Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.887
Filter
1.
Opt Lett ; 49(15): 4258-4261, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090908

ABSTRACT

A humidity sensor based on an optical fiber Mach-Zehnder interferometer (MZI) coated with a GO/MoS2@PVA composite membrane was investigated for non-contact sensing. MoS2 was used as a nanospacer to enhance the humidity-sensitive properties of GO, and the adhesion and stability of the composite membrane on the fiber surface could be increased by PVA. The proposed sensor shows a maximum sensitivity of 0.26 dB/%RH with average response and recovery times of 1.62 and 1.11 s, respectively. In non-contact sensing applications, the sensor can effectively recognize a maximum distance of 10 mm for the proximity of a human finger with a distance variation interval of 3 mm. The proposed sensor is expected to be applied in non-contact distance detection and localization or as a non-contact human-computer interaction panel.

2.
Asian J Androl ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39091129

ABSTRACT

The genome tagging project (GTP) plays a pivotal role in addressing a critical gap in the understanding of protein functions. Within this framework, we successfully generated a human influenza hemagglutinin-tagged sperm-specific protein 411 (HA-tagged Ssp411) mouse model. This model is instrumental in probing the expression and function of Ssp411. Our research revealed that Ssp411 is expressed in the round spermatids, elongating spermatids, elongated spermatids, and epididymal spermatozoa. The comprehensive examination of the distribution of Ssp411 in these germ cells offers new perspectives on its involvement in spermiogenesis. Nevertheless, rigorous further inquiry is imperative to elucidate the precise mechanistic underpinnings of these functions. Ssp411 is not detectable in metaphase II (MII) oocytes, zygotes, or 2-cell stage embryos, highlighting its intricate role in early embryonic development. These findings not only advance our understanding of the role of Ssp411 in reproductive physiology but also significantly contribute to the overarching goals of the GTP, fostering groundbreaking advancements in the fields of spermiogenesis and reproductive biology.

3.
Poult Sci ; 103(10): 104058, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39094492

ABSTRACT

In chicken, primordial germ cells (PGC) are crucial for the preservation and manipulation of genetic resources in poultry production. The HiS and FAcs culture systems are two important methods for the in vitro cultivation of chicken PGCs. The purpose of this study was to compare and analyze the two cultivation systems for PGCs (His and FAcs culture systems) to assess their efficacy and applicability in supporting PGC growth, maintaining PGC characteristics, and lineage transmission ability. The study found that both HiS and FAcs culture systems could maintain the basic biological characteristics of chicken PGCs, including the simultaneous expression of pluripotency and reproductive marker genes, as well as the presence of abundant glycogen granules. Subsequently, we identified 2,145 differentially expressed genes (DEG) through RNA sequencing. GO and KEGG analysis revealed a large number of DEGs enriched in the cell adhesion and calcium ion binding pathways, and the analysis found that these genes maintained a higher level in HiS-PGCs. Further personalized analysis found that the regulatory genes for maintaining PGC pluripotency were highly expressed in HiS-PGCs, while germ cell-related genes showed similar expression in both systems. Additionally, through RNA sequencing data and cell proliferation ability, it was found that PGCs in the FAcs system had a higher proliferation rate and a faster cell cycle. Finally, it was discovered that the expression of cell migration-related genes was maintained at a higher level in HiS-PGCs, but the migration efficiency of HiS-PGCs did not show a significant difference compared to FAcs-PGCs. These results suggest that both HiS and FAcs culture systems can maintain the proliferation and basic characteristics of chicken PGCs, but differences exist in cell proliferation, pluripotency regulation, and cell adhesion. These findings provide new information for optimizing PGC cultivation systems and are important for the preservation and genetic improvement of chicken PGCs.

4.
Medicine (Baltimore) ; 103(31): e39195, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093772

ABSTRACT

RATIONALE: The interstitial pneumonia (IP) linked to vedolizumab (VDZ) in patients with ulcerative colitis (UC) is rare. Prompt diagnosis and treatment can improve patient outcomes. PATIENT CONCERNS: A 39-year-old man with UC who received VDZ as sole therapy developed symptoms such as chest tightness, cough, and suffocation. DIAGNOSES: IP was confirmed through pulmonary function tests, chest computed tomography, and bronchoscopic biopsy. INTERVENTIONS: The patient was given methylprednisolone and VDZ cessation. OUTCOMES: The patient's symptoms improved and remained symptom-free after nearly 2 years. LESSONS: VDZ-induced IP should be considered when evaluating pulmonary infections in UC patients treated with VDZ.


Subject(s)
Antibodies, Monoclonal, Humanized , Colitis, Ulcerative , Gastrointestinal Agents , Lung Diseases, Interstitial , Humans , Colitis, Ulcerative/drug therapy , Male , Adult , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Lung Diseases, Interstitial/chemically induced , Lung Diseases, Interstitial/drug therapy , Gastrointestinal Agents/adverse effects , Gastrointestinal Agents/therapeutic use , Methylprednisolone/therapeutic use
5.
Medicine (Baltimore) ; 103(31): e39175, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093784

ABSTRACT

BACKGROUND: Deficiency of natural anticoagulant antithrombin was first reported as a genetic risk factor for venous thromboembolism, antithrombin III (AT III) is encoded by the serpin family C member 1 (SERPINC1) gene, consisting of 432 amino acids, including 3 disulfide bonds and 4 possible glycosylation sites. Studies have shown that hereditary AT deficiency increases the incidence of venous thromboembolism by up to 20 times. CASE PRESENTATION: The case presented a 27-year-old young man with no acquired risk factors and a sudden onset of right lower extremity venous thrombosis and pulmonary embolism. A heterozygous mutation in gene SERPINC1 of c.1154-14G>A was detected in the patient, which is a deleterious mutation resulting in reduced AT III activity and increased risk of thrombotic events. The patient received anticoagulant therapy for approximately 5 months, and the thrombus gradually dissolved and no recurrent thrombotic events occurred during follow-up. DISCUSSION: AT deficiency is a rare autosomal dominant genetic disease, they are mainly divided into 2 types according to the different effects on the structure or function of the encoded protein. The patient had a mutation in the SERPINC1 gene (c.1154-14G>A). Several cases of this type of mutation have been reported since 1991, and it is classified as AT deficiency type I. CONCLUSION: Thrombosis in patients with antithrombin deficiency is often unpredictable and can lead to fatal pulmonary embolism. Early genetic testing for hereditary thrombophilia in venous thromboembolism patients without obvious high-risk factors is critical. Long-term anticoagulation treatment is an effective treatment, for this type of type I AT III deficiency combined with pulmonary embolism patients, warfarin is an effective anticoagulant drug.


Subject(s)
Antithrombin III , Mutation , Pulmonary Embolism , Humans , Pulmonary Embolism/genetics , Male , Adult , Antithrombin III/genetics , Antithrombin III Deficiency/genetics , Antithrombin III Deficiency/complications , Anticoagulants/therapeutic use
6.
Article in English | MEDLINE | ID: mdl-39155662

ABSTRACT

The high level of accumulation of therapeutic agents in tumors is crucial for cancer treatment. Compared to the passive tumor-targeting effect, active tumor-targeting delivery systems, primarily mediated by peptides with high production costs and reduced circulation time, are highly desired. Platelet-driven technologies have opened new avenues for targeted drug delivery prevalently through a membrane coating strategy that involves intricate manufacturing procedures or the fucoidan-mediated hitchhiking method with limited platelet affinity. Here, a novel type of amphiphilic glycopolymer self-assembled micellar nanoparticle has been developed to adhere to naturally activated platelets in the blood. The simultaneous integration of fucose and sialic acid segments into glycopolymers enables closer mimicry of the structure of P-selectin glycoprotein ligand-1 (PSGL-1), thereby increasing the affinity for activated platelets. It results in the formation of glycopolymeric micelle-platelet hybrids, facilitating targeted drug delivery to tumors. The selective platelet-assisted cellular uptake of docetaxel (DTX)-loaded glycopolymeric micelles leads to lower IC50 values against 4T1 cells than that of free DTX. The directed tumor-targeting effect of activated platelets has significantly improved the tumor accumulation capacity of the glycopolymeric nanoparticles, with up to 21.0% found in tumors within the initial 0.2 h. Additionally, with acid-responsive drug release and inherent antimetastasis properties, the glycopolymeric nanoparticles ensured potent therapeutic efficacy, prolonged survival time, and reduced cardiotoxicity, presenting a new and unexplored strategy for platelet-directed drug delivery to tumors, showing promising prospects in treating localized tumors and preventing tumor metastasis.

7.
Cell Rep ; 43(8): 114558, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39088321

ABSTRACT

Chromatin priming promotes cell-type-specific gene expression, lineage differentiation, and development. The mechanism of chromatin priming has not been fully understood. Here, we report that mouse hematopoietic stem and progenitor cells (HSPCs) lacking the Baf155 subunit of the BAF (BRG1/BRM-associated factor) chromatin remodeling complex produce a significantly reduced number of mature blood cells, leading to a failure of hematopoietic regeneration upon transplantation and 5-fluorouracil (5-FU) injury. Baf155-deficient HSPCs generate particularly fewer neutrophils, B cells, and CD8+ T cells at homeostasis, supporting a more immune-suppressive tumor microenvironment and enhanced tumor growth. Single-nucleus multiomics analysis reveals that Baf155-deficient HSPCs fail to establish accessible chromatin in selected regions that are enriched for putative enhancers and binding motifs of hematopoietic lineage transcription factors. Our study provides a fundamental mechanistic understanding of the role of Baf155 in hematopoietic lineage chromatin priming and the functional consequences of Baf155 deficiency in regeneration and tumor immunity.

8.
Nat Immunol ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134750

ABSTRACT

Tumor angiogenesis and immunity show an inverse correlation in cancer progression and outcome1. Here, we report that ZBTB46, a repressive transcription factor and a widely accepted marker for classical dendritic cells (DCs)2,3, controls both tumor angiogenesis and immunity. Zbtb46 was downregulated in both DCs and endothelial cells by tumor-derived factors to facilitate robust tumor growth. Zbtb46 downregulation led to a hallmark pro-tumor microenvironment (TME), including dysfunctional vasculature and immunosuppressive conditions. Analysis of human cancer data revealed a similar association of low ZBTB46 expression with an immunosuppressive TME and a worse prognosis. In contrast, enforced Zbtb46 expression led to TME changes to restrict tumor growth. Mechanistically, Zbtb46-deficient endothelial cells were highly angiogenic, and Zbtb46-deficient bone marrow progenitors upregulated Cebpb and diverted the DC program to immunosuppressive myeloid lineage output, potentially explaining the myeloid lineage skewing phenomenon in cancer4. Conversely, enforced Zbtb46 expression normalized tumor vessels and, by suppressing Cebpb, skewed bone marrow precursors toward immunostimulatory myeloid lineage output, leading to an immune-hot TME. Remarkably, Zbtb46 mRNA treatment synergized with anti-PD1 immunotherapy to improve tumor management in preclinical models. These findings identify ZBTB46 as a critical factor for angiogenesis and for myeloid lineage skewing in cancer and suggest that maintaining its expression could have therapeutic benefits.

9.
ACS Catal ; 14(15): 11532-11544, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39114086

ABSTRACT

Glycosyl donor activation emerged as an enabling technology for anomeric functionalization, but aimed primarily at O-glycosylation. In contrast, we herein disclose mechanistically distinct electrochemical glycosyl bromide donor activations via halogen-atom transfer and anomeric C-glycosylation. The anomeric radical addition to alkenes led to C-alkyl glycoside synthesis under precious metal-free reaction conditions from readily available glycosyl bromides. The robustness of our e-XAT strategy was further mirrored by C-aryl and C-acyl glycosides assembly through nickela-electrocatalysis. Our approach provides an orthogonal strategy for glycosyl donor activation with expedient scope, hence representing a general method for direct C-glycosides assembly.

10.
Exp Parasitol ; : 108828, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39159853

ABSTRACT

In this study, a tick intracellular symbiont, Candidatus Midichloria mitochondrii, was detected in Hyalomma anatolicum from Xinjiang, China. Morphological identification and cytochrome oxidase subunit I sequence alignment were used for molecular identification of the tick species. PCR detection further revealed the presence of endosymbiont C. M. mitochondrii in the tick. Specific primers were designed for Groel and 16S rRNA genes of C. M. mitochondrii for PCR amplification and phylogenetic analysis. To further investigate the vertical transmission characteristics of C. M. mitochondrii, specific primers were designed based on the FabⅠ gene fragment to detect C. M. mitochondrii in different developmental stages and organs of the tick using qPCR. Of the 336 tick specimens collected from the field, 266 samples were identified as H. anatolicum on the basis of morphological characteristics. The gene fragment alignment results of COI confirmed that these ticks were H. anatolicum. The phylogenetic analysis showed that Groel gene of C. M. mitochondrii clustered with Midichloria strains detected in Ixodes ricinus ticks from Italy and Ixodes holocyclus ticks from Australia, with 100% sequence similarity. Furthermore, the 16S rRNA gene of C. M. mitochondrii clusters with the strains isolated from Hyalomma rufipes ticks in Italy, exhibiting the highest degree of homology. qPCR results showed that C. M. mitochondrii was present at all developmental stages of H. anatolicum, with the highest relative abundance in eggs, and lower relative abundance in nymphs and unfed males. With female tick blood feeding, the relative abundance of C. M. mitochondrii increased, and a particularly high relative abundance was detected in the ovaries of engorged female ticks. This study provides information for studying the survival adaptability of H. anatolicum, and provides data for further investigation of the mechanisms regulating tick endosymbionts in ticks, enriching the reference materials for comprehensive prevention and control of tick-borne diseases.

11.
Front Psychol ; 15: 1402065, 2024.
Article in English | MEDLINE | ID: mdl-39108426

ABSTRACT

The current study presents the development process and initial validation of the Engagement in Athletic Training Scale (EATS), which was designed to evaluate athletes' engagement in athletic training. In study 1, item generation and initial content validity of the EATS were achieved. In study 2, the factor structure of the EATS was examined using exploratory factor analysis (EFA) and exploratory structural equation modeling (ESEM). Internal consistency reliabilities of the subscales were examined (N = 460). In study 3, factor structure, discriminant validity, internal consistency reliability, and nomological validity of the EATS were further examined in an independent sample (N = 513). Meanwhile, measurement invariance of the EATS across samples (study 2 and study 3) and genders was evaluated. Overall, results from the 3 rigorous studies provided initial psychometric evidence for the 19-item EATS and suggested that the EATS could be used as a valid and reliable measure to evaluate athletes' engagement in athletic training.

12.
Oncol Res Treat ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39111295

ABSTRACT

INTRODUCTION: Patients with hepatocellular carcinoma (HCC) and inferior vena cava carcinoma tumor thrombus (IVCTT) have poor prognosis. Combination therapy involving blockade of programmed cell death protein 1 (PD-1) and tyrosine kinase inhibitors (TKIs) is an efficient treatment strategy for advanced HCC. However, surgical treatment after a combination of systemic therapy and transarterial chemoembolization (TACE) for HCC with IVCTT has not been widely reported, and the efficacy and safety of this treatment have not been studied. METHODS: In the 21 cases reported herein, the patients were treated with TACE, lenvatinib, and PD-1 blockade. The treatment responses, progression-free survival (PFS), overall survival (OS), disease control rate, and toxicities were evaluated, and the related literature was reviewed. RESULTS: The overall response and disease control rates were 66.7% and 85.7%, respectively. The median PFS time was 16.0 months, with a 1-year PFS rate of 55.60%. The median OS was not reached, with a 1-year OS rate of 66.70%. Four patients underwent hepatectomy without serious complications and survived for 29.1, 24.7, 14.2, and 13.8 months. Three patients survived tumor-free, and one patient experienced intrahepatic recurrence. Pathological complete response and major pathological responses were observed in one and three patients, respectively. Treatment-related adverse events of any grade occurred in of 8/9 patients (88.9%), and grade 3 treatment-related adverse events occurred in one patient. CONCLUSION: The combination of TACE, lenvatinib, and PD-1 is effective for HCC with IVCTT and has acceptable adverse effects.

13.
J Adv Res ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111626

ABSTRACT

INTRODUCTION: The Septin family of cytoskeletal proteins is abundant in platelets. When these proteins are functionally blocked using the compound forchlorfenuron (FCF), it hampers the normal activation processes of purified human platelets. OBJECTIVES: To evaluate the in vivo effects of FCF on physiological haemostasis and pathological thrombosis in mice and to investigate possible molecular mechanisms. METHODS: The impact of FCF on haemorrhage risk in the brain, liver, and tail of mice was investigated. Using several experimental models, thrombus development in the lung, mesenteric arteries, and postcava was studied. Functional assays were performed on mice and human platelets, both with and without FCF pretreatment. These tests included aggregation, granule release, ROS production, integrin αIIbß3 activation, cytoskeletal remodeling imaging, and clot retraction. RESULTS: Neither oral nor intravenous administration of FCF showed any apparent impairment of haemostasis in the tissues studied, but only later administration resulted in a significant reduction in thrombus formation in different mice vessel types. FCF generally inhibited agonist-induced platelet aggregation, degranulation, ROS burst, morphological expansion on the fibrinogen matrix with completely disordered dynamic organizations of the cytoskeleton for septin, tubulin and actin. In addition, FCF was found to antagonise agonist-induced dephosphorylation of VASP (Ser239) and PI3K/AKT and ERK1/2 phosphorylation. CONCLUSION: FCF showed preferences in attenuating pathological thrombus formation, apart from physiological haemostasis, with possible mechanisms to prevent cytoskeletal remodelling and signal transduction of AKT, ERK1/2 and VASP signalling pathways, suggesting that Septin may serve as a promising target for the prevention and treatment of thrombotic diseases.

14.
Bioresour Bioprocess ; 11(1): 79, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110313

ABSTRACT

The widespread use of polymers has made our lives increasingly convenient by offering a more convenient and dependable material. However, the challenge of efficiently decomposing these materials has resulted in a surge of polymer waste, posing environment and health risk. Currently, landfill and incineration treatment approaches have notable shortcomings, prompting a shift towards more eco-friendly and sustainable biodegradation approaches. Biodegradation primarily relies on microorganisms, with research focusing on both solitary bacterial strain and multi-strain communities for polymer biodegradation. Furthermore, directed evolution and rational design of enzyme have significantly contributed to the polymer biodegradation process. However, previous reviews often undervaluing the role of multi-strain communities. In this review, we assess the current state of these three significant fields of research, provide practical solutions to issues with polymer biodegradation, and outline potential future directions for the subject. Ultimately, biodegradation, whether facilitated by single bacteria, multi-strain communities, or engineered enzymes, now represents the most effective method for managing waste polymers.

15.
Biochem Biophys Res Commun ; 737: 150500, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39142135

ABSTRACT

Nicotinamide Adenine Dinucleotide Phosphate (NADPH) plays a vital role in regulating redox homeostasis and reductive biosynthesis. However, if exogenous NADPH can be transported across the plasma membrane has remained elusive. In this study, we present evidence supporting that NADPH can traverse the plasma membranes of cells through a mechanism mediated by the P2X7 receptor (P2X7R). Notably, we observed an augmentation of intracellular NADPH levels in cultured microglia upon exogenous NADPH supplementation in the presence of ATP. The P2X7R-mediated transmembrane transportation of NADPH was validated with P2X7R antagonists, including OX-ATP, BBG, and A-438079, or through P2X7 knockdown, which impeded NADPH transportation into cells. Conversely, overexpression of P2X7 resulted in an enhanced capacity for NADPH transport. Furthermore, transfection of hP2X7 demonstrated the ability to complement NADPH uptake in native HEK293 cells. Our findings provide evidence for the first time that NADPH is transported across the plasma membrane via a P2X7R-mediated pathway. Additionally, we propose an innovative avenue for modulating intracellular NADPH levels. This discovery holds promise for advancing our understanding of the role of NADPH in redox homeostasis and neuroinflammation.

16.
Small Methods ; : e2401116, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177201

ABSTRACT

The Toll-like receptor 9 (TLR9) stimulator, CpG oligodeoxynucleotide, has emerged as a potent enhancer of protein subunit vaccines. Incorporating the protein antigen directly with the CpG adjuvant presents a novel strategy to significantly reduce the required dosage of CpG compared to traditional methods that use separate components. In contrast to existing chemical conjugation methods, this study introduces an enzymatic approach for antigen-adjuvant coupling using a recombinant endonuclease DCV fused with SpyTag. This fusion protein catalyzes the covalent linkage between itself and the CpG adjuvant under mild conditions. These conjugates can be further linked with target protein antigens containing the SpyCatcher sequence, yielding stable, covalently-linked antigen-adjuvant complexes. The corresponding complex utilizing the receptor-binding domain (RBD) of SARS-CoV-2 spike protein as the model antigen, elicits high-titer, specific antibody production in mice via both subcutaneous administration and intratracheal inoculation. Notably, the tumor vaccine candidate fabricated by this method has also shown significant inhibition of cancer progression after intratracheal administration. The technique ensures precise, site-specific coupling and preserves the antigen's structural integrity due to the post-purification coupling strategy that simplifies manufacturing and aids in developing inhalable vaccines.

17.
Environ Geochem Health ; 46(10): 375, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167250

ABSTRACT

Considering both electrokinetic remediation and phytoremediation have limitations, an electrokinetic phytoremediation (EP) system was constructed to obtain efficient and environmentally friendly remediation results. This study indicates that the electric field can promote the absorption of Cd by ryegrass with little impact on soil physicochemical properties under the condition of rotary switching electrodes, and the accumulation of Cd in the aboveground and underground parts of ryegrass increased by 145.2% and 93.7%, respectively. The DC electric field combined with ryegrass under rotary switching electrode mode proved to be the optimal condition for the remediation of Cd contaminated soil with a remediation efficiency of 66.7%. Moreover, the rotary switching of the electrodes alleviated the suppression of the growth of ryegrass by the DC electric field. During the EP remediation process, the electric field promoted the transformation of the residue state of Cd to the other forms, which accelerated the desorption rate of Cd from the soil and facilitated the migration of Cd into plants. In conclusion, EP is a green and efficient remediation technology for heavy metal contaminated soil with good application prospects.


Subject(s)
Biodegradation, Environmental , Cadmium , Electrodes , Lolium , Soil Pollutants , Soil Pollutants/metabolism , Cadmium/metabolism , Cadmium/chemistry , Lolium/metabolism , Environmental Restoration and Remediation/methods , Soil/chemistry
18.
Adv Sci (Weinh) ; : e2406190, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39169820

ABSTRACT

The floor constitutes one of the largest areas within a building with which users interact most frequently in daily activities. Employing floor sensors is vital for smart-building digital twins, wherein triboelectric nanogenerators demonstrate wide application potential due to their good performance and self-powering characteristics. However, their sensing stability, reliability, and multimodality require further enhancement to meet the rapidly evolving demands. Thus, this work introduces a multimodal intelligent flooring system, implementing a 4 × 4 floor array for multimodal information detection (including position, pressure, material, user identity, and activity) and human-machine interactions. The floor unit incorporates a hybrid structure of triboelectric pressure sensors and a top-surface material sensor, facilitating linear and enhanced sensitivity across a wide pressure range (0-800 N), alongside the material recognition capability. The floor array is implemented by an advanced output-ratio method with minimalist output channels, which is insensitive to environmental factors such as humidity and temperature. In addition to multimodal sensing, energy harvesting is co-designed with the pressure sensors for scavenging waste energy to power smart-building sensor nodes. This developed flooring system enables multimodal sensing, energy harvesting, and smart-sport interactions in smart buildings, greatly expanding the floor sensing scenarios and applications.

19.
Sci Rep ; 14(1): 19065, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39154033

ABSTRACT

Beyond 5G networks provide solutions for next-generation communications, especially digital twins networks (DTNs) have gained increasing popularity for bridging physical and digital space. However, current DTNs pose some challenges, especially when applied to scenarios that require efficient and multimodal data processing. Firstly, current DTNs are limited in communication and computational efficiency, since they require to transmit large amounts of raw data collected from physical sensors, as well as to ensure model synchronization through high-frequency computation. Second, current models of DTNs are domain-specific (e.g. E-health), making it difficult to handle DT scenarios with multimodal data processing requirements. Finally, current security schemes for DTNs introduce additional overheads that impair the efficiency. Against the above challenges, we propose a large language model (LLM) empowered DTNs framework, LLM-Twin. First, based on LLM, we propose digital twin semantic networks (DTSNs), which enable more efficient communication and computation. Second, we design a mini-giant model collaboration scheme, which enables efficient deployment of LLM in DTNs and is adapted to handle multimodal data. Then, we designed a native security policy for LLM-twin without compromising efficiency. Numerical experiments and case studies demonstrate the feasibility of LLM-Twin. To our knowledge, this is the first to propose an LLM-based semantic-level DTNs.

20.
Heliyon ; 10(15): e35195, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39161823

ABSTRACT

Wind velocity is usually assumed to obey a stationary stochastic process in wind engineering, and this may cause significant bias in describing extremely severe strong wind such as typhoons and thunderstorms. To take into account the non-stationary characteristics of extreme wind, a novel evolutionary power spectral density (EPSD) model is proposed, and the spectral representation method (SRM) is introduced to simulate the whole process of strong winds. Firstly, the wavelet transform (WT) method is adopted to capture the three-dimensional time-varying properties of the low-frequency mean winds, and the associated turbulence features, including turbulent intensity, gust factor, probability density function, and power spectrum, are analyzed in depth. Secondly, the measured horizontal EPSD of strong winds are estimated. Thirdly, the performance of the proposed EPSD model is validated. Finally, the whole process of non-stationary strong winds are simulated and discussed. The results show that the proposed EPSD models are in good agreement with the measured EPSD, and the time-frequency features of the power spectrum of the simulated winds are well reproduced, which provides a powerful tool for large eddy simulation and wind engineering studies under non-stationary extreme wind climate.

SELECTION OF CITATIONS
SEARCH DETAIL