Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 299
Filter
1.
Plants (Basel) ; 13(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39273917

ABSTRACT

Macroalgal biomass blooms, including those causing the green and golden tides, have been rising along Chinese coasts, resulting in considerable social impacts and economic losses. To understand the links between the ongoing climate changes (ocean warming and acidification) and algal tide formation, the effects of temperature (20 and 24 °C), pCO2 concentration (Partial Pressure of Carbon Dioxide, 410 ppm and 1000 ppm) and their interaction on the growth of Ulva prolifera and Ulva lactuca (green tide forming species), as well as Sargassum horneri (golden tide forming species) were investigated. The results indicate that the concurrent rises in temperature and pCO2 level significantly boosted the growth and nutrient uptake rates of U. lactuca. For U. prolifera, the heightened growth and photosynthetic efficiency under higher CO2 conditions are likely due to the increased availability of inorganic carbon. In contrast, S. horneri exhibited negligible responsiveness to the individual and combined effects of the increased temperature and CO2 concentration. These outcomes indicate that the progressive climate changes, characterized by ocean warming and acidification, are likely to escalate the incidence of green tides caused by Ulva species, whereas they are not anticipated to precipitate golden tides.

2.
Ecotoxicol Environ Saf ; 284: 117021, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39265266

ABSTRACT

Benzophenone-4 (BP-4), a widely utilized organic ultraviolet (UV) filter, is recognized as a pseudo-persistent contaminant in aquatic environments. To elucidate the effects and mechanisms of BP-4 on marine diatoms, an investigation was conducted on the growth rate, photosynthetic pigment content, photosynthetic parameters, antioxidant enzyme activity, malondialdehyde (MDA) levels, cellular structure, and transcriptome profile of the model species, Phaeodactylum tricornutum. The results showed a pronounced inhibition of algal growth upon exposure to BP-4, with a 144 h-EC50 value of 201 mg·L-1. In addition, BP-4 exposure resulted in a significant reduction in biomass, disruption of cell membrane integrity, and increased MDA accumulation, with levels escalating 3.57-fold at 125 mg·L-1 of BP-4. In the BP-4-treated samples, 1556 differentially expressed genes (DEGs) were identified, of which 985 were upregulated and 571 were downregulated. Gene ontology and KEGG pathway enrichment analysis revealed that the carbon fixation and carbon metabolism processes in P. tricornatum were disrupted in response to BP-4 exposure, along with excessive reactive oxygen species (ROS) production. The upregulation of genes associated with photosynthetic pigment (chlorophyll and carotenoids) synthesis, phospholipid synthesis, ribosome biogenesis, and translation-related pathways may be regarded as a component of P. tricornatum's tolerance mechanism towards BP-4. These results provide preliminary insights into the toxicity and tolerance mechanisms of BP-4 on P. tricornatum. They will contribute to a better understanding of the ecotoxicological impacts of BP-4 on the marine ecosystem and provide valuable information for elimination of BP-4 in aquatic environment by bioremediation.


Subject(s)
Benzophenones , Diatoms , Photosynthesis , Water Pollutants, Chemical , Diatoms/drug effects , Benzophenones/toxicity , Water Pollutants, Chemical/toxicity , Photosynthesis/drug effects , Reactive Oxygen Species/metabolism , Malondialdehyde/metabolism , Transcriptome/drug effects
3.
Opt Lett ; 49(16): 4673-4676, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39146132

ABSTRACT

In this Letter, a surface wave, the Pearcey Talbot-like plasmon, which has the properties of self-imaging and multiple autofocusing, is presented as a novel, to the best of our knowledge, plasmonic bottle array generation scheme. With originality, the overall structure and the partial intensity of the plasmonic bottle array can be adjusted through the initial input, and modifying the Pearcey function enables the plasmonic bottle array to exhibit self-bending characteristics, which makes particle capture and manipulation easier and more flexible. A scheme to generate the plasmon is proposed, and we prove it by the finite-difference time-domain numerical simulations.

4.
Materials (Basel) ; 17(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998210

ABSTRACT

Vat photopolymerization (VPP), as an additive manufacturing (AM) technology, can conveniently produce ceramic parts with high resolution and excellent surface quality. However, due to the inherent brittleness and low toughness of ceramic materials, manufacturing defect-free ceramic parts remains a challenge. Many researchers have attempted to use carbon fibers as additives to enhance the performance of ceramic parts, but these methods are mostly applied in processes like fused deposition modeling and hot pressing. To date, no one has applied them to VPP-based AM technology. This is mainly because the black carbon fibers reduce laser penetration, making it difficult to cure the ceramic slurry and thus challenging to produce qualified ceramic parts. To address this issue, our study has strictly controlled the amount of carbon fibers by incorporating trace amounts of carbon fiber powder into the original ceramic slurry with the aim to investigate the impact of these additions on the performance of ceramic parts. In this study, ceramic slurries with three different carbon fiber contents (0 wt.%, 0.1 wt.%, 0.2 wt.%, and 0.3 wt.%) were used for additive manufacturing. A detailed comparative analysis of the microstructure, physical properties, and mechanical performance of the parts was conducted. The experimental results indicate that the 3D-printed alumina parts with added carbon fibers show varying degrees of improvement in multiple performance parameters. Notably, the samples prepared with 0.2 wt.% carbon fiber content exhibited the most significant performance enhancements.

5.
Adv Sci (Weinh) ; 11(32): e2402856, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38923873

ABSTRACT

Lack of liver regenerative capacity is the primary cause of hepatic failure and even mortality in patients undergoing hepatectomy, with no effective intervention strategies currently available. Therefore, identifying efficacious interventions to enhance liver regeneration is pivotal for optimizing clinical outcomes. Recent studies have demonstrated that vagotomy exerts an inhibitory effect on liver regeneration following partial hepatectomy, thereby substantiating the pivotal role played by the vagus nerve in the process of liver regeneration. In recent years, electroacupuncture (EA) has emerged as a non-invasive technique for stimulating the vagus nerve. However, EA on hepatic regeneration remains uncertain. In this study, a 70% partial hepatectomy (PH) mouse model is utilized to investigate the effects of EA on acute liver regeneration and elucidate its underlying molecular mechanisms. It is observed that EA at ST36 acutely activated cholinergic neurons in the dorsal motor nucleus of the vagus nerve (DMV), resulting in increased release of acetylcholine from hepatic vagal nerve endings and subsequent activation of IL-6 signaling in liver macrophages. Ultimately, these events promoted hepatocyte proliferation and facilitated liver regeneration. These findings provide insights into the fundamental brain-liver axis mechanism through which EA promotes liver regeneration, offering a novel therapeutic approach for post-hepatectomy liver regeneration disorders.


Subject(s)
Disease Models, Animal , Electroacupuncture , Hepatectomy , Liver Regeneration , Macrophages , Vagus Nerve , Animals , Electroacupuncture/methods , Hepatectomy/methods , Liver Regeneration/physiology , Mice , Vagus Nerve/surgery , Vagus Nerve/metabolism , Macrophages/metabolism , Male , Mice, Inbred C57BL , Cholinergic Neurons/metabolism , Cholinergic Neurons/physiology , Liver/surgery , Liver/metabolism
6.
J Infect Dis ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913690

ABSTRACT

Osteopontin (Opn) depletion can improve septic outcomes, but the underlying mechanism remains unknown. In this study, we demonstrated that non-haematopoietic but not haematopoietic Opn depletion improved septic outcomes. Compared to wild-type (WT) mice, co-housed Opn-/- mice displayed enhanced production of antibacterial peptides (AMPs), decreased bacterial loads, and a distinct bacterial composition of gut microbiota. Fecal microbiota transplantation (FMT) and OPN neutralization assay showed that Opn depletion could reduce the bacterial loads and improve septic inflammation. By employing an intestinal organoid culture system, we proved that OPN neutralization in WT organoids could inactivate AKT and decrease FOXO3a phosphorylation, resulting in enhanced AMP production, whereas OPN treatment in OPN deficient organoids could activate AKT and increase FOXO3a phosphorylation, leading to reduced AMP production. Our findings identified OPN as a novel regulatory factor of AMP production to modulate bacterial loads and composition of gut microbiota, in turn affecting sepsis outcomes.

7.
Nat Commun ; 15(1): 4993, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862578

ABSTRACT

Effective representation of molecules is a crucial factor affecting the performance of artificial intelligence models. This study introduces a flexible, fragment-based, multiscale molecular representation framework called t-SMILES (tree-based SMILES) with three code algorithms: TSSA (t-SMILES with shared atom), TSDY (t-SMILES with dummy atom but without ID) and TSID (t-SMILES with ID and dummy atom). It describes molecules using SMILES-type strings obtained by performing a breadth-first search on a full binary tree formed from a fragmented molecular graph. Systematic evaluations using JTVAE, BRICS, MMPA, and Scaffold show the feasibility of constructing a multi-code molecular description system, where various descriptions complement each other, enhancing the overall performance. In addition, it can avoid overfitting and achieve higher novelty scores while maintaining reasonable similarity on labeled low-resource datasets, regardless of whether the model is original, data-augmented, or pre-trained then fine-tuned. Furthermore, it significantly outperforms classical SMILES, DeepSMILES, SELFIES and baseline models in goal-directed tasks. And it surpasses state-of-the-art fragment, graph and SMILES based approaches on ChEMBL, Zinc, and QM9.

8.
Materials (Basel) ; 17(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38930342

ABSTRACT

Alumina (Al2O3) ceramics are widely used in electronics, machinery, healthcare, and other fields due to their excellent hardness and high temperature stability. However, their high brittleness limits further applications, such as artificial ceramic implants and highly flexible protective gear. To address the limitations of single-phase toughening in Al2O3 ceramics, some researchers have introduced a second phase to enhance these ceramics. However, introducing a single phase still limits the range of performance improvement. Therefore, this study explores the printing of Al2O3 ceramics by adding two different phases. Additionally, a new gradient printing technique is proposed to overcome the limitations of single material homogeneity, such as uniform performance and the presence of large residual stresses. Unlike traditional vat photopolymerization printing technology, this study stands out by generating green bodies with varying second-phase particle ratios across different layers. This study investigated the effects of different contents of sepiolite fiber (SF) and 316L stainless steel (SS) on various aspects of microstructure, phase composition, physical properties, and mechanical properties of gradient-printed Al2O3. The experimental results demonstrate that compared to Al2O3 parts without added SF and 316L SS, the inclusion of these materials can significantly reduce porosity and water absorption, resulting in a denser structure. In addition, the substantial improvements, with an increase of 394.4% in flexural strength and an increase of 316.7% in toughness, of the Al2O3 components enhanced by incorporating SF and 316L SS have been obtained.

9.
J Adv Res ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38735388

ABSTRACT

INTRODUCTION: Hepatic ischemia-reperfusion injury (IRI) is an inevitable adverse event following liver surgery, leading to liver damage and potential organ failure. Despite advancements, effective interventions for hepatic IRI remain elusive, posing a significant clinical challenge. The innate immune response significantly contributes to the pathogenesis of hepatic IRI by promoting an inflammatory cytotoxic cycle. We have reported that blocking GSDMD-induced pyroptosis in innate immunity cells protected hepatic IRI from inflammatory injury. However, the search for effective pyroptosis inhibitors continues. OBJECTIVES: This study aims to evaluate whether quercetin, a natural flavonoid, can inhibit GSDMD-induced pyroptosis and mitigate hepatic IRI. METHODS: We established the hepatic IRI murine model and cellular pyroptosis model to evaluate the efficacy of quercetin. RESULTS: Quercetin effectively alleviated hepatic IRI-induced tissue necrosis and inflammation. We found that during hepatic IRI, the cleavage of GSDMD occurred in hepatic macrophages, but not in other non-parenchymal cells. Quercetin inhibited the cleavage of GSDMD in macrophages. Moreover, we found that quercetin blocked the ASC assembly to inhibit the formation of NLRP3 inflammasomes and AIM2 inflammasomes, suppressing macrophage pyroptosis. Co-immunoprecipitation experiments confirmed that quercetin inhibited the interaction between ASC and Caspase-8, which is the mechanism of ASC complex and inflammasome formation. Overexpression of Caspase-8 abolished the anti-pyroptosis effect of quercetin in NLRP3 and AIM2 inflammasome signaling. Furthermore, we found that the hepatoprotective activity of quercetin was reduced in myelocytic GSDMD-deficient mice. CONCLUSION: Our findings suggest that quercetin has beneficial effects on hepatic IRI. Quercetin could attenuate hepatic IRI and target inhibition of macrophage pyroptosis via blocking Caspase-8/ASC interaction. We recommend that quercetin might serve as a targeted approach for the prevention and personalized treatment of hepatic IRI in perioperative patients.

10.
Transl Vis Sci Technol ; 13(3): 18, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38512284

ABSTRACT

Purpose: To investigate the choroidal vascularity index (CVI) and choroidal structural changes in children with nephrotic syndrome. Methods: This was a cross-sectional study involving 45 children with primary nephrotic syndrome and 40 normal controls. All participants underwent enhanced depth imaging-optical coherence tomography examinations. An automatic segmentation method based on deep learning was used to segment the choroidal vessels and stroma, and the choroidal volume (CV), vascular volume (VV), and CVI within a 4.5 mm diameter circular area centered around the macular fovea were obtained. Clinical data, including blood lipids, serum proteins, renal function, and renal injury indicators, were collected from the patients. Results: Compared with normal controls, children with nephrotic syndrome had a significant increase in CV (nephrotic syndrome: 4.132 ± 0.464 vs. normal controls: 3.873 ± 0.574; P = 0.024); no significant change in VV (nephrotic syndrome: 1.276 ± 0.173 vs. normal controls: 1.277 ± 0.165; P = 0.971); and a significant decrease in the CVI (nephrotic syndrome: 0.308 [range, 0.270-0.386] vs. normal controls: 0.330 [range, 0.288-0.387]; P < 0.001). In the correlation analysis, the CVI was positively correlated with serum total protein, serum albumin, serum prealbumin, ratio of serum albumin to globulin, and 24-hour urine volume and was negatively correlated with total cholesterol, low-density lipoprotein cholesterol, urinary protein concentration, and ratio of urinary transferrin to creatinine (all P < 0.05). Conclusions: The CVI is significantly reduced in children with nephrotic syndrome, and the decrease in the CVI parallels the severity of kidney disease, indicating choroidal involvement in the process of nephrotic syndrome. Translational Relevance: Our findings contribute to a deeper understanding of how nephrotic syndrome affects the choroid.


Subject(s)
Nephrotic Syndrome , Child , Humans , Nephrotic Syndrome/complications , Cross-Sectional Studies , Choroid/diagnostic imaging , Fovea Centralis , Cholesterol
11.
Exp Cell Res ; 437(2): 114014, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38547959

ABSTRACT

Extracellular matrix (ECM) stiffness regulates development and homeostasis in vivo and affects both physiological and pathological processes. A variety of studies have demonstrated that mRNAs, such as Piezo1, integrin ß1, and Yes-associated protein (YAP)/tafazzin (TAZ), can sense the mechanical signals induced by ECM stiffness and transmit them from the extracellular space into the cytoplasm. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have been reported to play important roles in various cellular processes. Therefore, the interactions between ncRNAs and ECM stiffness, as well as the underlying molecular mechanisms, have become intriguing. In this review, we summarize recent findings on miRNAs and lncRNAs that interact with ECM stiffness. Several miRNAs and lncRNAs are involved in the progression of liver cancer, breast cancer, osteosarcoma, and cardiovascular diseases under the regulation of ECM stiffness. Through these ncRNAs, cellular behaviors including cell differentiation, proliferation, adhesion, migration, invasion, and epithelial-mesenchymal transition (EMT) are affected by ECM stiffness. We also integrate the ncRNA signaling pathways associated with ECM stiffness, in which typical signaling pathways like integrin ß1/TGFß1, phosphatidylinositol-3 kinase (PI3K)/AKT, and EMT are involved. Although our understanding of the relationships between ncRNAs and ECM stiffness is still limited, further investigations may provide new insights for disease treatment. ECM-associated ncRNAs may serve as disease biomarkers or be targeted by drugs.


Subject(s)
MicroRNAs , RNA, Long Noncoding , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Integrin beta1/metabolism , Extracellular Matrix/metabolism , Cell Differentiation
12.
Medicine (Baltimore) ; 103(4): e37012, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38277574

ABSTRACT

RATIONALE: Complicated pressure injury in paraplegic patients is common and difficult to manage. Previous case studies have documented short-term management; however, little is known regarding suitable approaches to long-term clearing of extensive pressure injury in the sacrococcygeal area under denervation. PATIENT CONCERNS: A 53-year-old man was bedridden for 1.5 years owing to cervical vertebral fracture-dislocation (C5-C6), resulting in extensive sacrococcygeal pressure injury. DIAGNOSES: On admission, he presented with the injury complicated by infection (stage IV necrosis), and his vital signs were unstable. INTERVENTIONS: The infection was treated with a range of antibiotics, including clindamycin phosphate, metronidazole, cefoperazone sodium, and sulbactam sodium. Debridement of the pressure injury was performed, helping remove the necrotic tissue and stimulate tissue regeneration. OUTCOMES: The patient was discharged after 88 days of hospitalization. The extent of the pressure injury at discharge was reduced compared with that at admission. At 4-month follow-up, the injury was nearly healed, with no signs of any further complications. LESSONS: This case study suggests that wound debridement is a cost-effective and clinically efficacious approach to long-term complicated pressure injury management.


Subject(s)
Crush Injuries , Joint Dislocations , Pressure Ulcer , Male , Humans , Middle Aged , Debridement/methods , Pressure Ulcer/surgery , Wound Healing
13.
J Invertebr Pathol ; 203: 108061, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244837

ABSTRACT

This study explores the transcriptomic differences in two distinct phases of Ecytonucleospora hepatopenaei (EHP) in Litopenaeus vannamei, a crucial aspect in shrimp health management. We employed high-throughput sequencing to categorize samples into two phases, 'Phase A' and 'Phase B', defined by the differential expression of PTP2 and TPS1 genes. Our analysis identified 2057 genes, with 78 exhibiting significant variances, including 62 upregulated and 16 downregulated genes. Enrichment analyses via GO and KEGG pathways highlighted these genes' roles in cellular metabolism, signal transduction, and immune responses. Notably, genes like IQGAP2, Rhob, Pim1, and PCM1 emerged as potentially crucial in EHP's infection process and lifecycle. We hypothesize that these genes may influence trehalose metabolism and glucose provision, impacting the biological activities within EHP during different phases. Interestingly, a lower transcript count in 'Phase A' EHP suggests a reduction in biological activities, likely preparing for host cell invasion. This research provides a foundational understanding of EHP infection mechanisms, offering vital insights for future studies and therapeutic interventions.


Subject(s)
Enterocytozoon , Penaeidae , Animals , Enterocytozoon/physiology , Gene Expression Profiling , Transcriptome , Penaeidae/genetics , Seafood
14.
Environ Pollut ; 345: 123440, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38290654

ABSTRACT

In this study, we aimed to evaluate the effect of dietary supplementation with edible mushroom (Pleurotus ostreatus)-derived polysaccharides on microcystin leucine-arginine (MC-LR)-induced skin damage in Pelophylax nigromaculatus tadpoles. Tadpoles were exposed to 1 µg/L daily MC-LR, with or without 5.0 g/kg of dietary P. ostreatus polysaccharides, for 30 days. P. ostreatus polysaccharide supplementation significantly increased the dermal collagen fibrils, increased tight junction protein gene expression, decreased the amount of MC-LR accumulation in skin tissues, attenuated oxidative stress, downregulated apoptosis-associated gene transcription, decreased eosinophil numbers, and downregulated transcription of inflammation-related genes (e.g. TLR4, NF-κB, and TNF-α). The composition of the skin commensal microbiota of MC-LR-exposed tadpoles supplemented with P. ostreatus polysaccharides was similar to that of the no-treatment control group. Lipopolysaccharide (LPS) content was positively correlated with the abundance of Gram-negative bacteria, including Chryseobacterium and Thauera. Therefore, P. ostreatus polysaccharides may alleviate MC-LR-induced skin barrier damage in tadpoles in two ways: 1) attenuation of oxidative stress-mediated apoptosis mediated by increased glutathione (GSH) content and total superoxide dismutase activity; and 2) alteration of the skin commensal microbiota composition to attenuate the LPS/Toll-like receptor 4 inflammatory pathway response. Furthermore, P. ostreatus polysaccharides may increase skin GSH synthesis by promoting glycine production via the gut microbiota and may restore the MC-LR-damaged skin resistance to pathogenic bacteria by increasing antimicrobial peptide transcripts and lysozyme activity. This study highlights for the first time the potential application of P. ostreatus polysaccharides, an ecologically active substance, in mitigating the skin damage induced by MC-LR exposure, and may provide new insights for its further development in aquaculture.


Subject(s)
Marine Toxins , Microcystins , Pleurotus , Microcystins/toxicity , Microcystins/metabolism , Pleurotus/metabolism , Lipopolysaccharides , Oxidative Stress , Glutathione/metabolism
15.
J Sci Food Agric ; 104(3): 1391-1398, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37801402

ABSTRACT

BACKGROUND: Saffron has gained people's attention and love for its unique flavor and valuable edible value, but the problem of saffron adulteration in the market is serious. It is urgent for us to find a simple and rapid identification and quantitative estimation of adulteration in saffron. Therefore, excitation-emission matrix (EEM) fluorescence combined with multi-way chemometrics was proposed for the detection and quantification of adulteration in saffron. RESULTS: The fluorescence composition analysis of saffron and saffron adulterants (safflower, marigold and madder) were accomplished by alternating trilinear decomposition (ATLD) algorithm. ATLD and two-dimensional principal component analysis combined with k-nearest neighbor (ATLD-kNN and 2DPCA-kNN) and ATLD combined with data-driven soft independent modeling of class analogies (ATLD-DD-SIMCA) were applied to rapid detection of adulteration in saffron. 2DPCA-kNN and ATLD-DD-SIMCA methods were adopted for the classification of chemical EEM data, first with 100% correct classification rate. The content of adulteration of adulterated saffron was predicted by the N-way partial least squares regression (N-PLS) algorithm. In addition, new samples were correctly classified and the adulteration level in adulterated saffron was estimated semi-quantitatively, which verifies the reliability of these models. CONCLUSION: ATLD-DD-SIMCA and 2DPCA-kNN are recommended methods for the classification of pure saffron and adulterated saffron. The N-PLS algorithm shows potential in prediction of adulteration levels. These methods are expected to solve more complex problems in food authenticity. © 2023 Society of Chemical Industry.


Subject(s)
Crocus , Humans , Crocus/chemistry , Reproducibility of Results , Chemometrics , Food Contamination/analysis , Food , Least-Squares Analysis
16.
Sci Rep ; 13(1): 21475, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38052848

ABSTRACT

Active electrolocation organ of weakly electric fish act as a proximity detection system with high accuracy in recognizing object parameters such as size and shape. In contrast, some fish with passive electrolocation organ are able to detect objects at a greater range. This paper proposes a joint active-passive electrolocation algorithm for long-range and high-precision underwater localization, inspired by the active and passive electroreceptive organs of fish. The study begins by designing a large experimental platform for the underwater localization system to investigate the response of underwater objects to active and passive electric fields. Based on the response, the paper proposes separate underwater active and passive electrolocation algorithms, which are then combined to form a joint algorithm. Experimental results demonstrate that the proposed algorithm achieves high localization accuracy and long detection distance. The joint active-passive electrolocation algorithm has potential applications in submarine resource exploration, underwater robotics, and maritime military projects, while also providing new ideas for future research on long-range underwater object detection and identification based on electrolocation.

17.
J Mater Chem B ; 11(44): 10632-10639, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37910388

ABSTRACT

Combination therapies are an increasingly important part of the antitumor medicine armamentarium. However, developing desirable nanomaterials for combination therapies is still a great challenge. Herein, a biocompatible Cu(I)-doped metal-organic framework (MOF) (denoted as CuZn-ZIF) is designed as a novel dual-functional nanocarrier. Doxorubicin molecules are covalently bound to the surface of the CuZn-ZIF and released by the cleavage of chemical bonds in an acidic environment, demonstrating the capacity of controlled drug release. More importantly, CuZn-ZIF nanocarriers can simultaneously play the role of nanocatalysts, capable of catalyzing H2O2 into a highly reactive intracellular toxic hydroxyl radical (˙OH). An in vivo study reveals that nanoparticles exhibit high antitumor efficacy through the combined performance of DOX and Cu(I), proving the great potential of this copper(I)-based MOF for combined chemo-chemotherapy to improve therapeutic efficacy.


Subject(s)
Antineoplastic Agents , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Copper , Hydrogen Peroxide , Doxorubicin/pharmacology , Doxorubicin/chemistry , Antineoplastic Agents/pharmacology
18.
Environ Sci Technol ; 57(35): 13148-13160, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37565447

ABSTRACT

Amphibians are sensitive biomonitors of environmental pollutants but reports regarding per- and polyfluoroalkyl substances (PFAS), a class of synthetic organofluorine substances, are limited. In this study, samples of water and Chinese toads (Bufo gargarizans) were collected in Chaohu Lake, China. Tissue-specific bioaccumulation characteristics of 39 PFAS, including 19 perfluoroalkyl acids (PFAAs), 8 emerging PFAS, and 12 PFAA precursors, were investigated, and the levels of some biochemical indicators were determined. The highest PFAS concentrations were found in the liver [215.97 ng/g dry weight (dw)] of Chinese toads, followed by gonads (135.42 ng/g dw) and intestine (114.08 ng/g dw). A similar tissue distribution profile was found between legacy and emerging PFAS in the toads, and the occurrence of two emerging PFAS, 2,3,3,3-tetrafluoro-2-propanoate (HFPO-DA) and 6:2 hydrogen-substituted polyfluorooctane ether sulfonate (6:2 H-PFESA) in the amphibians were for the first time reported. Field-based bioaccumulation factors of HFPO-DA were higher than perfluorooctanoic acid, indicating the higher bioaccumulation potential of this emerging PFAS than the legacy C8 compound. Males had significantly higher gonad PFAS levels than females while estradiol levels in gonads increased with increasing concentrations of certain PFAS (e.g., 6:2 H-PFESA), implying that PFAS may trigger estrogenic effects in the toads, especially for male toads.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Female , Male , Animals , Bioaccumulation , Lakes , Tissue Distribution , Bays , Fluorocarbons/analysis , China , Water Pollutants, Chemical/analysis , Bufonidae , Environmental Monitoring
19.
BMC Ophthalmol ; 23(1): 306, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37430215

ABSTRACT

BACKGROUND: Recently, periumbilical fat (PF) mass, an autologous material with a high survival rate, has been transplanted to treat sunken or dissatisfactory double eyelids. However, the intricate complications of PF grafts and associated reconstructive strategies are infrequently discussed. METHODS: During 3 years, 20 patients (33 eyes) with eyelid malformations caused by PF grafts into the orbital septum or on the surface of the levator aponeurosis underwent corrective blepharoplasty. We recorded patients' subjective feelings and identified deformities from crease abnormalities, bloated appearance, and problems with the eyelid's height. Then, we categorize them into three types based on their complexity: type I, swollen appearance; type II, obvious adhesion; type III, severe comprehensive damage. The relevant management included removing fat implants, releasing the adhesion, and rebuilding the physical structure according to the anatomic damage mechanism. The improvement effect was assessed with a satisfaction survey from patients and doctors at 6 months of follow-up. RESULTS: The swollen appearance was observed in 26 eyes (78.8%), an unsmooth double-eyelid line was in 23 eyes (69.7%), and the incidence of adhesion was in 22 eyes (66.7%). Following a comprehensive evaluation, 15 eyes (45.5%) and 13 (39.4%) were classified as type I and type II respectively. After the 6-month follow-up, 22 eyes (66.7%) showed exceptional aesthetic results, whereas only 2 eyes as type III had a poor outcome. CONCLUSIONS: The deformities emerging from periumbilical fat into the upper eyelid are associated with the shape of the fat and the adhesion in tissues. Graft removal, adhesion release, and restoration of the natural anatomic structure can have positive outcomes.


Subject(s)
Blepharoplasty , Plastic Surgery Procedures , Humans , Eyelids/surgery , Dioctyl Sulfosuccinic Acid , Emotions
20.
Talanta ; 265: 124866, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37418956

ABSTRACT

The identification of trace textile fabrics discovered at crime scenes plays a crucial role in the case of forensic investigations. Additionally, in practical situations, fabrics may be contaminated, making identification more challenging. To address the aforementioned issue and promote the application of fabrics identification in forensic analysis, front-face excitation-emission matrix (FF-EEM) fluorescence spectra coupled with multi-way chemometric methods were proposed for the interference-free and non-destructive identification of textile fabrics. Common commercial dyes in the same color range under different materials (cotton, acrylic, and polyester) that cannot be visually distinguished were investigated, and several binary classification models for the identification of dye were established using partial least squares discriminant analysis (PLS-DA). The identification of dyed fabrics in the presence of fluorescent interference was also taken into consideration. In each kind of pattern recognition model mentioned above, the classification accuracy (ACC) of the prediction set was 100%. The alternating trilinear decomposition (ATLD) algorithm was executed to separate mathematically and remove the interference, and the classification model based on the reconstructed spectra attained an accuracy of 100%. These findings indicate that FF-EEM technology combined with multi-way chemometric methods has broad prospects for forensic trace textile fabric identification, especially in the presence of interference.

SELECTION OF CITATIONS
SEARCH DETAIL