Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 331
Filter
1.
Foods ; 13(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38998657

ABSTRACT

Brown rice noodles are increasingly favored by consumers for their health benefits; however, their development is hindered by their poor edible qualities. The effect of germination on the cooking, textural, organoleptic and nutritional qualities of brown rice pasta was investigated. In comparison to ungerminated brown rice noodles, germination resulted in a shorter cooking time, reduced cooking losses, and decreased hardness and adhesion of noodles as well as reduced bitter taste. These changes can be attributed to germination altering the basic composition of brown rice. Meanwhile, the contents of γ-aminobutyric acid, free phenolic acid, and bound phenolic acid increased by 53.43%, 21.71%, and 7.14%, respectively, while the content of resistant starch de-creased by 21.55%. Sprouting is a promising strategy for improving the edible quality and nutritional properties of brown rice noodles.

2.
Foods ; 13(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38890903

ABSTRACT

Polysaccharides from Dendrobium officinale have garnered attention for their diverse and well-documented biological activities. In this study, we isolated three ethanol-fractionated polysaccharides from Dendrobium officinale (EPDO) and investigated their digestive properties and effects on gut microbiota regulation in vitro. The results indicated that after simulating digestion in saliva, gastric, and small intestinal fluids, three EPDOs, EPDO-40, EPDO-60 and EPDO-80, with molecular weights (Mw) of 442.6, 268.3 and 50.8 kDa, respectively, could reach the large intestine with a retention rate exceeding 95%. During in vitro fermentation, the EPDOs were broken down in a "melting" manner, resulting in a decrease in their Mw. EPDO-60 degraded more rapidly than EPDO-40, likely due to its moderate Mw. After 24 h, the total production of short-chain fatty acids (SCFAs) for EPDO-60 reached 51.2 ± 1.9 mmol/L, which was higher than that of EPDO-80. Additionally, there was an increase in the relative abundance of Bacteroides, which are capable of metabolizing polysaccharides. EPDO-60 also promoted the growth of specific microbiota, including Prevotella 9 and Parabacteroides, which could potentially benefit from these polysaccharides. Most notably, by comparing the gut microbiota produced by different fermentation carbon sources, we identified the eight most differential gut microbiota specialized in polysaccharide metabolism at the genus level. Functional prediction of these eight differential genera suggested roles in controlling replication and repair, regulating metabolism, and managing genetic information transmission. This provides a new reference for elucidating the specific mechanisms by which EPDOs influence the human body. These findings offer new evidence to explain how EPDOs differ in their digestive properties and contribute to the establishment of a healthy gut microbiota environment in the human body.

3.
Parasitol Res ; 123(6): 236, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856927

ABSTRACT

Echinococcosis is a worldwide disease endemic to the western region of China. In 2023, echinococcosis was detected in one of 27 wild boars (Sus scrofa) in Yili Prefecture, Xinjiang, northwestern China. Histopathological staining and full sequence mitochondrial (mt) analysis were used to determine the infection genotype. Echinococcus granulosus was detected in the wild boar liver, and the cystic lesion characteristics indicated the E. granulosus genotype (G1). This case is the first confirmation of wild boar serving as a transmitter for the G1 genotype of E. granulosus within China. These findings suggest that surveillance is needed to assess the risk of E. granulosus sensu lato transmission to humans and wild animals.


Subject(s)
Echinococcosis , Echinococcus granulosus , Genotype , Sus scrofa , Swine Diseases , Animals , China , Echinococcus granulosus/genetics , Echinococcus granulosus/isolation & purification , Echinococcus granulosus/classification , Sus scrofa/parasitology , Swine Diseases/parasitology , Swine , Echinococcosis/veterinary , Echinococcosis/parasitology , Echinococcosis/epidemiology , Liver/parasitology , Liver/pathology , Sequence Analysis, DNA , DNA, Mitochondrial/genetics , DNA, Helminth/genetics , Phylogeny
4.
Front Public Health ; 12: 1367416, 2024.
Article in English | MEDLINE | ID: mdl-38835616

ABSTRACT

Background: Sudden death accounts for approximately 10% of deaths among working-age adults and is associated with poor air quality. Objectives: To identify high-risk groups and potential modifiers and mediators of risk, we explored previously established associations between fine particulate matter (PM2.5) and sudden death stratified by potential risk factors. Methods: Sudden death victims in Wake County, NC, from 1 March 2013 to 28 February 2015 were identified by screening Emergency Medical Systems reports and adjudicated (n = 399). Daily PM2.5 concentrations for Wake County from the Air Quality Data Mart were linked to event and control periods. Potential modifiers included greenspace metrics, clinical conditions, left ventricular hypertrophy (LVH), and neutrophil-to-lymphocyte ratio (NLR). Using a case-crossover design, conditional logistic regression estimated the OR (95%CI) for sudden death for a 5 µg/m3 increase in PM2.5 with a 1-day lag, adjusted for temperature and humidity, across risk factor strata. Results: Individuals having LVH or an NLR above 2.5 had PM2.5 associations of greater magnitude than those without [with LVH OR: 1.90 (1.04, 3.50); NLR > 2.5: 1.25 (0.89, 1.76)]. PM2.5 was generally less impactful for individuals living in areas with higher levels of greenspace. Conclusion: LVH and inflammation may be the final step in the causal pathway whereby poor air quality and traditional risk factors trigger arrhythmia or myocardial ischemia and sudden death. The combination of statistical evidence with clinical knowledge can inform medical providers of underlying risks for their patients generally, while our findings here may help guide interventions to mitigate the incidence of sudden death.


Subject(s)
Cross-Over Studies , Hypertrophy, Left Ventricular , Inflammation , Particulate Matter , Humans , Particulate Matter/analysis , Particulate Matter/adverse effects , Male , Female , Middle Aged , Adult , Hypertrophy, Left Ventricular/mortality , Risk Factors , Aged , Air Pollution/adverse effects , Death, Sudden/epidemiology , Death, Sudden/etiology , Air Pollutants/adverse effects , Environmental Exposure/adverse effects
5.
J Zhejiang Univ Sci B ; 25(6): 529-540, 2024 Jun 15.
Article in English, Chinese | MEDLINE | ID: mdl-38910497

ABSTRACT

BACKGROUND: Following the short-term outbreak of coronavirus disease 2019 (COVID-19) in December 2022 in China, clinical data on kidney transplant recipients (KTRs) with COVID-19 are lacking. METHODS: We conducted a single-center retrospective study to describe the clinical features, complications, and mortality rates of hospitalized KTRs infected with COVID-19 between Dec. 16, 2022 and Jan. 31, 2023. The patients were followed up until Mar. 31, 2023. RESULTS: A total of 324 KTRs with COVID-19 were included. The median age was 49 years. The median time between the onset of symptoms and admission was 13 d. Molnupiravir, azvudine, and nirmatrelvir/ritonavir were administered to 67 (20.7%), 11 (3.4%), and 148 (45.7%) patients, respectively. Twenty-nine (9.0%) patients were treated with more than one antiviral agent. Forty-eight (14.8%) patients were treated with tocilizumab and 53 (16.4%) patients received baricitinib therapy. The acute kidney injury (AKI) occurred in 81 (25.0%) patients and 39 (12.0%) patients were admitted to intensive care units. Fungal infections were observed in 55 (17.0%) patients. Fifty (15.4%) patients lost their graft. The 28-d mortality rate of patients was 9.0% and 42 (13.0%) patients died by the end of follow-up. Multivariate Cox regression analysis identified that cerebrovascular disease, AKI incidence, interleukin (IL)|-6 level of >6.8 pg/mL, daily dose of corticosteroids of >50 mg, and fungal infection were all associated with an increased risk of death for hospitalized patients. CONCLUSIONS: Our findings demonstrate that hospitalized KTRs with COVID-19 are at high risk of mortality. The administration of immunomodulators or the late application of antiviral drugs does not improve patient survival, while higher doses of corticosteroids may increase the death risk.


Subject(s)
Antiviral Agents , COVID-19 , Kidney Transplantation , SARS-CoV-2 , Humans , Middle Aged , Male , Female , COVID-19/mortality , COVID-19/complications , COVID-19/epidemiology , Retrospective Studies , China/epidemiology , Antiviral Agents/therapeutic use , Adult , Hospitalization , Transplant Recipients , Aged , COVID-19 Drug Treatment , Antibodies, Monoclonal, Humanized/therapeutic use , Azetidines , Purines , Pyrazoles , Sulfonamides
6.
Carbohydr Polym ; 336: 122130, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38670760

ABSTRACT

Dry heat treatment (DHT) ranging from 130 to 190 °C was employed to modify corn starch. The hot-water soluble fraction (HWS) of the DHT-modified starch was isolated, and its capacity and mechanism for stabilizing O/W emulsions were investigated. Corn starch underwent a significant structural transformation by DHT at 190 °C, characterized by a 7.3 % reduction in relative crystallinity, a tenfold decrease in weight-average molecular weight from 95.21 to 8.11 × 106 g/mol, and a degradation of over one-third of the extra-long chains of amylopectin (DP > 36) into short chains (DP 6-12). These structural modifications resulted in a substantial formation of soluble amylopectin, leading to a sharp increase in the HWS content of corn starch from 3.16 % to 85.06 %. This augmented HWS content surpassed the critical macromolecule concentration, prompting the formation of HWS nanoaggregates. These nanoaggregates, with an average particle size of 33 nm, functioned as particle stabilizers, ensuring the stability of the O/W emulsion through the Pickering mechanism. The O/W emulsion stabilized by HWS nanoaggregates exhibited noteworthy centrifugal and storage stability, with rheological properties remaining nearly unchanged over a storage period of 180 days. Given its straightforward preparation process, the HWS of DHT-modified starch could be a promising natural emulsifier.

7.
Food Funct ; 15(8): 4079-4094, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38563230

ABSTRACT

Gastritis is a common disease characterized by gastric ulcers and severe bleeding. Excessive daily alcohol consumption can cause acute gastritis, impacting individuals' quality of life. This study aims to explore the protective effects of different ethanol-fractional polysaccharides of Dendrobium officinale (EPDO) on acute alcohol-induced gastric injury in vivo. Results showed that EPDO-80, identified as a ß-glucan, exhibited significant anti-inflammatory properties in pathology. It could reduce the area of gastric mucosal injury and cell infiltration. EPDO-80 had a dose-effect relationship in reducing the levels of malondialdehyde and cyclooxygenase-2 and decreasing the levels of inflammation mediators such as tumor necrosis factor α. More extensively, EPDO-80 could inhibit the activation of the TNFR/IκB/NF-κB signaling pathway, reducing the production of TNF-α mRNA and cell apoptosis in organs. Conversely, EPDO-80 could promote changes in the gut microbiota structure. These findings suggest that EPDO-80 could have great potential in limiting oxidative stress and inflammation mediated by inhibiting the NF-κB signaling pathway, which is highly related to its ß-glucan structure and functions in gut microbiota.


Subject(s)
Dendrobium , Ethanol , Gastritis , NF-kappa B , Polysaccharides , Dendrobium/chemistry , Animals , Polysaccharides/pharmacology , Polysaccharides/chemistry , Gastritis/chemically induced , Gastritis/drug therapy , Male , Mice , NF-kappa B/metabolism , NF-kappa B/genetics , Gastrointestinal Microbiome/drug effects , Signal Transduction/drug effects , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Plant Extracts/pharmacology , Oxidative Stress/drug effects , Anti-Inflammatory Agents/pharmacology , Protective Agents/pharmacology
8.
Mol Phylogenet Evol ; 196: 108084, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38688440

ABSTRACT

The tribe Collabieae (Epidendroideae, Orchidaceae) comprises approximately 500 species. Generic delimitation within Collabieae are confusing and phylogenetic interrelationships within the Collabieae have not been well resolved. Plastid genomes and nuclear internal transcribed spacer (ITS) sequences were used to estimate the phylogenetic relationships, ancestral ranges, and diversification rates of Collabieae. The results showed that Collabieae was subdivided into nine clades with high support. We proposed to combine Ancistrochilus and Pachystoma into Spathoglottis, merge Collabium and Chrysoglossum into Diglyphosa, and separate Pilophyllum and Hancockia as distinctive genera. The diversification of the nine clades of Collabieae might be associated with the uplift of the Himalayas during the Late Oligocene/Early Miocene. The enhanced East Asian summer monsoon in the Late Miocene may have promoted the rapid diversification of Collabieae at a sustained high diversification rate. The increased size of terrestrial pseudobulbs may be one of the drivers of Collabieae diversification. Our results suggest that the establishment and development of evergreen broadleaved forests facilitated the diversification of Collabieae.


Subject(s)
Orchidaceae , Phylogeny , Orchidaceae/genetics , Orchidaceae/classification , Forests , Genome, Plastid/genetics , Phylogeography , DNA, Ribosomal Spacer/genetics , Sequence Analysis, DNA , Asia , DNA, Plant/genetics
9.
Infect Genet Evol ; 119: 105581, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432594

ABSTRACT

Alveolar echinococcosis (AE), caused by Echinococcus multilocularis, is an important zoonotic disease. Yili Prefecture in Xinjiang is endemic for AE, however the molecular variability of E. multilocularis in this region is poorly understood. In this study, 127 samples were used for haplotypes analysis, including 79 tissues from humans, 43 liver tissues from small rodents, and 5 fecal samples from dogs. Genetic variability in E. multilocularis was studied using complete sequences of the mitochondrial (mt) genes of cytochrome b (cob), NADH dehydrogenase subunit 2 (nad2), and cytochrome c oxidase subunit 1 (cox1), using a total of 3558 bp per sample. The Asia haplotype 2 (A2) was the dominant haplotype, with 72.15% (57/79) prevalence in humans, 2.33% (1/43) in small rodents, and 80.00% (4/5) in dogs, followed by A5, the second most common haplotype, which infected 27.91% (12/43) small rodents. Haplotype network analysis showed that all haplotypes clustered together with the Asian group. Pairwise fixation index (FST) values showed lower level of genetic differentiation between different regions within the country. Compared with the sequences of E. multilocularis from North America and Europe, all concatenated sequences isolated from Yili Prefecture were highly differentiated and formed a single population. The A2 haplotype, analyzed using the cob, nad2, and cox1 genes of E. multilocularis, is the predominant variant in humans and dogs in Yili Prefecture.


Subject(s)
Echinococcosis , Echinococcus multilocularis , Humans , Dogs , Animals , Echinococcus multilocularis/genetics , Haplotypes , Echinococcosis/epidemiology , Echinococcosis/veterinary , Zoonoses , Rodentia , Cytochromes b/genetics
10.
Mol Cell Biochem ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503948

ABSTRACT

NEK2 is a serine/threonine protein kinase that is involved in regulating the progression of various tumors. Our previous studies have found that NEK2 is highly expressed in gastric cancer and suggests that patients have a worse prognosis. However, its role and mechanism in gastric cancer are only poorly studied. In this study, we established a model of ferroptosis induced by RSL3 or Erastin in AGS cells in vitro, and konckdown NEK2, HOMX1, Nrf2 by siRNA. The assay kit was used to analyzed cell viability, MDA levels, GSH and GSSG content, and FeRhoNox™-1 fluorescent probe, BODIPY™ 581/591 C11 lipid oxidation probe, CM-H2DCFDA fluorescent probe were used to detected intracellular Fe2+, lipid peroxidation, and ROS levels, respectively. Calcein-AM/PI staining was used to detect the ratio of live and dead cells, qRT-PCR and Western blot were used to identify the mRNA and protein levels of genes in cells, immunofluorescence staining was used to analyze the localization of Nrf2 in cells, RNA-seq was used to analyze changes in mRNA expression profile, and combined with the FerrDb database, ferroptosis-related molecules were screened to elucidate the impact of NEK2 on the sensitivity of gastric cancer cells to ferroptosis. We found that inhibition of NEK2 could enhance the sensitivity of gastric cancer cells to RSL3 and Erastin-induced ferroptosis, which was reflected in the combination of inhibition of NEK2 and ferroptosis induction compared with ferroptosis induction alone: cell viability and GSH level were further decreased, while the proportion of dead cells, Fe2+ level, ROS level, lipid oxidation level, MDA level, GSSG level and GSSG/GSH ratio were further increased. Mechanism studies have found that inhibiting NEK2 could promote the expression of HMOX1, a gene related to ferroptosis, and enhance the sensitivity of gastric cancer cells to ferroptosis by increasing HMOX1. Further mechanism studies have found that inhibiting NEK2 could promote the ubiquitination and proteasome degradation of Keap1, increase the level of Nrf2 in the nucleus, and thus promote the expression of HMOX1. This study confirmed that NEK2 can regulate HMOX1 expression through Keap1/Nrf2 signal, and then affect the sensitivity of gastric cancer cells to ferroptosis, enriching the role and mechanism of NEK2 in gastric cancer.

11.
Food Chem ; 445: 138708, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38387314

ABSTRACT

Raspberry leaves were subjected to steam explosion at 0.5 and 1.0 MPa for 60-120 s, aiming to disrupt their physical and chemical structure and, consequently, promote the release of phenolic compounds into the leaf aqueous infusion. Under optimal condition of 1.0 MPa for 60 s, steam explosion led to a notable 23 % increase in total phenolic content, a 29 % elevation in ABTS radical scavenging capacity, and a 13 % rise in DPPH radical scavenging capacity of the aqueous infusion. Utilizing UHPLC-Q-TOF-MS/MS and UHPLC-QE-MS/MS techniques, respectively, a total of 39 phenolic compounds were identified from raspberry leaves, and the changes in the contents of the most important 11 species were analyzed following steam explosion. Through correlation analysis and considering the content of each phenolic compound, it was inferred that the heightened antioxidant capacity of the aqueous infusion primarily stemmed from a substantial increase in the release of ellagic acid after steam explosion.


Subject(s)
Rubus , Steam , Water , Tandem Mass Spectrometry , Phenols/analysis , Antioxidants/chemistry , Nutrients/analysis , Plant Leaves/chemistry
12.
Kidney Int Rep ; 9(1): 96-107, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38312778

ABSTRACT

Introduction: Biopsy findings often lead to the discard of many donor kidneys although their clinical value is not fully understood. We investigated the predictive value of postreperfusion biopsy on long-term allograft outcome after single-kidney transplantation. Methods: We retrospectively evaluated the significance of histologic findings, read by experienced renal pathologists, in 461 postreperfusion biopsy specimens collected from 2010 to 2017 after deceased donor renal transplant; and performed time-to-event analyses to determine the association between histology and hazard of death-censored graft failure. Recipients were followed-up with over a median time of 6.8 (range, 0.2-11.9) years. We assessed specimens using the Remuzzi score (scale of 0-12) and categorized them into low-score (≤3) and high-score (>3) groups. Kappa coefficients were calculated to assess agreement in procurement versus reperfusion biopsies. Results: High Remuzzi score kidneys came from older donors with a higher incidence of hypertension, higher final creatinine, death from cerebrovascular disease, expanded criteria donor, and a higher kidney donor risk index (KDRI) (all P < 0.001). In adjusted analyses, Remuzzi score was independently associated with death-censored graft failure (hazard ratio [HR] 1.389 for each 1 score rise in Remuzzi score, 95% confidence interval 1.181-1.633, P < 0.001). Overall histologic agreement (procurement biopsy versus reperfusion biopsy) was kappa = 0.137. Conclusion: Our findings suggest that postreperfusion biopsy is associated with long-time graft outcomes after transplant from a deceased donor. Agreement between procurement and reperfusion biopsy was found to be low. Prospective trials are necessary to optimize procurement biopsy practices.

13.
Int J Biol Macromol ; 260(Pt 1): 129253, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218297

ABSTRACT

Phycocyanin is a natural pigment protein with antioxidant, anti-tumor, and anti-inflammatory properties, but its relatively poor emulsibility limits its use in the food industry. In order to improve the emulsifying capacity of phycocyanin, a novel phycocyanin-chitosan complex was prepared, and the characteristics, digestibility, and stability of emulsion containing oil droplets stabilized by the complex were investigated. The results showed that the phycocyanin-chitosan complex had better stability and lower interfacial tension at pH 6.5 than phycocyanin, and it significantly improved the stability of emulsion and inhibited the aggregation of oil droplets. The phycocyanin-chitosan complex stabilized emulsion showed better physical stability, digestibility, and oxidation stability than the phycocyanin emulsion. The particle size of the phycocyanin-chitosan complex stabilized emulsion was very small (from 0.1 to 2 µm), and its absolute value of zeta potential was high. Overall, this study suggests that the phycocyanin-chitosan complex effectively improved the emulsifying capacity of phycocyanin.


Subject(s)
Chitosan , Emulsions/chemistry , Chitosan/chemistry , Phycocyanin , Oxidation-Reduction , Particle Size
14.
J Agric Food Chem ; 72(4): 2250-2262, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38235718

ABSTRACT

This study explores the structural characterization of six noncovalent polyphenol-starch complexes and their prebiotic activities during in vitro digestion and fermentation. Ferulic acid, caffeic acid, gallic acid, isoquercetin, astragalin, and hyperin were complexed with sweet potato starch (SPS). The polyphenols exhibited high binding capacity (>70%) with SPS. A partial release of flavonoids from the complexes was observed via in vitro digestion, while the phenolic acids remained tightly bound. Molecular dynamics (MD) simulation revealed that polyphenols altered the spatial configuration of polysaccharides and intramolecular hydrogen bonds formed. Additionally, polyphenol-SPS complexes exerted inhibitory effects on starch digestion compared to gelatinized SPS, owing to the increase in resistant starch fraction. It revealed that the different complexes stimulated the growth of Lactobacillus rhamnosus and Bifidobacterium bifidum, while inhibiting the growth of Escherichia coli. Moreover, in vitro fermentation experiments revealed that complexes were utilized by the gut microbiota, resulting in the production of short-chain fatty acids and a decrease in pH. In addition, the polyphenol-SPS complexes altered the composition of gut microbiota by promoting the growth of beneficial bacteria and decreasing pathogenic bacteria. Polyphenol-SPS complexes exhibit great potential for use as a prebiotic and exert dual beneficial effects on gut microbiota.


Subject(s)
Polyphenols , Starch , Polyphenols/chemistry , Starch/chemistry , Prebiotics/analysis , Fermentation , Fatty Acids, Volatile/metabolism , Digestion
15.
Pathogens ; 13(1)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38251358

ABSTRACT

Pathogen discovery plays a crucial role in the fields of infectious diseases, clinical microbiology, and public health. During the past four years, the global response to the COVID-19 pandemic highlighted the importance of early and accurate identification of novel pathogens for effective management and prevention of outbreaks. The post-COVID era has ushered in a new phase of infectious disease research, marked by accelerated advancements in pathogen discovery. This review encapsulates the recent innovations and paradigm shifts that have reshaped the landscape of pathogen discovery in response to the COVID-19 pandemic. Primarily, we summarize the latest technology innovations, applications, and causation proving strategies that enable rapid and accurate pathogen discovery for both acute and historical infections. We also explored the significance and the latest trends and approaches being employed for effective implementation of pathogen discovery from various clinical and environmental samples. Furthermore, we emphasize the collaborative nature of the pandemic response, which has led to the establishment of global networks for pathogen discovery.

16.
BMC Plant Biol ; 24(1): 32, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183049

ABSTRACT

BACKGROUND: As a vital type of noncoding RNAs, circular RNAs (circRNAs) play important roles in plant growth and development and stress response. However, little is known about the biological roles of circRNAs in regulating the stability of male fertility restoration for cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) cotton under high-temperature (HT) stress. RESULTS: In this study, RNA-sequencing and bioinformatics analysis were performed on pollen grains of isonuclear alloplasmic near-isogenic restorer lines NH [N(Rf1rf1)] and SH [S(Rf1rf1)] with obvious differences in fertility stability under HT stress at two environments. A total of 967 circRNAs were identified, with 250 differentially expressed under HT stress. We confirmed the back-splicing sites of eight selected circRNAs using divergent primers and Sanger sequencing. Tissue-specific expression patterns of five differentially expressed circRNAs (DECs) were also verified by RT-PCR and qRT-PCR. Functional enrichment and metabolic pathway analysis revealed that the parental genes of DECs were significantly enriched in fertility-related biological processes such as pollen tube guidance and cell wall organization, as well as the Pentose and glucuronate interconversions, Steroid biosynthesis, and N-Glycan biosynthesis pathways. Moreover, we also constructed a putative circRNA-mediated competing endogenous RNA (ceRNA) network consisting of 21 DECs, eight predicted circRNA-binding miRNAs, and their corresponding 22 mRNA targets, especially the two ceRNA modules circRNA346-miR159a-MYB33 and circRNA484-miR319e-MYB33, which might play important biological roles in regulating pollen fertility stability of cotton CMS-D2 restorer line under HT stress. CONCLUSIONS: Through systematic analysis of the abundance, characteristics and expression patterns of circRNAs, as well as the potential functions of their parent genes, our findings suggested that circRNAs and their mediated ceRNA networks acted vital biological roles in cotton pollen development, and might be also essential regulators for fertility stability of CMS-D2 restorer line under heat stress. This study will open a new door for further unlocking complex regulatory mechanisms underpinning the fertility restoration stability for CMS-D2 in cotton.


Subject(s)
Gossypium , RNA, Circular , Gossypium/genetics , RNA, Circular/genetics , Cytoplasm , Fertility/genetics , RNA , Heat-Shock Response/genetics
17.
Clin Rheumatol ; 43(1): 315-324, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37642763

ABSTRACT

INTRODUCTION: IgG4-related disease (IgG4-RD) is a multiorgan autoimmune disorder that causes irreversible injury. Deteriorated kidney functions are common but easily ignored complications associated with IgG4-RD. Yet the clinical manifestations and prognosis of this specific entity have not been fully illustrated. METHOD: Three hundred fifty patients with IgG4-RD were retrospectively enrolled and divided into 119 IgG4-RD with chronic kidney disease (IgG4-RD CKD+) and 231 IgG4-RD without CKD (IgG4-RD CKD-). Demographic clinical and laboratory characteristics and survival of two cohorts were compared using restricted cubic splines, logistic and Cox regression, and Kaplan-Meier analysis. A nomogram was generated for calculating the probability of CKD in IgG4-RD. RESULTS: The spectrum of organ involvement was different between IgG4-RD CKD+ and CKD- cohorts (p<0.001). Lung (26.89%) and retroperitoneum (18.49%) involvement were more common in the IgG4-RD CKD+ cohort. Increased serum potassium and phosphorus, reduced calcium levels, and hypocomplementemia (all p<0.05) were observed in IgG4-RD CKD+. Restricted cubic splines revealed a U-shaped plot regarding associations between serum potassium and CKD. Kaplan-Meier analysis demonstrated significantly lower long-term survival rates in IgG4-RD patients with kidney function at CKD stages 4-5. Cox regression revealed declined kidney functions (G4 HR 6.537 (95% CI: 1.134-37.675)) associated with increased all-cause mortality in IgG4-RD patients. A nomogram was constructed to predict CKD in IgG4-RD promptly with a discrimination (C-index) of 0.846. CONCLUSIONS: CKD in IgG4-RD was associated with poor outcomes and electrolyte disturbances. Patients with IgG4-RD should be aware of possible deterioration in kidney function. The nomogram proposed would help to identify the subtle possibility of CKD in IgG4-RD. Key points • IgG4-related diseases with deteriorated kidney function have specific clinical and laboratory characteristics. • It is crucial to recognize and address the negative impact of deteriorating kidney function in IgG4-related diseases to prevent further harm. • The nomogram proposed would help to identify subtle kidney involvement by evaluating the possibility of CKD in IgG4-related diseases.


Subject(s)
Autoimmune Diseases , Immunoglobulin G4-Related Disease , Renal Insufficiency, Chronic , Humans , Immunoglobulin G4-Related Disease/complications , Retrospective Studies , Prognosis , Renal Insufficiency, Chronic/complications , Phenotype , Kidney , Potassium
18.
J Immunol ; 212(4): 715-722, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38149913

ABSTRACT

Immune checkpoint molecules are promising targets for suppressing the immune response but have received little attention in immune tolerance induction in organ transplantation. In this study, we found that IFN-ß could induce the expression of HLA-E as well as PD-L1 on human renal tubular epithelial cell line HK-2 and renal tissue of the C57BL/6 mouse. The JAK/STAT2 pathway was necessary for this process. Upregulation of both HLA-E and PD-L1 was fully abrogated by the JAK1/2 inhibitor ruxolitinib. Signaling pathway molecules, including STAT1, STAT2, mTOR, Tyk2, and p38 MAPK, were involved in HLA-E and PD-L1 upregulation. IRF7 is the key transcription factor responsible for the activation of HLA-E and PD-L1 promoters. Through screening an epigenetic regulation library, we found a natural compound, bisdemethoxycurcumin, enhanced IFN-ß-induced HLA-E and PD-L1 expression in vitro and in vivo. In PBMC-derived CD56+ NK cells, we found that NKG2A but not PD1 was constitutively expressed, indicating HLA-E/NKG2A as a more potent target to induce tolerance to innate immune cells. Pretreating HK-2 cells by IFN-ß significantly attenuated the degranulation of their coincubated NK cells and protected cells from NK-mediated lysis. In conclusion, IFN-ß pretreatment could activate HLA-E and PD-L1 transcription through the JAK/STAT/IRF7 pathway and then could protect renal tubular epithelial cells from allogeneic immune attack mediated by NK cells.


Subject(s)
HLA-E Antigens , Hematopoietic Stem Cell Transplantation , Mice , Animals , Humans , B7-H1 Antigen/metabolism , Leukocytes, Mononuclear , Epigenesis, Genetic , Mice, Inbred C57BL , Histocompatibility Antigens Class I , Killer Cells, Natural , Epithelial Cells
19.
World J Clin Cases ; 11(35): 8357-8363, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38130621

ABSTRACT

BACKGROUND: Ischemic gastritis is a clinically rare disease with high mortality that infrequently reported in the medical literature and under-recognized clinically and histopathologically. Early diagnosis and treatment can only be achieved through upper gastrointestinal endoscopy after symptoms appear. CASE SUMMARY: A 68-year-old woman with a history of intracranial aneurysm developed dizziness, chest tightness and unconsciousness for 2 d. Computed tomography angiography showed diffuse coronary atherosclerosis, moderate to severe stenosis in the proximal end of the left anterior descending branch, multiple calcified plaques in the proximal end of the circumflex branch and right coronary artery, and mild to moderate stenosis. The patient also developed diffuse atherosclerosis in the splenic and mesenteric arteries, with mild lumen stenosis and atherosclerosis in the abdominal aorta and its branches. Endoscopy showed submucosal congestion and damage of the entire gastric mucosa, of which the fundus and body of the stomach were most seriously affected. The mucosa was swollen, with a deep purple color, surface erosion and dark red oozing blood. Pathological examination showed bleeding and necrosis of the gastric mucosa, with residual contours of the gastric glands, consistent with ischemic gastritis. CONCLUSION: Ischemic gastritis is a rare disease that may be difficult to diagnose as its symptoms may be similar to those of other gastrointestinal diseases. Diagnosis is usually based on endoscopic and pathological examinations, which show insufficient blood supply to the gastric mucosa leading to mucosal damage and necrosis.

20.
Biol Res ; 56(1): 58, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37941013

ABSTRACT

Anther development and pollen fertility of cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) restorer lines are susceptible to continuous high-temperature (HT) stress in summer, which seriously hinders the large-scale application of "three-line" hybrids in production. Here, integrated small RNA, transcriptome, degradome, and hormone profiling was performed to explore the roles of microRNAs (miRNAs) in regulating fertility stability in mature pollens of isonuclear alloplasmic near-isogenic restorer lines NH and SH under HT stress at two environments. A total of 211 known and 248 novel miRNAs were identified, of which 159 were differentially expressed miRNAs (DEMs). Additionally, 45 DEMs in 39 miRNA clusters (PmCs) were also identified, and most highly expressed miRNAs were significantly induced in SH under extreme HT, especially four MIR482 and six MIR6300 family miRNAs. PmC28 was located in the fine-mapped interval of the Rf1 gene and contained two DEMs, gra-miR482_L-2R + 2 and gma-miR2118a-3p_R + 1_1ss18TG. Transcriptome sequencing identified 6281 differentially expressed genes, of which heat shock protein (HSP)-related genes, such as HSP70, HSP22, HSP18.5-C, HSP18.2 and HSP17.3-B, presented significantly reduced expression levels in SH under HT stress. Through integrating multi-omics data, we constructed a comprehensive molecular network of miRNA-mRNA-gene-KEGG containing 35 pairs of miRNA/target genes involved in regulating the pollen development in response to HT, among which the mtr-miR167a_R + 1, tcc-miR167c and ghr-miR390a, tcc-miR396c_L-1 and ghr-MIR169b-p3_1ss6AG regulated the pollen fertility by influencing ARF8 responsible for the auxin signal transduction, ascorbate and aldarate metabolism, and the sugar and lipid metabolism and transport pathways, respectively. Further combination with hormone analysis revealed that HT-induced jasmonic acid signaling could activate the expression of downstream auxin synthesis-related genes and cause excessive auxin accumulation, followed by a cascade of auxin signal transduction, ultimately resulting in pollen abortion. The results provide a new understanding of how heat-responsive miRNAs regulate the stability of fertility restoration for CMS-D2 cotton under heat stress.


Subject(s)
Fertility , MicroRNAs , Temperature , Cytoplasm/genetics , Fertility/genetics , Indoleacetic Acids/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Hormones/metabolism , Pollen/genetics , Pollen/metabolism , Gene Expression Regulation, Plant , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL
...