Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 12: 1391630, 2024.
Article in English | MEDLINE | ID: mdl-38725993

ABSTRACT

Introduction: Optical coherence tomography (OCT) is a pivotal imaging modality in ophthalmology for real-time, in vivo visualization of retinal structures. To enhance the capability and safety of OCT, this study focuses on the development of a micro intraocular OCT probe. The demand for minimal invasiveness and precise imaging drives the need for advanced probe designs that can access tight and sensitive areas, such as the ocular sclera. Methods: A novel OCT probe was engineered using a piezoelectric tube with quartered electrodes to drive Lissajous scanning movements at the end of a single-mode fiber. This design allows the probe to enter the eyeball through a scleral opening. Structural innovation enables the outer diameter of the endoscopic OCT probe to be adjusted from 13G (2.41 mm) to 25G (0.51 mm), accommodating various imaging field sizes and ensuring compatibility with different scleral incisions. Results: The fabricated micro intraocular OCT probe successfully performed preliminary imaging experiments on in vivo fingers. The Lissajous scanning facilitated comprehensive coverage of the target area, enhancing the imaging capabilities. Discussion: The integration of a piezoelectric tube with quartered outside electrodes into the OCT probe design proved effective for achieving precise control over scanning movements and adaptability to different surgical needs. The design characteristics and practical applications demonstrated the probe's potential in clinical settings.

2.
Micromachines (Basel) ; 14(11)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-38004855

ABSTRACT

This study presents an investigation focusing on the advancement of a robot designed for subretinal injections in the context of macular degeneration treatment. The technique of subretinal injection surgery stands as the most efficacious approach for the successful transplantation of stem cells into the retinal pigment epithelium layer. This particular procedure holds immense significance in advancing research and implementing therapeutic strategies involving retinal stem cell transplantation. The execution of artificial subretinal surgery poses considerable challenges which can be effectively addressed through the utilization of subretinal injection surgery robots. The development process involved a comprehensive modeling phase, integrating computer-aided design (CAD) and finite element analysis (FEA) techniques. These simulations facilitated iterative enhancements of the mechanical aspects pertaining to the robotic arm. Furthermore, MATLAB was employed to simulate and visualize the robot's workspace, and independent verification was conducted to ascertain the range of motion for each degree of freedom.

SELECTION OF CITATIONS
SEARCH DETAIL