Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
CNS Neurosci Ther ; 30(9): e70024, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39218798

ABSTRACT

AIMS: Type 2 diabetes mellitus (T2DM) is related to an increased risk of postoperative cognitive dysfunction (POCD), which may be caused by neuronal hyperexcitability. Astrocyte glutamate transporter 1 (GLT-1) plays a crucial role in regulating neuron excitability. We investigated if T2DM would magnify the increased neuronal excitability induced by anesthesia/surgery (A/S) and lead to POCD in young adult mice, and if so, determined whether these effects were associated with GLT-1 expression. METHODS: T2DM model was induced by high fat diet (HFD) and injecting STZ. Then, we evaluated the spatial learning and memory of T2DM mice after A/S with the novel object recognition test (NORT) and object location test (OLT). Western blotting and immunofluorescence were used to analyze the expression levels of GLT-1 and neuronal excitability. Oxidative stress reaction and neuronal apoptosis were detected with SOD2 expression, MMP level, and Tunel staining. Hippocampal functional synaptic plasticity was assessed with long-term potentiation (LTP). In the intervention study, we overexpressed hippocampal astrocyte GLT-1 in GFAP-Cre mice. Besides, AAV-Camkllα-hM4Di-mCherry was injected to inhibit neuronal hyperexcitability in CA1 region. RESULTS: Our study found T2DM but not A/S reduced GLT-1 expression in hippocampal astrocytes. Interestingly, GLT-1 deficiency alone couldn't lead to cognitive decline, but the downregulation of GLT-1 in T2DM mice obviously enhanced increased hippocampal glutamatergic neuron excitability induced by A/S. The hyperexcitability caused neuronal apoptosis and cognitive impairment. Overexpression of GLT-1 rescued postoperative cognitive dysfunction, glutamatergic neuron hyperexcitability, oxidative stress reaction, and apoptosis in hippocampus. Moreover, chemogenetic inhibition of hippocampal glutamatergic neurons reduced oxidative stress and apoptosis and alleviated postoperative cognitive dysfunction. CONCLUSIONS: These findings suggest that the adult mice with type 2 diabetes are at an increased risk of developing POCD, perhaps due to the downregulation of GLT-1 in hippocampal astrocytes, which enhances increased glutamatergic neuron excitability induced by A/S and leads to oxidative stress reaction, and neuronal apoptosis.


Subject(s)
Astrocytes , Diabetes Mellitus, Type 2 , Down-Regulation , Excitatory Amino Acid Transporter 2 , Hippocampus , Mice, Inbred C57BL , Postoperative Cognitive Complications , Animals , Excitatory Amino Acid Transporter 2/metabolism , Excitatory Amino Acid Transporter 2/biosynthesis , Excitatory Amino Acid Transporter 2/genetics , Astrocytes/metabolism , Postoperative Cognitive Complications/etiology , Postoperative Cognitive Complications/metabolism , Hippocampus/metabolism , Mice , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Male , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diet, High-Fat/adverse effects , Mice, Transgenic
2.
Mater Today Bio ; 28: 101184, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39221214

ABSTRACT

Currently, the construction of novel biomimetic reduced graphene oxide (RGO)-based nanocomposites to induce neurite sprouting and repair the injured neurons represents a promising strategy in promoting neuronal development or treatment of cerebral anoxia or ischemia. Here, we present an effective method for constructing palladium-reduced graphene oxide (Pd-RGO) nanocomposites by covalently bonding Pd onto RGO surfaces to enhance neurite sprouting of cultured neurons. As described, the Pd-RGO nanocomposites exhibit the required physicochemical features for better biocompatibility without impacting cell viability. Primary neurons cultured on Pd-RGO nanocomposites had significantly increased number and length of neuronal processes, including both axons and dendrites, compared with the control. Western blotting showed that Pd-RGO nanocomposites improved the expression levels of growth associate protein-43 (GAP-43), as well as ß-III tubulin, Tau-1, microtubule-associated protein-2 (MAP2), four proteins that are involved in regulating neurite sprouting and outgrowth. Importantly, Pd-RGO significantly promoted neurite length and complexity under oxygen-glucose deprivation/re-oxygenation (OGD/R) conditions, an in vitro cellular model of ischemic brain damage, that closely relates to neuronal GAP-43 expression. Furthermore, using the middle cerebral artery occlusion (MCAO) model in rats, we found Pd-RGO effectively reduced the infarct area, decreased neuronal apoptosis in the brain, and improved the rats' behavioral outcomes after MCAO. Together, these results indicate the great potential of Pd-RGO nanocomposites as a novel excellent biomimetic material for neural interfacing that shed light on its applications in brain injuries.

3.
Curr Med Sci ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196518

ABSTRACT

OBJECTIVE: Qiliqiangxin (QLQX) capsule- a traditional Chinese medicine used for treating heart failure (HF), can modulate inflammatory cytokines in rats with myocardial infarction. However, its immune-regulating effect on dilated cardiomyopathy (DCM) remains unknown. The aim of this study was to investigate whether QLQX has a unique regulatory role in the imbalance of pro- and anti-inflammatory cytokines in patients with DCM. METHODS: The QLQX-DCM is a randomized- double-blind trial conducted at 24 tertiary hospitals in China. A total of 345 patients with newly diagnosed virus-induced DCM were randomly assigned to receive QLQX capsules or placebo while receiving optimal medical therapy for HF. The primary endpoints were changes in plasma inflammatory cytokines and improvements in left ventricular ejection fraction (LVEF) and left ventricular end-diastolic diameter (LVEDd) over the 12-month treatment. RESULTS: At the 12-month follow-up, the levels of IFN-γ, IL-17, TNF-α, and IL-4 decreased significantly, while the level of IL-10 increased in both groups compared with baselines (all P<0.0001). Furthermore-these changes, coupled with improvements in LVEF, NT-proBNP and New York Heart Association (NYHA) functional classification, excluding the LVEDd in the QLQX group, were greater than those in the placebo group (all P<0.001). Additionally, compared with placebo, QLQX treatment also reduced all-cause mortality and rehospitalization rates by 2.17% and 2.28%, respectively, but the difference was not statistically significant. CONCLUSION: QLQX has the potential to alleviate the imbalance of inflammatory cytokines in patients with DCM, potentially leading to further improvements in cardiac function when combined with anti-HF standard medications.

4.
Clin Case Rep ; 12(9): e9385, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39206064

ABSTRACT

Key Clinical Message: Osteochondroma on the ventral scapula is clinically rare and can incur pseudo-winged scapula and snapping syndrome if not treated. In this regard, surgical excision is suggested, if possible, with a minimally invasive approach to accelerate physical recovery. Abstract: Osteochondroma is a common benign bone tumor, characterized by a cartilage-capped osseous protuberance with cortical and medullary continuity with the underlying native bone. Osteochondroma is commonly found in the long bones, such as the proximal humerus, distal femur, and proximal tibia, but rarely seen in flat bones. We report a case of pedunculated osteochondroma on the ventral surface of left scapula in a young adult woman. She presented with a slight pseudo-winged scapula, occasional pain, and snapping sound with motion of the left shoulder. The tumor was surgically resected using a minimally invasive approach, and an excellent outcome was obtained.

5.
Biochem Biophys Res Commun ; 730: 150374, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-38986219

ABSTRACT

RATIONALE: Although diabetic peripheral neuropathic pain (DPNP) and depression have been recognized for many years, their co-morbidity relationship and effective treatment choices remain uncertain. OBJECTIVES: To evaluate the antidepressant effect of carvedilol on streptozotocin-induced DPNP mice, and the relationship with gut microbiota. METHODS: The hyperalgesia and depressive behaviors of mice with comorbidity of DPNP and depression were confirmed by pain threshold of the mechanical sensitivity test (MST), immobility time of the tail suspension test (TST) and the forced swimming test (FST). The anti-depressive effect and fecal gut microbiota composition were studied in DPNP mice treated with carvedilol (10 mg/kg/day), and the relationships between them were analyzed by Spearman's correlation. RESULTS: Depression was successfully induced in DPNP mice. Carvedilol can reverse the decreased mechanical pain threshold and relieve the depressive behaviors of DPNP mice, while increasing the abundance of Prevotella, Ruminococcus, Helicobacter and Desulfovibrio, and decreasing the abundance of Akkermansia and Allobaculum. CONCLUSIONS: Carvedilol can alleviate the mechanical hyperalgesia and alter gut microbiota to ameliorate the depression-like behaviors which induced by DPNP.


Subject(s)
Antidepressive Agents , Carvedilol , Depression , Diabetic Neuropathies , Gastrointestinal Microbiome , Streptozocin , Animals , Gastrointestinal Microbiome/drug effects , Carvedilol/pharmacology , Carvedilol/therapeutic use , Male , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Mice , Depression/drug therapy , Depression/microbiology , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/microbiology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/psychology , Diabetes Mellitus, Experimental/microbiology , Hyperalgesia/drug therapy , Mice, Inbred C57BL
6.
Environ Sci Technol ; 58(33): 14698-14708, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39083662

ABSTRACT

Understanding the environmental fate of organic carbon associated with iron (OC-Fe) is critically important for investigating OC preservation in aquatic systems. Here, we first investigate 13C and 14C isotopes of OC-Fe within grain size-fractionated sediments retrieved from the East China Sea and estimate their sources and reactivities of OC-Fe through isotope-mixing models and thermal pyrolysis approaches in order to reveal the fate of OC-Fe on continental shelves influenced by hydrodynamic processes. Our results show that the OC-Fe proportion in total OC (fOC-Fe) in the sortable silt fractions (20-63 µm) is the highest among three grain size fractions, likely suggesting that hydrodynamics may enhance the iron protection on OC. In addition, Δ14COC-Fe values fall within the range of from -358.73 to -64.03‰, and both Δ14COC-Fe values and ancient OC-Fe% exhibit strong positive linear relationships with fOC-Fe. This emphasized that the hydrodynamic processes may cause the ancient OC to be tightly associated with Fe, accompanying OC-Fe aging. Our findings shed new light on the preservation of OC-Fe in marginal seas to advance the recognition of carbon "rusty sinks" in seafloor sediments.


Subject(s)
Carbon , Geologic Sediments , Hydrodynamics , Iron , Iron/chemistry , Carbon/chemistry , Geologic Sediments/chemistry , China , Oceans and Seas
7.
Cell Death Dis ; 15(5): 329, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740757

ABSTRACT

Iron is crucial for cell DNA synthesis and repair, but an excess of free iron can lead to oxidative stress and subsequent cell death. Although several studies suggest that cancer cells display characteristics of 'Iron addiction', an ongoing debate surrounds the question of whether iron can influence the malignant properties of ovarian cancer. In the current study, we initially found iron levels increase during spheroid formation. Furthermore, iron supplementation can promote cancer cell survival, cancer spheroid growth, and migration; vice versa, iron chelators inhibit this process. Notably, iron reduces the sensitivity of ovarian cancer cells to platinum as well. Mechanistically, iron downregulates DNA homologous recombination (HR) inhibitor polymerase theta (POLQ) and relieves its antagonism against the HR repair enzyme RAD51, thereby promoting DNA damage repair to resist chemotherapy-induced damage. Additionally, iron tightly regulated by ferritin (FTH1/FTL) which is indispensable for iron-triggered DNA repair. Finally, we discovered that iron chelators combined with platinum exhibit a synergistic inhibitory effect on ovarian cancer in vitro and in vivo. Our findings affirm the pro-cancer role of iron in ovarian cancer and reveal that iron advances platinum resistance by promoting DNA damage repair through FTH1/FTL/POLQ/RAD51 pathway. Our findings highlight the significance of iron depletion therapy, revealing a promising avenue for advancing ovarian cancer treatment.


Subject(s)
DNA Repair , Drug Resistance, Neoplasm , Iron , Ovarian Neoplasms , Rad51 Recombinase , Animals , Female , Humans , Mice , Cell Line, Tumor , DNA Repair/drug effects , Drug Resistance, Neoplasm/drug effects , Ferritins/drug effects , Ferritins/metabolism , Iron/metabolism , Mice, Nude , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Oxidoreductases/metabolism , Platinum/pharmacology , Platinum/therapeutic use , Rad51 Recombinase/metabolism , DNA Polymerase theta/drug effects , DNA Polymerase theta/metabolism , Apoferritins/drug effects , Apoferritins/metabolism
8.
Cell Mol Biol Lett ; 29(1): 79, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783169

ABSTRACT

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common complication after anesthesia/surgery, especially among elderly patients, and poses a significant threat to their postoperative quality of life and overall well-being. While it is widely accepted that elderly patients may experience POCD following anesthesia/surgery, the exact mechanism behind this phenomenon remains unclear. Several studies have indicated that the interaction between silent mating type information regulation 2 homologue 1 (SIRT1) and brain-derived neurotrophic factor (BDNF) is crucial in controlling cognitive function and is strongly linked to neurodegenerative disorders. Hence, this research aims to explore how SIRT1/BDNF impacts cognitive decline caused by anesthesia/surgery in aged mice. METHODS: Open field test (OFT) was used to determine whether anesthesia/surgery affected the motor ability of mice, while the postoperative cognitive function of 18 months old mice was evaluated with Novel object recognition test (NORT), Object location test (OLT) and Fear condition test (FC). The expressions of SIRT1 and other molecules were analyzed by western blot and immunofluorescence staining. The hippocampal synaptic plasticity was detected by Golgi staining and Long-term potentiation (LTP). The effects of SIRT1 and BDNF overexpression as well as chemogenetic activation of glutamatergic neurons in hippocampal CA1 region of 18 months old vesicular glutamate transporter 1 (VGLUT1) mice on POCD were further investigated. RESULTS: The research results revealed that older mice exhibited cognitive impairment following intramedullary fixation of tibial fracture. Additionally, a notable decrease in the expression of SIRT1/BDNF and neuronal excitability in hippocampal CA1 glutamatergic neurons was observed. By increasing levels of SIRT1/BDNF or enhancing glutamatergic neuron excitability in the CA1 region, it was possible to effectively mitigate synaptic plasticity impairment and ameliorate postoperative cognitive dysfunction. CONCLUSIONS: The decline in SIRT1/BDNF levels leading to changes in synaptic plasticity and neuronal excitability in older mice could be a significant factor contributing to cognitive impairment after anesthesia/surgery.


Subject(s)
Brain-Derived Neurotrophic Factor , CA1 Region, Hippocampal , Down-Regulation , Neuronal Plasticity , Neurons , Postoperative Cognitive Complications , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Mice , Neurons/metabolism , Postoperative Cognitive Complications/metabolism , Postoperative Cognitive Complications/etiology , CA1 Region, Hippocampal/metabolism , Male , Mice, Inbred C57BL , Long-Term Potentiation , Glutamic Acid/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology
9.
Sci Total Environ ; 929: 172622, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38642761

ABSTRACT

The phyllosphere is a vital yet often neglected habitat hosting diverse microorganisms with various functions. However, studies regarding how the composition and functions of the phyllosphere microbiome respond to agricultural practices, like nitrogen fertilization, are limited. This study investigated the effects of long-term nitrogen fertilization with different levels (CK, N90, N210, N330) on the functional genes and pathogens of the rice phyllosphere microbiome. Results showed that the relative abundance of many microbial functional genes in the rice phyllosphere was significantly affected by nitrogen fertilization, especially those involved in C fixation and denitrification genes. Different nitrogen fertilization levels have greater effects on fungal communities than bacteria communities in the rice phyllosphere, and network analysis and structural equation models further elucidate that fungal communities not only changed bacterial-fungal inter-kingdom interactions in the phyllosphere but also contributed to the variation of biogeochemical cycle potential. Besides, the moderate nitrogen fertilization level (N210) was associated with an enrichment of beneficial microbes in the phyllosphere, while also resulting in the lowest abundance of pathogenic fungi (1.14 %). In contrast, the highest abundance of pathogenic fungi (1.64 %) was observed in the highest nitrogen fertilization level (N330). This enrichment of pathogen due to high nitrogen level was also regulated by the fungal communities, as revealed through SEM analysis. Together, we demonstrated that the phyllosphere fungal communities were more sensitive to the nitrogen fertilization levels and played a crucial role in influencing phyllosphere functional profiles including element cycling potential and pathogen abundance. This study expands our knowledge regarding the role of phyllosphere fungal communities in modulating the element cycling and plant health in sustainable agriculture.


Subject(s)
Fertilizers , Fungi , Nitrogen , Oryza , Oryza/microbiology , Fungi/physiology , Mycobiome , Agriculture , Microbiota , Plant Leaves/microbiology
10.
Heliyon ; 10(6): e27590, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38509940

ABSTRACT

Based on the usual Wigner-Weyl transformation theory we find that the Wigner hyperbolic rotation in phase space will map onto fractional squeezing operator in Hilbert space. The merit of Weyl ordering and the coherent state representation of Fresnel operator is used in our derivation.

11.
CNS Neurosci Ther ; 30(2): e14604, 2024 02.
Article in English | MEDLINE | ID: mdl-38332635

ABSTRACT

AIM: Repeated exposure to ketamine during the neonatal period in mice leads to cognitive impairments in adulthood. These impairments are likely caused by synaptic plasticity and excitability damage. We investigated the precise role of brain-derived neurotrophic factor (BDNF) in the cognitive impairments induced by repeated ketamine exposure during the neonatal period. METHODS: We evaluated the cognitive function of mice using the Morris water maze test and novel object recognition test. Western blotting and immunofluorescence were used to detect the protein levels of BDNF. Western blotting, Golgi-Cox staining, transmission electron microscopy, and long-term potentiation (LTP) recordings were used to assess synaptic plasticity in the hippocampus. The excitability of neurons was evaluated using c-Fos. In the intervention experiment, pAdeno-CaMKIIα-BDNF-mNeuronGreen was injected into the hippocampal CA1 region of mice to increase the level of BDNF. The excitability of neurons was enhanced using a chemogenetic approach. RESULTS: Our findings suggest that cognitive impairments in mice repeatedly exposed to ketamine during the neonatal period are associated with downregulated BDNF protein level, synaptic plasticity damage, and decreased excitability of glutamatergic neurons in the hippocampal CA1 region. Furthermore, the specific upregulation of BDNF in glutamatergic neurons of the hippocampal CA1 region and the enhancement of excitability can improve impaired synaptic plasticity and cognitive function in mice. CONCLUSION: BDNF downregulation mediates synaptic plasticity and excitability damage, leading to cognitive impairments in adulthood following repeated ketamine exposure during the neonatal period.


Subject(s)
Cognitive Dysfunction , Ketamine , Mice , Animals , Brain-Derived Neurotrophic Factor/metabolism , Ketamine/toxicity , Down-Regulation , Neuronal Plasticity/physiology , Hippocampus/metabolism , Neurons/metabolism , Cognitive Dysfunction/metabolism
12.
Mol Neurobiol ; 61(8): 5459-5480, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38200350

ABSTRACT

The mechanism of ketamine-induced neurotoxicity development remains elusive. Mitochondrial fusion/fission dynamics play a critical role in regulating neurogenesis. Therefore, this study was aimed to evaluate whether mitochondrial dynamics were involved in ketamine-induced impairment of neurogenesis in neonatal rats and long-term synaptic plasticity dysfunction. In the in vivo study, postnatal day 7 (PND-7) rats received intraperitoneal (i.p.) injection of 40 mg/kg ketamine for four consecutive times at 1 h intervals. The present findings revealed that ketamine induced mitochondrial fusion dysfunction in hippocampal neural stem cells (NSCs) by downregulating Mitofusin 2 (Mfn2) expression. In the in vitro study, ketamine treatment at 100 µM for 6 h significantly decreased the Mfn2 expression, and increased ROS generation, decreased mitochondrial membrane potential and ATP levels in cultured hippocampal NSCs. For the interventional study, lentivirus (LV) overexpressing Mfn2 (LV-Mfn2) or control LV vehicle was microinjected into the hippocampal dentate gyrus (DG) 4 days before ketamine administration. Targeted Mfn2 overexpression in the DG region could restore mitochondrial fusion in NSCs and reverse the inhibitory effect of ketamine on NSC proliferation and its faciliatory effect on neuronal differentiation. In addition, synaptic plasticity was evaluated by transmission electron microscopy, Golgi-Cox staining and long-term potentiation (LTP) recordings at 24 h after the end of the behavioral test. Preconditioning with LV-Mfn2 improved long-term cognitive dysfunction after repeated neonatal ketamine exposure by reversing the inhibitory effect of ketamine on synaptic plasticity in the hippocampal DG. The present findings demonstrated that Mfn2-mediated mitochondrial fusion dysfunction plays a critical role in the impairment of long-term neurocognitive function and synaptic plasticity caused by repeated neonatal ketamine exposure by interfering with hippocampal neurogenesis. Thus, Mfn2 might be a novel therapeutic target for the prevention of the developmental neurotoxicity of ketamine.


Subject(s)
Animals, Newborn , Cognition , GTP Phosphohydrolases , Hippocampus , Ketamine , Mitochondrial Dynamics , Neural Stem Cells , Neurogenesis , Rats, Sprague-Dawley , Animals , Male , Rats , Anesthesia/adverse effects , Cognition/drug effects , GTP Phosphohydrolases/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Ketamine/administration & dosage , Ketamine/adverse effects , Ketamine/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Dynamics/drug effects , Mitochondrial Proteins , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neurogenesis/drug effects , Neuronal Plasticity/drug effects
13.
ACS Appl Mater Interfaces ; 16(4): 4975-4983, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38233025

ABSTRACT

An important goal in carbon nanotube optoelectronics is to achieve a high-performance near-infrared light source. But there are still many challenges such as the purity of single-walled carbon nanotube (SWCNT) chirality, nonradiative defects, thin-film quality, and device structure design. Here, we realize infrared light-emitting diodes (LEDs) based on chirality-sorted (10, 5) SWCNT network films, which operate at a low bias voltage and emit at a telecom O band of 1290 nm. Asymmetric palladium (Pd) and hafnium (Hf) contacts are used as electrodes for hole and electron injection, respectively. However, the large Schottky barrier at the interface of the SWCNTs and the Hf electrode, primarily resulting from the polymer wrapped on the nanotube surface during the sorting process, leads to inefficient electron injection and thus a low electroluminescence efficiency. We find that the efficiency of electron injection can be improved by the local doping of the nanotubes with dielectric layers of YOX-HfO2, which reduces the Schottky barrier at the SWCNT/Hf interface. Accordingly, the (10, 5) SWCNT film-based LED achieves an external quantum efficiency of larger than 0.05% without any optical coupling structure. With further improvement, we expect that such an infrared light source will have great application potential in the carbon nanotube monolithic optoelectronic integrated system and on-chip optical interconnection, especially in the field of short-distance optical fiber communications and data center.

14.
Int Immunopharmacol ; 127: 111304, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38091826

ABSTRACT

Acute viral myocarditis can progress to chronic myocarditis leading to dilated cardiomyopathy (DCM). Persistent CD4+ T-cell-mediated autoimmunity triggered by infection plays a critical role in this progression. Increasing evidence demonstrates that effector memory CD4+T (CD4+TEM) cells, a subset of memory CD4+ T cells, are crucial pathogenic mediators of many autoimmune diseases. However, the role of CD4+TEM cells during the progression from acute viral myocarditis to DCM remains unknown. In this study, we observed an increase in CD4+TEM cells both in the periphery and the heart, and memory CD4+ T cells were the predominant sources of IL-17A and IFN-γ among inflamed heart-infiltrating CD4+ T cells during the progression from acute myocarditis to chronic myocarditis and DCM in CVB3-induced BALB/c mice. Moreover, splenic CD4+TEM cells sorted from DCM mice induced by CVB3 were found to respond to cardiac self-antigens ex vivo. Additionally, adoptive transfer experiments substantiated their pathogenic impact, inducing sustained myocardial inflammation, tissue fibrosis, cardiac injury, and impairment of cardiac systolic function in vivo. Our findings illustrate that long-lived CD4+TEM cells are important contributors to the progression from acute viral myocarditis into DCM.


Subject(s)
Autoimmune Diseases , Cardiomyopathy, Dilated , Coxsackievirus Infections , Myocarditis , Mice , Animals , Cardiomyopathy, Dilated/pathology , T-Lymphocytes/pathology , Mice, Inbred BALB C , Myocardium/pathology , Coxsackievirus Infections/complications , Enterovirus B, Human
15.
CNS Neurosci Ther ; 30(2): e14410, 2024 02.
Article in English | MEDLINE | ID: mdl-37592394

ABSTRACT

AIMS: Cognitive dysfunction associated with chronic pain may be caused by impaired synaptic plasticity. Considering the impact of silent information regulator 1 (SIRT1) on synaptic plasticity, we explored the exact role of SIRT1 in cognitive impairment caused by chronic pain. METHODS: We evaluated the memory ability of mice with the fear conditioning test (FCT) after spared nerve injury (SNI) model. Western blotting and immunofluorescence were used to analyze the expression levels of SIRT1. Hippocampal synaptic plasticity was detected with Golgi staining, transmission electron microscopy, and long-term potentiation (LTP). In the intervention study, AAV9-CaMKIIα-Cre-EGFP was injected to SIRT1flox/flox mice to knockdown the expression levels of SIRT1. Besides, SNI mice were injected with AAV2/9-CaMKIIα-SIRT1-3*Flag-GFP or SRT1720 to increase the expression levels or enzymatic activity of SIRT1. RESULTS: Our current results indicated that cognitive function in SNI mice was impaired, SIRT1 expression in glutaminergic neurons in the hippocampal CA1 area was downregulated, and synaptic plasticity was altered. Selective knockdown of SIRT1 in hippocampus damaged synaptic plasticity and cognitive function of healthy mice. In addition, the impaired synaptic plasticity and cognitive dysfunction of SNI mice could be improved by the upregulation of SIRT1 expression or enzyme activity. CONCLUSIONS: Reduced SIRT1 expression in hippocampus of SNI mice may induce cognitive impairment associated with chronic pain by mediating the impaired synaptic plasticity.


Subject(s)
Chronic Pain , Cognitive Dysfunction , Animals , Mice , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Down-Regulation , Hippocampus/metabolism , Neuronal Plasticity/physiology , Sirtuin 1/genetics , Sirtuin 1/metabolism
16.
Environ Sci Technol ; 57(50): 21358-21369, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38078407

ABSTRACT

Though the evidence for antibiotic resistance spread via plant microbiome is mounting, studies regarding antibiotic resistome in the plant seed, a reproductive organ and important food resource, are still in their infancy. This study investigated the effects of long-term organic fertilization on seed bacterial endophytes, resistome, and their intergenerational transfer in the microcosm. A total of 99 antibiotic resistance genes (ARGs) and 26 mobile genetic elements (MGEs) were detected by high-throughput quantitative PCR. The amount of organic fertilizer applied was positively correlated to the number and relative abundance of seed-associated ARGs and MGEs. Moreover, the transmission of ARGs from the rhizosphere to the seed was mainly mediated by the shared bacteria and MGEs. Notably, the rhizosphere of progeny seedlings derived from seeds harboring abundant ARGs was found to have a higher relative abundance of ARGs. Using structural equation models, we further revealed that seed resistome and MGEs were key factors affecting the ARGs in the progeny rhizosphere, implying the seed was a potential resistome reservoir for rhizosphere soil. This study highlights the overlooked role of seed endophytes in the dissemination of resistome in the soil-plant continuum, and more attention should be paid to plant seeds as vectors of ARGs within the "One-Health" framework.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , Soil/chemistry , Drug Resistance, Microbial/genetics , Bacteria/genetics , Seeds/chemistry , Soil Microbiology , Manure
17.
Front Hum Neurosci ; 17: 1204632, 2023.
Article in English | MEDLINE | ID: mdl-37954938

ABSTRACT

Objective: To investigate brain structural and functional characteristics of three brain functional networks including default mode network (DMN), central executive network (CEN), and salience network (SN) in persistent negative symptoms (PNS) patients. Methods: We performed an activation likelihood estimation (ALE) meta-analysis of functional connectivity (FC) studies and voxel-based morphometry (VBM) studies to detect specific structural and functional alterations of brain networks between PNS patients and healthy controls. Results: Seventeen VBM studies and twenty FC studies were included. In the DMN, PNS patients showed decreased gray matter in the bilateral medial frontal gyrus and left anterior cingulate gyrus and a significant reduction of FC in the right precuneus. Also, PNS patients had a decrease of gray matter in the left inferior parietal lobules and medial frontal gyrus, and a significant reduction of FC in the bilateral superior frontal gyrus in the CEN. In comparison with healthy controls, PNS patients exhibited reduced gray matter in the bilateral insula, anterior cingulate gyrus, left precentral gyrus and right claustrum and lower FC in these brain areas in the SN, including the left insula, claustrum, inferior frontal gyrus and extra-nuclear. Conclusion: This meta-analysis reveals brain structural and functional imaging alterations in the three networks and the interaction among these networks in PNS patients, which provides neuroscientific evidence for more personalized treatment.Systematic Review RegistrationThe PROSPERO (https://www.crd.york.ac.uk/PROSPERO/, registration number: CRD42022335962).

18.
Bioeng Transl Med ; 8(6): e10590, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38023701

ABSTRACT

The repetitive inflation-deflation of a blood pressure cuff on a limb is known as remote limb ischemic postconditioning (RIPostC). It prevents brain damage induced by acute ischemia stroke (AIS). Pyroptosis, executed by the pore-forming protein gasdermin D (GSDMD), is a type of regulated cell death triggered by proinflammatory signals. It contributes to the pathogenesis of ischemic brain injury. However, the effects of RIPostC on pyroptosis following AIS remain largely unknown. In our study, linear correlation analysis confirmed that serum GSDMD levels in AIS patients upon admission were positively correlated with NIHSS scores. RIPostC treatment significantly reduced GSDMD level compared with patients without RIPostC at 3 days post-treatment. Besides, middle cerebral artery occlusion (MCAO) surgery was performed on C57BL/6 male mice and RIPostC was induced immediately after MCAO. We found that RIPostC suppressed the activation of NLRP3 inflammasome to reduce the maturation of GSDMD, leading to decreased pyroptosis in microglia after AIS. Hepatocyte growth factor (HGF) was identified using the high throughput screening. Importantly, HGF siRNA, exogenous HGF, and ISG15 siRNA were used to reveal that HGF/ISG15 is a possible mechanism of RIPostC regulation in vivo and in vitro.

19.
Plants (Basel) ; 12(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37653875

ABSTRACT

Iron is an essential element for most organisms. Both plants and microorganisms have developed different mechanisms for iron uptake, transport and storage. In the symbiosis systems, such as rhizobia-legume symbiosis and arbuscular mycorrhizal (AM) symbiosis, maintaining iron homeostasis to meet the requirements for the interaction between the host plants and the symbiotic microbes is a new challenge. This intriguing topic has drawn the attention of many botanists and microbiologists, and many discoveries have been achieved so far. In this review, we discuss the current progress on iron uptake and transport in the nodules and iron homeostasis in rhizobia-legume symbiosis. The discoveries with regard to iron uptake in AM fungi, iron uptake regulation in AM plants and interactions between iron and other nutrient elements during AM symbiosis are also summarized. At the end of this review, we propose prospects for future studies in this fascinating research area.

20.
Psychiatry Res ; 328: 115463, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37717547

ABSTRACT

OBJECTIVES: We aimed to explore the interconnection between the weight-gain in schizophrenia patients with atypical antipsychotic treatment and gut microbiome. METHODS: This study employed a cross-sectional design, encompassing a total of 88 schizophrenia patients with long-term atypical antipsychotic treatment. The 16S rRNA gene sequencing was used to identify gut microbiome contents. RESULTS: No significant differences in alpha diversity between normal-weight and overweight schizophrenia treated with atypical antipsychotics. The beta diversity analysis showed that overweight patients clustered tightly while normal-weight patients clustered widely. For taxonomic composition, overweight patients had a lower relative abundance in Porphyromonadaceae at family level and Butyrivibrio at genus level, but higher relative abundance in Ruminococcus2 and Clostridium_XIVa at genus level than normal-weight patients. Function prediction revelated that four pathways (including Cell cycle, Non-homologous end-joining, Vibrio cholerae infection and Meiosis-yeast) were significantly different between groups. Correlation analysis indicated that Klebsiella, Butyrivibrio, Unassigned, Methanosphaera, Holdemania, Anaerotruncus were negatively, while Veillonella was positively correlated with BMI in patients. CONCLUSION: Our findings offer evidence that perturbations in the gut microbiome composition, encompassing taxa such as Porphyromonadaceae, Butyrivibrio, Ruminococcus2, and Clostridium_XIVa, in conjunction with distinct functional pathways including Cell cycle, Non-homologous end-joining, Vibrio cholerae infection, and Meiosis-yeast, might contribute to the weight-gain in schizophrenia treated with atypical antipsychotics.

SELECTION OF CITATIONS
SEARCH DETAIL