecular recognition capabilities and practical applications of COF membranes. Looking forward, we anticipate ongoing advancements in functionalization and fabrication techniques, leading to enhanced selectivity and permeability, ultimately rivaling the capabilities of biological membranes.

6.
Development ; 151(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38953252

ABSTRACT

Spermatogonial stem cell (SSC) self-renewal and differentiation provide foundational support for long-term, steady-state spermatogenesis in mammals. Here, we have investigated the essential role of RNA exosome associated DIS3 ribonuclease in maintaining spermatogonial homeostasis and facilitating germ cell differentiation. We have established male germ-cell Dis3 conditional knockout (cKO) mice in which the first and subsequent waves of spermatogenesis are disrupted. This leads to a Sertoli cell-only phenotype and sterility in adult male mice. Bulk RNA-seq documents that Dis3 deficiency partially abolishes RNA degradation and causes significant increases in the abundance of transcripts. This also includes pervasively transcribed PROMoter uPstream Transcripts (PROMPTs), which accumulate robustly in Dis3 cKO testes. In addition, scRNA-seq analysis indicates that Dis3 deficiency in spermatogonia significantly disrupts RNA metabolism and gene expression, and impairs early germline cell development. Overall, we document that exosome-associated DIS3 ribonuclease plays crucial roles in maintaining early male germ cell lineage in mice.


Subject(s)
Fertility , Mice, Knockout , Spermatogenesis , Spermatogonia , Testis , Animals , Male , Spermatogenesis/genetics , Spermatogenesis/physiology , Mice , Fertility/genetics , Testis/metabolism , Spermatogonia/metabolism , Spermatogonia/cytology , Sertoli Cells/metabolism , Cell Differentiation , Exosome Multienzyme Ribonuclease Complex/metabolism , Exosome Multienzyme Ribonuclease Complex/genetics , Exosomes/metabolism , RNA Stability/genetics , Infertility, Male/genetics
7.
Orthop Surg ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961655

ABSTRACT

Ectopic transplantation of the hand remains a rare, innovative yet valuable operation in select cases of trauma and amputation. We aim to describe a novel technique of complex hand reconstruction using a two-stage ectopic implantation of the contralateral upper limb. A male patient with a near complete avulsion amputation of the right upper limb at the level of the mid-forearm and a crushing injury to his left hand was admitted after a farming accident. The right palm was ectopically transplanted to the left lower limb and both upper limbs underwent debridement with vacuum assisted dressings (VACs). There was eventual dieback of the left thumb, ring and little finger with a large palmar soft tissue defect that was eventually reconstructed using segments of the ectopically transplanted limb in two separate operations. The patient made an uneventful postoperative recovery and managed to regain protective sensation and gross motor function of his reconstructed hand.

8.
Anal Chem ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962829

ABSTRACT

In this work, we reported a cholesterol oxidase (Chox)-loaded platinum (Pt) nanozyme with the collaborative cascade nanoreactor for the construction of nanozyme-enzyme-linked immunosorbent assay (N-ELSA) models to realize high-throughput rapid evaluation of cancer markers. Considering the high specific surface area and manipulable surface sites, ZIF-8 was used as a substrate for natural enzyme and nanozyme loading. The constructed ZIF-8-Pt nanozyme platform exhibited efficient enzyme-like catalytic efficiency with a standard corrected activity of 60.59 U mg-1, which was 12 times higher than that of the ZIF-8 precursor, and highly efficient photothermal conversion efficiency (∼35.49%). In N-ELISA testing, developed multienzyme photothermal probes were immobilized in microplates based on antigen-antibody-specific reactions. Cholesterol was reacted in a cascade to reactive oxygen radicals, which attacked 3,3',5,5'-tetramethylbenzidine, causing it to oxidize and color change, thus exhibiting highly enhanced efficient photothermal properties. Systematic temperature evaluations were performed by a hand-held microelectromechanical system thermal imager under the excitation of an 808 nm surface light source to determine the cancer antigen 15-3 (CA15-3) profiles in the samples. Encouragingly, the temperature signal from the microwells increased with increasing CA15-3, with a linear range of 2 mU mL-1 to 100 U mL-1, considering it to be the sensor with the widest working range for visualization and portability available. This work provides new horizons for the development of efficient multienzyme portable colorimetric-photothermal platforms to help advance the community-based process of early cancer detection.

9.
Eur Radiol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985183

ABSTRACT

OBJECTIVES: To evaluate a three-dimensional fluid-attenuated inversion recovery (3D-FLAIR) sequence using a long repetition time (TR) and constant flip angle (CFA) in differentiating between perilymph and endolymph in a phantom study, and unenhanced endolymphatic hydrops (EH) imaging in a patient study. METHODS: Three solutions in similar ion and protein concentrations with endolymph, perilymph, and cerebrospinal fluid were prepared for variable flip angle (VFA) 3D-FLAIR (TR 10,000 ms) and CFA (120°) 3D-FLAIR using different TR (10,000, 16,000, and 20,000 ms). Fifty-two patients with probable or definite Meniere's disease received unenhanced CFA (120°) 3D-FLAIR using a long TR (20,000 ms) and 4-h-delay enhanced CFA (120°) 3D-FLAIR (TR 16,000 ms). Image quality, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) of them were compared. Agreement in the evaluation of the EH degree between them was analyzed. RESULTS: In the phantom study, CNRs between perilymphatic and endolymphatic samples of VFA 3D-FLAIR (TR 10,000 ms) and CFA 3D-FLAIR (TR 10,000, 16,000, and 20,000 ms) were 6.66 ± 1.30, 17.90 ± 2.76, 23.87 ± 3.09, and 28.22 ± 3.15 (p < 0.001). In patient study, average score (3.65 ± 0.48 vs. 4.19 ± 0.40), SNR (34.56 ± 9.80 vs. 51.40 ± 11.27), and CNR (30.66 ± 10.55 vs. 45.08 ± 12.27) of unenhanced 3D-FLAIR were lower than enhanced 3D-FLAIR (p < 0.001). Evaluations of the two sequences showed excellent agreement in the cochlear and vestibule (Kappa value: 0.898 and 0.909). CONCLUSIONS: The CFA 3D-FLAIR sequence using a long TR could be used in unenhanced EH imaging with high accuracy. CLINICAL RELEVANCE STATEMENT: Unenhanced imaging of endolymphatic hydrops is valuable in the diagnosis and follow-up of patients, especially those who cannot receive contrast-enhanced MRI. KEY POINTS: Ion and protein concentration differences can be utilized in differentiating endolymph and perilymph on MRI. Endolymphatic and perilymphatic samples could be differentiated in vitro on this 3D-FLAIR sequence. This unenhanced 3D-FLAIR sequence is in excellent agreement with the enhanced constant flip angle 3D-FLAIR sequence.

10.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000269

ABSTRACT

Gα13 and Gα12, encoded by the GNA13 and GNA12 genes, respectively, are members of the G12 family of Gα proteins that, along with their associated Gßγ subunits, mediate signaling from specific G protein-coupled receptors (GPCRs). Advanced prostate cancers have increased expression of GPCRs such as CXC Motif Chemokine Receptor 4 (CXCR4), lysophosphatidic acid receptor (LPAR), and protease activated receptor 1 (PAR-1). These GPCRs signal through either the G12 family, or through Gα13 exclusively, often in addition to other G proteins. The effect of Gα13 can be distinct from that of Gα12, and the role of Gα13 in prostate cancer initiation and progression is largely unexplored. The oncogenic effect of Gα13 on cell migration and invasion in prostate cancer has been characterized, but little is known about other biological processes such as mitochondrial function and oxidative stress. Current knowledge on the link between Gα13 and oxidative stress is based on animal studies in which GPCR-Gα13 signaling decreased superoxide levels, and the overexpression of constitutively active Gα13 promoted antioxidant gene activation. In human samples, mitochondrial superoxide dismutase 2 (SOD2) correlates with prostate cancer risk and prognostic Gleason grade. However, overexpression of SOD2 in prostate cancer cells yielded conflicting results on cell growth and survival under basal versus oxidative stress conditions. Hence, it is necessary to explore the effect of Gα13 on prostate cancer tumorigenesis, as well as the effect of Gα13 on SOD2 in prostate cancer cell growth under oxidative stress conditions.


Subject(s)
GTP-Binding Protein alpha Subunits, G12-G13 , Mitochondria , Oxidative Stress , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Mitochondria/metabolism , Mitochondria/genetics , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , GTP-Binding Protein alpha Subunits, G12-G13/genetics , Animals , Signal Transduction , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics
11.
Nat Commun ; 15(1): 5736, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982049

ABSTRACT

Excessive exercise is an etiological factor of intervertebral disc degeneration (IVDD). Engineered extracellular vesicles (EVs) exhibit excellent therapeutic potential for disease-modifying treatments. Herein, we fabricate an exercise self-powered triboelectric-responsive microneedle (MN) assay with the sustainable release of optogenetically engineered EVs for IVDD repair. Mechanically, exercise promotes cytosolic DNA sensing-mediated inflammatory activation in senescent nucleus pulposus (NP) cells (the master cell population for IVD homeostasis maintenance), which accelerates IVDD. TREX1 serves as a crucial nuclease, and disassembly of TRAM1-TREX1 complex disrupts the subcellular localization of TREX1, triggering TREX1-dependent genomic DNA damage during NP cell senescence. Optogenetically engineered EVs deliver TRAM1 protein into senescent NP cells, which effectively reconstructs the elimination function of TREX1. Triboelectric nanogenerator (TENG) harvests mechanical energy and triggers the controllable release of engineered EVs. Notably, an optogenetically engineered EV-based targeting treatment strategy is used for the treatment of IVDD, showing promising clinical potential for the treatment of degeneration-associated disorders.


Subject(s)
Extracellular Vesicles , Intervertebral Disc Degeneration , Needles , Nucleus Pulposus , Optogenetics , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/metabolism , Extracellular Vesicles/metabolism , Animals , Nucleus Pulposus/metabolism , Optogenetics/methods , Optogenetics/instrumentation , Humans , Phosphoproteins/metabolism , Phosphoproteins/genetics , Cellular Senescence , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , Rats , DNA Damage , Mice , Male , Disease Models, Animal , Rats, Sprague-Dawley
12.
Cell Death Dis ; 15(7): 487, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982083

ABSTRACT

Z-DNA binding protein 1 (ZBP1) is a crucial player in the intracellular recognition of Z-form nucleic acids (Z-NAs) through its Zαß domain, initiating downstream interactions with RIPK1 and RIPK3 via RHIM domains. This engagement leads to the assembly of PANoptosomes, ultimately inducing programmed cell death to curb pathogen dissemination. How Zαß and RHIM domain cooperate to trigger Z-NAs recognition and signal transduction remains unclear. Here, we show that ZBP1 condensate formation facilitates Z-NAs binding and antiviral signal transduction. The ZBP1 Zαß dimerizes in a concentration-dependent manner, forming characteristic condensates in solutions evidenced by DLS and SAXS methods. ZBP1 exhibits a binding preference for 10-bp length CG (10CG) DNA and Z-RNA ligand, which in turn enhanced Zαß dimerization, expediting the formation of droplet condensates in vitro and amyloid-like puncta in cells. Subsequent investigations reveal that Zαß could form condensates with liquid-liquid phase separation property upon HSV and IAV infections, while full-length ZBP1 forms amyloid-like puncta with or without infections. Furthermore, ZBP1 RHIM domains show typical amyloidal fibril characterizations and cross-polymerize with RIPK1 depending on the core motif of 206IQIG209, while mutated ZBP1 could impede necroptosis and antiviral immunity in HT-29 cells. Thus, ZBP1 condensate formation facilitates the recognition of viral Z-NAs and activation of downstream signal transduction via synergic action of different domains, revealing its elaborated mechanism in innate immunity.


Subject(s)
RNA-Binding Proteins , Signal Transduction , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , DNA, Z-Form/metabolism , DNA, Z-Form/chemistry , Protein Binding , Animals , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Protein Multimerization
13.
Lab Chip ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953554

ABSTRACT

The in vitro recapitulation of tumor microenvironment is of great interest to preclinical screening of drugs. Compared with culture of cell lines, tumor organ slices can better preserve the complex tumor architecture and phenotypic activity of native cells, but are limited by their exposure to fluid shear and gradual degradation under perfusion culture. Here, we established a decellularized liver matrix (DLM)-GelMA "sandwich" structure and a perfusion-based microfluidic platform to support long-term culture of tumor slices with excellent structural integrity and cell viability over 7 days. The DLM-GelMA was able to secrete cytokines and growth factors while providing shear protection to the tumor slice via the sandwich structure, leading to the preservation of the tumor microenvironment where immune cells (CD3, CD8, CD68), tumor-associated fibroblasts (α-SMA), and extracellular matrix components (collagen I, fibronectin) were well maintained. Furthermore, this chip presented anti-tumor efficacy at cisplatin (20 µM) on tumor patients, demonstrating our platform's efficacy to design patient-specific treatment regimens. Taken together, the successful development of this DLM-GelMA sandwich structure on the chip could faithfully reflect the tumor microenvironment and immune response, accelerating the screening process of drug molecules and providing insights for practical medicine.

14.
bioRxiv ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38979238

ABSTRACT

The molecular underpinnings of H igh G rade E ndometrial C arcinoma (HGEC) metastatic growth and survival are poorly understood. Here we show that ascites-derived and primary tumor HGEC cell lines in 3D spheroid culture faithfully recapitulate key features of malignant peritoneal effusion and exhibit fundamentally distinct transcriptomic, proteomic and metabolomic landscapes when compared with conventional 2D monolayers. Using genetic screening platform we identify MAPK14 (which encodes the protein kinase p38α) as a specific requirement for HGEC in spheroid culture. MAPK14 /p38α has broad roles in programing the phosphoproteome, transcriptome and metabolome of HGEC spheroids, yet has negligible impact on monolayer cultures. MAPK14 promotes tumorigenicity in vivo and is specifically required to sustain a sub-population of spheroid cells that is enriched in cancer stemness markers. Therefore, spheroid growth of HGEC activates unique biological programs, including p38α signaling, that cannot be captured using 2D culture models and are highly relevant to malignant disease pathology.

15.
Lipids Health Dis ; 23(1): 207, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951816

ABSTRACT

BACKGROUND: Ketogenic diets are increasingly popular for addressing obesity, but their impacts on the gut microbiota and metabolome remain unclear. This paper aimed to investigate how a ketogenic diet affects intestinal microorganisms and metabolites in obesity. METHODS: Male mice were provided with one of the following dietary regimens: normal chow, high-fat diet, ketogenic diet, or high-fat diet converted to ketogenic diet. Body weight and fat mass were measured weekly using high-precision electronic balances and minispec body composition analyzers. Metagenomics and non-targeted metabolomics data were used to analyze differences in intestinal contents. RESULTS: Obese mice on the ketogenic diet exhibited notable improvements in weight and body fat. However, these were accompanied by a significant decrease in intestinal microbial diversity, as well as an increase in Firmicutes abundance and a 247% increase in the Firmicutes/Bacteroidetes ratio. The ketogenic diet also altered multiple metabolic pathways in the gut, including glucose, lipid, energy, carbohydrate, amino acid, ketone body, butanoate, and methane pathways, as well as bacterial secretion and colonization pathways. These changes were associated with increased intestinal inflammation and dysbiosis in obese mice. Furthermore, the ketogenic diet enhanced the secretion of bile and the synthesis of aminoglycoside antibiotics in obese mice, which may impair the gut microbiota and be associated with intestinal inflammation and immunity. CONCLUSIONS: The study suggest that the ketogenic diet had an unfavorable risk-benefit trade-off and may compromise metabolic homeostasis in obese mice.


Subject(s)
Diet, High-Fat , Diet, Ketogenic , Gastrointestinal Microbiome , Metagenomics , Obesity , Diet, Ketogenic/adverse effects , Animals , Male , Mice , Obesity/metabolism , Obesity/microbiology , Obesity/etiology , Diet, High-Fat/adverse effects , Metagenomics/methods , Metabolomics/methods , Dysbiosis/microbiology , Dysbiosis/metabolism , Mice, Inbred C57BL , Metabolome , Body Weight
16.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 435-446, 2024 Mar 28.
Article in English, Chinese | MEDLINE | ID: mdl-38970518

ABSTRACT

OBJECTIVES: Farfarae Flos has the effect of cough suppression and phlegm elimination, with cough suppression as the main function. Studies have revealed that certain components of Farfarae Flos may be related to its cough suppressant effect, and some components have been confirmed to have cough suppressant activity. However, the antitussive material basis of Farfarae Flos has not been systematically elucidated. This study aims to elucidate the group of active ingredients in Farfarae Flos with cough suppressant activity by correlating the high performance liquid chromatography (HPLC) fingerprint of Farfarae Flos extract with its cough suppressant activity. METHODS: HPLC was used to establish the fingerprint profiles of 10 batches of Farfarae Flos extract and obtain their chemical composition data. Guinea pigs were selected as experimental animals and the citric acid-induced cough model was used to evaluate the antitussive efficacy data of 10 batches of Farfarae Flos extract. SPF-grade healthy male Hartley guinea pigs were randomly divided into the S1 to S10 groups, a positive control group, and a blank control group (12 groups in total), with 10 guinea pigs in each group. The S1 to S10 groups were respectively administered Farfarae Flos extract S1 to S10 (4 g/kg), the positive control group was administered pentoverine citrate (10 mg/kg), and the blank control group was administered purified water. Each group received continuous oral administration for 5 days. The guinea pigs were placed in 5 L closed wide-mouth bottles, and 17.5% citric acid was sprayed into the bottle with an ultrasonic atomizer at the maximum spray intensity for 0.5 minutes. The cough latency period and cough frequency in 5 minutes were recorded for each guinea pig. Grey relational analysis (GRA) and partial least squares regression (PLSR) were used to conduct spectral-effect correlation analysis of the chemical composition data of Farfarae Flos extract and the antitussive efficacy data, and predict the group of active ingredients in Farfarae Flos with antitussive activity. The bioequivalence verification was conducted to verify the predicted group of active ingredients in Farfarae Flos with antitussive activity: SPF-grade healthy male Hartley guinea pigs were randomly divided into a S9 group, an active ingredient group, a positive control group, and a blank control group (4 groups in total), with 10 guinea pigs in each group. The S9 group was administered Farfarae Flos extract S9 (4 g/kg), the active ingredient group was administered the predicted combination of antitussive active ingredients (dose equivalent to 4 g/kg of Farfarae Flos extract S9), the positive control group was administered pentoverine citrate (10 mg/kg), and the blank control group was administered purified water. Each group received continuous oral administration for 5 days, and animal modeling and observation of efficacy indicators were the same as above. RESULTS: The HPLC fingerprint of 10 batches of Farfarae Flos extract was established, and the peak area data of 14 main common peaks were obtained. The antitussive effect data of 10 batches of Farfarae Flos extract were obtained. Compared with the blank control group, the cough latence in the positive control group and S1, S2, S3, S4, S6, S7, S8, S9, S10 groups was prolonged (all P<0.01), while the cough frequency in 5 minutes in the positive control group and S1, S2, S4, S6, S8, S9, S10 groups was decreased (all P<0.05). The analysis of spectrum-effect relationship revealed that isochlorogenic acid C, isochlorogenic acid A, chlorogenic acid, isochlorogenic acid B, isoquercitrin, and rutin had high contribution to the antitussive effect of Farfarae Flos, and the 6 components were predicted to be the antitussive component group of Farfarae Flos. The verification of bioequivalence showed that there were no statistically significant differences in the antitussive effect between the S9 group and the antitussive component composition group(all P>0.05), which confirmed that isochlorogenic acid C, isochlorogenic acid A, chlorogenic acid, isochlorogenic acid B, isoquercetin, and rutin were the antitussive component group of Farfarae Flos. CONCLUSIONS: The analysis of spectrum-effect relationship combined with the verification of bioequivalence could be used to study the antitussive material basis of Farfarae Flos. The antitussive effect of Farfarae Flos is the result of the joint action of many components.


Subject(s)
Antitussive Agents , Cough , Drugs, Chinese Herbal , Flowers , Animals , Antitussive Agents/therapeutic use , Antitussive Agents/pharmacology , Guinea Pigs , Flowers/chemistry , Male , Cough/drug therapy , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Chromatography, High Pressure Liquid/methods , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Cordyceps/chemistry
17.
J Control Release ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972640

ABSTRACT

Lipid nanoparticle-mediated co-delivery of siRNA and small molecule holds a great potential to treat metabolic dysfunction-associated steatotic liver disease (MASLD). However, targeted delivery of therapeutics to hepatocytes remains challenging. Taking the advantage of rising low density lipoprotein receptor/very-low density lipoprotein receptor (LDLR/VLDR) levels in MASLD, the biological fate of dinonylamine-ethylene glycol chlorophosphate-1-nonanol (DNNA-COP-NA) based lipid nanoparticles (LNPs) was oriented to liver tissues via apolipoprotein E (ApoE)-LDLR/VLDLR pathway. We then adopted a three-round screening strategy to optimize the formulation with both high potency and selectivity to deliver siRNA-HIF-1α (siHIF1α) and silibinin (SLB) payloads to hepatocytes. The optimized SLB/siHIF1α-LNPs mediates great siRNA delivery and transfection of hepatocytes. In high fat diet (HFD)- and carbon tetrachloride (CCl4)-induced mouse models of MASLD, SLB/siHIF1α-LNPs enabled the silencing of hypoxia inducible factor-1α (HIF-1α), a therapeutic target primarily expressed by hepatocytes, leading to significantly reduced inflammation and liver fibrosis synergized with SLB. Moreover, it is demonstrated the hepatocyte-targeting delivery of SLB/siHIF1α-LNPs has the potential to restore the immune homeostasis by modulating the population of Tregs and cytotoxic T cells in spleen. This proof-of-concept study enable siRNA and small molecule co-delivery to hepatocytes through intrinsic variation of targeting receptors for MASLD therapy.

18.
Clin Exp Immunol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975702

ABSTRACT

Neutrophil extracellular traps released by neutrophils are web-like DNA structures adhered to granulin proteins with bactericidal activity and can be an important mechanism for preventing pathogen dissemination or eliminating microorganisms. However, they also play important roles in diseases of other systems, such as the central nervous system. We tracked the latest advances and performed a review based on published original and review articles related to neutrophil extracellular traps and neurological diseases. Generally, neutrophils barely penetrate the blood-brain barrier into the brain parenchyma, but when pathological changes such as infection, trauma, or neurodegeneration occur, neutrophils rapidly infiltrate the central nervous system to exert their defensive effects. However, neutrophils may adversely affect the host when they uncontrollably release neutrophil extracellular traps upon persistent neuroinflammation. This review focused on recent advances in understanding the mechanisms and effects of neutrophil extracellular traps release in neurological diseases, and we also discuss the role of molecules that regulate neutrophil extracellular traps release in anticipation of clinical applications in neurological diseases.

19.
Biochem Pharmacol ; 226: 116406, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38969299

ABSTRACT

Cancer, being one of the most lethal illnesses, presents an escalating clinical dilemma on a global scale. Despite significant efforts and advancements in cancer treatment over recent decades, the persistent challenge of resistance to traditional chemotherapeutic agents and/or emerging targeted drugs remains a prominent issue in the field of cancer therapies. Among the frequently inactivated tumor suppressor genes in cancer, phosphatase and Tensin Homolog (PTEN) stands out, and its decreased expression may contribute to the emergence of therapeutic resistance. MicroRNAs (miRNAs), characterized by their short length of 22 nucleotides, exert regulatory control over target mRNA expression by binding to complementary sequences. Recent findings indicate that microRNAs play varied regulatory roles, encompassing promotion, suppression, and dual functions on PTEN, and their aberration is implicated in heightened resistance to anticancer therapies. Significantly, recent research has revealed that competitive endogenous RNAs (ceRNAs) play a pivotal role in influencing PTEN expression, and the regulatory network involving circRNA/lncRNA-miRNA-PTEN is intricately linked to resistance in various cancer types to anticancer therapies. Finally, our findings showcase that diverse approaches, such as herbal medicine, small molecule inhibitors, low-intensity ultrasound, and engineered exosomes, can effectively overcome drug resistance in cancer by modulating the miRNA-PTEN axis.

20.
Heliyon ; 10(11): e32686, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961957

ABSTRACT

Periodontitis is an inflammatory disease characterized by the destruction of periodontal tissues, and the promotion of bone tissue regeneration is the key to curing periodontitis. Psoralen is the main component of Psoralea corylifolia Linn, and has multiple biological effects, including anti-osteoporosis and osteogenesis. We constructed a novel hydrogel loaded with psoralen (PSO) and stromal cell-derived factor-1 (SDF-1) for direct endogenous cell homing. This study aimed to evaluate the synergistic effects of PSO/SDF-1 on periodontal bone regeneration in patients with periodontitis. The results of CCK8, alkaline phosphatase (ALP) activity assay, and Alizarin Red staining showed that PSO/SDF-1 combination treatment promoted cell proliferation, chemotaxis ability, and ALP activity of PDLSCs. qRT-PCR and western blotting showed that the expression levels of alkaline phosphatase (ALP), dwarf-associated transcription factor 2 (RUNX2), and osteocalcin (OCN) gene were upregulated. Rat periodontal models were established to observe the effect of local application of the composite hydrogel on bone regeneration. These results proved that the PSO/SDF-1 combination treatment significantly promoted new bone formation. The immunohistochemical (IHC) results confirmed the elevated expression of ALP, RUNX2, and OCN osteogenic genes. PSO/SDF-1 composite hydrogel can synergistically regulate the biological function and promote periodontal bone formation. Thus, this study provides a novel strategy for periodontal bone regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL
...