Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 523
Filter
1.
Front Nutr ; 11: 1399251, 2024.
Article in English | MEDLINE | ID: mdl-38957868

ABSTRACT

Background: There is little research on the relationship between flavonol consumption and chronic kidney disease (CKD). This study aimed to examine the link between flavonol consumption and the risk of CKD among US adults, using data from the 2007-2008, 2009-2010 and 2017-2018 National Health and Nutrition Examination Survey (NHANES). Methods: A cross-sectional approach was used, drawing on data from three NHANES cycles. The flavonol consumption of the participants in this study was assessed using a 48 h dietary recall interview. CKD was diagnosed based on an estimated glomerular filtration rate below 60 mL/min/1.73 m2 or a urine albumin-to-creatinine ratio of 30 mg/g or higher. Results: Compared to the lowest quartile of flavonol intake (Q1), the odds ratios for CKD were 0.598 (95% CI: 0.349, 1.023) for the second quartile (Q2), 0.679 (95% CI: 0.404, 1.142) for the third quartile (Q3), and 0.628 (95% CI: 0.395, 0.998) for the fourth quartile (Q4), with a p value for trend significance of 0.190. In addition, there was a significant trend in CKD risk with isorhamnetin intake, with the odds ratios for CKD decreasing to 0.860 (95% CI: 0.546, 1.354) in the second quartile, 0.778 (95% CI: 0.515, 1.177) in the third quartile, and 0.637 (95% CI: 0.515, 1.177) in the fourth quartile (p for trend = 0.013). Conclusion: Our analysis of the NHANES data spanning 2007-2008, 2009-2010, and 2017-2018 suggests that high consumption of dietary flavonol, especially isorhamnetin, might be linked to a lower risk of CKD in US adults. These findings offer new avenues for exploring strategies for managing CKD.

2.
Int J Nanomedicine ; 19: 6519-6546, 2024.
Article in English | MEDLINE | ID: mdl-38957181

ABSTRACT

Background: Salidroside (SAL) is the most effective component of Rhodiola rosea, a traditional Chinese medicine. Cryptotanshinone (CT) is the main fat-soluble extract of Salvia miltiorrhiza, exhibiting considerable potential for application in osteogenesis. Herein, a polycaprolactone/gelatin nanofiber membrane loaded with CT and SAL (PSGC membrane) was successfully fabricated via coaxial electrospinning and characterized. Methods and Results: This membrane capable of sustained and controlled drug release was employed in this study. Co-culturing the membrane with bone marrow mesenchymal stem cells and human umbilical vein endothelial cells revealed excellent biocompatibility and demonstrated osteogenic and angiogenic capabilities. Furthermore, drug release from the PSGC membrane activated the Wnt/ß-catenin signaling pathway and promoted osteogenic differentiation and vascularization. Evaluation of the membrane's vascularization and osteogenic capacities involved transplantation onto a rat's subcutaneous area and assessing rat cranium defects for bone regeneration, respectively. Microcomputed tomography, histological tests, immunohistochemistry, and immunofluorescence staining confirmed the membrane's outstanding angiogenic capacity two weeks post-operation, with a higher incidence of osteogenesis observed in rat cranial defects eight weeks post-surgery. Conclusion: Overall, the SAL- and CT-loaded coaxial electrospun nanofiber membrane synergistically enhances bone repair and regeneration.


Subject(s)
Gelatin , Glucosides , Human Umbilical Vein Endothelial Cells , Mesenchymal Stem Cells , Nanofibers , Neovascularization, Physiologic , Osteogenesis , Phenanthrenes , Phenols , Polyesters , Rats, Sprague-Dawley , Osteogenesis/drug effects , Animals , Nanofibers/chemistry , Gelatin/chemistry , Polyesters/chemistry , Glucosides/chemistry , Glucosides/pharmacology , Phenols/chemistry , Phenols/pharmacology , Phenanthrenes/chemistry , Phenanthrenes/pharmacology , Phenanthrenes/pharmacokinetics , Phenanthrenes/administration & dosage , Humans , Neovascularization, Physiologic/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Rats , Male , Bone Regeneration/drug effects , Membranes, Artificial , Coculture Techniques , Drug Liberation , Cell Differentiation/drug effects
3.
Chem Soc Rev ; 53(13): 6917-6959, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38836324

ABSTRACT

Electrochemical energy conversion and storage are playing an increasingly important role in shaping the sustainable future. Differential electrochemical mass spectrometry (DEMS) offers an operando and cost-effective tool to monitor the evolution of gaseous/volatile intermediates and products during these processes. It can deliver potential-, time-, mass- and space-resolved signals which facilitate the understanding of reaction kinetics. In this review, we show the latest developments and applications of DEMS in various energy-related electrochemical reactions from three distinct perspectives. (I) What is DEMS addresses the working principles and key components of DEMS, highlighting the new and distinct instrumental configurations for different applications. (II) How to use DEMS tackles practical matters including the electrochemical test protocols, quantification of both potential and mass signals, and error analysis. (III) Where to apply DEMS is the focus of this review, dealing with concrete examples and unique values of DEMS studies in both energy conversion applications (CO2 reduction, water electrolysis, carbon corrosion, N-related catalysis, electrosynthesis, fuel cells, photo-electrocatalysis and beyond) and energy storage applications (Li-ion batteries and beyond, metal-air batteries, supercapacitors and flow batteries). The recent development of DEMS-hyphenated techniques and the outlook of the DEMS technique are discussed at the end. As DEMS celebrates its 40th anniversary in 2024, we hope this review can offer electrochemistry researchers a comprehensive understanding of the latest developments of DEMS and will inspire them to tackle emerging scientific questions using DEMS.

4.
Eur Radiol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913246

ABSTRACT

OBJECTIVE: To investigate the prognostic value of preoperative body composition and serum tumor markers (STM) in patients undergoing surgical treatment for colorectal cancer (CRC) and to establish the prognostic score for patients with CRC. METHODS: This study enrolled 365 patients (training set 245, validation set 120) with CRC who underwent surgical resection. The predictive value of various body composition features and STM for determining CRC prognosis were compared. A novel index score based on the independent risk factors from Cox regression for CRC patients was established and evaluated for its usefulness. RESULTS: Multivariate Cox regression showed that low skeletal muscle radiodensity (SMD) (p = 0.020), low subcutaneous fat area (SFA) (p = 0.029), high carcinoembryonic antigen (CEA) (p = 0.008), and high alpha-fetoprotein (AFP) (p = 0.039) were all independent prognostic factors for poor overall survival (OS). The multifactorial analysis indicated that high intermuscular fat area (IMFA) (p = 0.033) and high CEA (p = 0.009) were independent prognostic factors for poor disease-free survival (DFS). Based on these findings, two scoring systems for OS and DFS were established in the training datasets. CRC patients who scored higher on the new scoring systems had lower OS and DFS (both p < 0.001) as shown in the Kaplan-Meier survival curves in the training and validation datasets. CONCLUSION: In predicting the prognosis of CRC patients, SFA and SMD are superior to other body composition measurements. A scoring system based on body composition and STM can have prognostic value and clinical applicability. CLINICAL RELEVANCE STATEMENT: This scoring system, combining body composition and serum tumor markers, may help predict postoperative survival of CRC patients and help clinicians make well-informed decisions regarding the treatment of patients. KEY POINTS: Colorectal cancer prognosis can be related to body composition. High intermuscular fat area and CEA were independent prognostic factors for poor disease-free survival. This scoring system, based on body composition and tumor markers, can prognosticate for colorectal cancer patients.

5.
Genomics ; 116(4): 110872, 2024 07.
Article in English | MEDLINE | ID: mdl-38849017

ABSTRACT

Cattle-yak is a hybrid offspring resulting from the crossbreeding of yak and cattle, and it exhibits substantial heterosis in production performance. However, male sterility in cattle-yak remains a concern. Reports suggest that noncoding RNAs are involved in the regulation of spermatogenesis. Therefore, in this study, we comprehensively compared testicular transcription profiles among cattle, yak, and cattle-yak. Numerous differentially expressed genes (DEGs), differentially expressed circRNAs (DECs), and differentially expressed miRNAs (DEMs) were identified in the intersection of two comparison groups, namely cattle versus cattle-yak and yak versus cattle-yak, with the number of DEGs, DECs, and DEMs being 4968, 360, and 59, respectively. The DEGs in cattle-yaks, cattle, and yaks were mainly associated with spermatogenesis, male gamete generation, and sexual reproduction. Concurrently, GO and KEGG analyses indicated that DEC host genes and DEM source genes were involved in the regulation of spermatogenesis. The construction of a potential competing endogenous RNA network revealed that some differentially expressed noncoding RNAs may be involved in regulating the expression of genes related to testicular spermatogenesis, including miR-423-5p, miR-449b, miR-34b/c, and miR-15b, as well as previously unreported miR-6123 and miR-1306, along with various miRNA-circRNA interaction pairs. This study serves as a valuable reference for further investigations into the mechanisms underlying male sterility in cattle-yaks.


Subject(s)
Gene Regulatory Networks , MicroRNAs , RNA, Circular , RNA, Messenger , Testis , Cattle/genetics , Cattle/metabolism , Animals , Male , Testis/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spermatogenesis/genetics , Transcriptome , RNA, Competitive Endogenous
6.
J Am Chem Soc ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858162

ABSTRACT

Understanding how life's essential homochiral biopolymers arose from racemic precursors is a challenging quest. Herein, we present a groundbreaking approach involving hierarchical chiral assembly-driven stereoselective ring-opening polymerization of ε-benzyloxycarbonyl-l/d-lysine N-carboxyanhydrides assisted by ultrasonication in an aqueous medium. This method enabled a narrow dispersity within a few minutes and the achievement of high molecular weight for polypeptides, employing a living polymerization mechanism. The polymerization of l and d enantiomers yielded predominantly right- and left-handed superhelical assemblies in a one-pot preparation, respectively. Notably, stereoselective polypeptide segments were efficiently prepared through hierarchical assembly-driven polymerization of racemic monomers in the absence of a catalyst. This research offers an innovative strategy for the convenient preparations of stereoenriched polypeptides and, more importantly, sheds light on the plausible emergence of homochiral peptides in the origin of life.

7.
Biotechnol Biofuels Bioprod ; 17(1): 88, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918796

ABSTRACT

BACKGROUND: ß-Arbutin, a hydroquinone glucoside found in pears, bearberry leaves, and various plants, exhibits antioxidant, anti-inflammatory, antimicrobial, and anticancer effects. ß-Arbutin has wide applications in the pharmaceutical and cosmetic industries. However, the limited availability of high-performance strains limits the biobased production of ß-arbutin. RESULTS: This study established the ß-arbutin biosynthetic pathway in C. glutamicum ATCC13032 by introducing codon-optimized ubiC, MNX1, and AS. Additionally, the production titer of ß-arbutin was increased by further inactivation of csm and trpE to impede the competitive metabolic pathway. Further modification of the upstream metabolic pathway and supplementation of UDP-glucose resulted in the final engineered strain, C. glutamicum AR11, which achieved a ß-arbutin production titer of 7.94 g/L in the optimized fermentation medium. CONCLUSIONS: This study represents the first successful instance of de novo ß-arbutin production in C. glutamicum, offering a chassis cell for ß-arbutin biosynthesis.

8.
Adv Sci (Weinh) ; : e2306237, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38922800

ABSTRACT

Abdominal aortic aneurysm (AAA) is a common and potentially life-threatening condition. Chronic aortic inflammation is closely associated with the pathogenesis of AAA. Nerve injury-induced protein 1 (NINJ1) is increasingly acknowledged as a significant regulator of the inflammatory process. However, the precise involvement of NINJ1 in AAA formation remains largely unexplored. The present study finds that the expression level of NINJ1 is elevated, along with the specific expression level in macrophages within human and angiotensin II (Ang II)-induced murine AAA lesions. Furthermore, Ninj1flox/flox and Ninj1flox/floxLyz2-Cre mice on an ApoE-/- background are generated, and macrophage NINJ1 deficiency inhibits AAA formation and reduces macrophage infiltration in mice infused with Ang II. Consistently, in vitro suppressing the expression level of NINJ1 in macrophages significantly restricts macrophage adhesion and migration, while attenuating macrophage pro-inflammatory responses. Bulk RNA-sequencing and pathway analysis uncover that NINJ1 can modulate macrophage infiltration through the TLR4/NF-κB/CCR2 signaling pathway. Protein-protein interaction analysis indicates that NINJ1 can activate TLR4 by competitively binding with ANXA2, an inhibitory interacting protein of TLR4. These findings reveal that NINJ1 can modulate AAA formation by promoting macrophage infiltration and pro-inflammatory responses, highlighting the potential of NINJ1 as a therapeutic target for AAA.

9.
Int J Biol Macromol ; 274(Pt 2): 133293, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925173

ABSTRACT

The underlying molecular mechanisms of thoracic aortic dissection (TAD) remain incompletely understood. Recent insights into RNA methylation and microRNA-mediated gene regulation offer new avenues for exploring how these processes contribute to the pathophysiology of TAD, particularly through the modulation of pyroptosis and smooth muscle cell viability. This research aimed to elucidate the interplay of m1A-related gene expressions and miR-16-5p/YTHDC1 Axis in NLRP3-dependent pyroptosis, a mechanism implicated in the pathogenesis of TAD. We collected tissue samples from 28 human TAD patients and 8 healthy aortic group, as well as utilized a mouse model to replicate the disease. A combination of computational, in vitro, and in vivo methods was applied, including CIBERSORTx analysis, Pearson correlation, gene transfection using antagomiR-16-5p, siRNA, and several staining as well as cell culture techniques. Our analysis indicated two differentially expressed genes, ALKBH2 and YTHDC1. We found significant upregulation of has-miR-16-5p and downregulation of YTHDC1 at mRNA level in AD samples. Immune cell infiltration in TAD samples was examined using the CIBERSORTx database. We confirmed that YTHDC1 was a target of miR-16-5p, as evidenced by an inhibitory effect on luciferase activity. Inhibition of miR-16-5p enhanced SMC proliferation and promoted cell viability whilst downregulating NLRP3-pyroptosis. YTHDC1 expression was increased, and NLRP3-pyroptosis expressions were inhibited, suggesting miR-16-5p/YTHDC1 axis may involve the NLRP3-pyroptosis of the SMC. In vivo analyses confirmed the prevention of NLRP3-pyroptosis in middle layer of the thoracic aorta, implying that the miR-16-5p/YTHDC1 axis regulated SMC proliferation via NLRP3-pyroptosis signaling. Our findings underscored the anti-pyroptotic role of miR-16-5p/YTHDC1 axis in the pathogenesis of TAD, suggesting a potential therapeutic strategy via targeting YTHDC1 and suppressing miR-16-5p to inhibit NLRP3-dependent pyroptosis. Although further investigation is needed, these results relating to SMC proliferation are a significant step forward in understanding TAD.

10.
Vaccines (Basel) ; 12(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38932395

ABSTRACT

Therapeutic HPV vaccines that induce potent HPV-specific cellular immunity and eliminate pre-existing infections remain elusive. Among various candidates under development, those based on DNA constructs are considered promising because of their safety profile, stability, and efficacy. However, the use of electroporation (EP) as a main delivery method for such vaccines is notorious for adverse effects like pain and potentially irreversible muscle damage. Moreover, the requirement for specialized equipment adds to the complexity and cost of clinical applications. As an alternative to EP, lipid nanoparticles (LNPs) that are already commercially available for delivering mRNA and siRNA vaccines are likely to be feasible. Here, we have compared three intramuscular delivery systems in a preclinical setting. In terms of HPV-specific cellular immune responses, mice receiving therapeutic HPV DNA vaccines encapsulated with LNP demonstrated superior outcomes when compared to EP administration, while the naked plasmid vaccine showed negligible responses, as expected. In addition, SM-102 LNP M exhibited the most promising results in delivering candidate DNA vaccines. Thus, LNP proves to be a feasible delivery method in vivo, offering improved immunogenicity over traditional approaches.

11.
Noise Health ; 26(121): 235-241, 2024.
Article in English | MEDLINE | ID: mdl-38904829

ABSTRACT

OBJECTIVE: This study aimed to analyze the effects of ward noise reduction administration on the lung function and mental health of patients with lung cancer. METHODS: A total of 195 patients who underwent lung cancer surgery in PLA Northern Theater Command Air Force Hospital from November 2020 to November 2022 were selected to be divided into a control group (routine nursing) and an observation group (routine nursing and ward noise reduction administration) in accordance with the medical record system. The general demographic data, noise level, lung function (forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC)), and complications of patients in the two groups were collected. Propensity score matching (PSM) was used to balance the baseline data of the two groups, and t-test and chi-square test were used to analyze the data. RESULTS: After PSM was conducted, 50 patients were enrolled in each group. No statistical difference was found in the baseline data, preadministration noise levels, and FEV1, FVC, FEV1/FVC, state-anxiety inventory (S-AI), and trait anxiety inventory scale (T-AI) scores between the two groups (P > 0.05). After ward noise reduction was administered, the noise level in the observation group was lower than that in the control group (P < 0.05). The FEV1, FVC, and FEV1/FVC scores of the observation group were higher than those of the control group but were not statistically significant (P > 0.05). The S-AI and T-AI scores of the observation group were lower than those of the control group (P < 0.05). No differences were found in the complications between the two groups (P > 0.05). CONCLUSION: Administering ward noise reduction in patients with lung cancer can alleviate their negative emotions, thus worthy of clinical adoption.


Subject(s)
Lung Neoplasms , Noise , Humans , Male , Female , Middle Aged , Noise/adverse effects , Aged , Mental Health , Forced Expiratory Volume , Vital Capacity , Respiratory Function Tests , Adult , Anxiety/prevention & control , Anxiety/etiology
12.
Adv Sci (Weinh) ; : e2403224, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822534

ABSTRACT

The advancement of Zn-Se batteries has been hindered by significant challenges, such as the sluggish kinetics of Se cathodes, limited Se loading, and uncontrollable formation of Zn dendrites. In this study, a bidirectional optimization strategy is devised for both cathode and anode to bolster the performance of Zn-Se batteries. A novel bowl-in-ball structured carbon (BIBCs) material is synthesized to serve as a nanoreactor, in which tin-based materials are grown and derived in situ to construct cathodes and anodes. Within the cathode, the multifunctional host material (SnSe@BIBCs) exhibits large adsorption capacity for selenium, and demonstrates supreme catalytic properties and spatially confined characteristics toward the selenium reduction reaction (SeRR). On the anode, Sn@BIBCs displays triple-induced properties, including the zincophilic of the internal metallic Sn, the homogenized spatial electric field from the 3D spatial structure, and the curvature effect of the bowl-shaped carbon. Collectively, these factors induce preferential nucleation of Zn, ensuring its uniform deposition. As a result, the integrated Zn-Se battery system achieves a remarkable specific capacity of up to 603 mAh g-1 and an impressive energy density of 581 W kg-1, highlighting its tremendous potential for practical applications.

13.
Angew Chem Int Ed Engl ; 63(30): e202400477, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38712648

ABSTRACT

Polyethylene oxide (PEO)-based solid-state batteries hold great promise as the next-generation batteries with high energy density and high safety. However, PEO-based electrolytes encounter certain limitations, including inferior ionic conductivity, low Li+ transference number, and poor mechanical strength. Herein, we aim to simultaneously address these issues by utilizing one-dimensional zwitterionic cellulose nanofiber (ZCNF) as fillers for PEO-based electrolytes using a simple aqueous solution casting method. Multiple characterizations and theoretical calculations demonstrate that the unique zwitterionic structure imparts ZCNF with various functions, such as disrupting PEO crystallization, dissociating lithium salts, anchoring anions through cationic groups, accelerating Li+ migration by anionic groups, as well as its inherent reinforcement effect. As a result, the prepared PL-ZCNF electrolyte exhibits remarkable ionic conductivity (5.37×10-4 S cm-1) and Li+ transference number (0.62) at 60 °C without sacrificing mechanical strength (9.2 MPa), together with high critical current density of 1.1 mA cm-2. Attributed to these merits of PL-ZCNF, the LiFePO4|PL-ZCNF|Li solid-state full-cell delivers exceptional rate capability and cycling performance (900 cycles at 5 C). Notably, the assembled pouch-cell can maintain steady operation over 1000 cycles with an impressive 93.7 % capacity retention at 0.5 C and 60 °C, highlighting the great potential of PL-ZCNF for practical applications.

14.
Digit Health ; 10: 20552076241253531, 2024.
Article in English | MEDLINE | ID: mdl-38766360

ABSTRACT

Background: Previous criteria had limited value in early diagnosis of periprosthetic joint infection (PJI). Here, we constructed a novel machine learning (ML)-derived, "in-time" diagnostic system for PJI and proved its validity. Methods: We filtered "in-time" diagnostic indicators reported in the literature based on our continuous retrospective cohort of PJI and aseptic prosthetic loosening patients. With the indicators, we developed a two-level ML model with six base learners including Elastic Net, Linear Support Vector Machine, Kernel Support Vector Machine, Extra Trees, Light Gradient Boosting Machine and Multilayer Perceptron), and one meta-learner, Ensemble Learning of Weighted Voting. The prediction performance of this model was compared with those of previous diagnostic criteria (International Consensus Meeting in 2018 (ICM 2018), etc.). Another prospective cohort was used for internal validation. Based on our ML model, a user-friendly web tool was developed for swift PJI diagnosis in clinical practice. Results: A total of 254 patients (199 for development and 55 for validation cohort) were included in this study with 38.2% of them diagnosed as PJI. We included 21 widely accessible features including imaging indicators (X-ray and CT) in the model. The sensitivity and accuracy of our ML model were significantly higher than ICM 2018 in development cohort (90.6% vs. 76.1%, P = 0.032; 94.5% vs. 86.7%, P = 0.020), which was supported by internal validation cohort (84.2% vs. 78.6%; 94.6% vs. 81.8%). Conclusions: Our novel ML-derived PJI "in-time" diagnostic system demonstrated significantly improved diagnostic potency for surgical decision-making compared with the commonly used criteria. Moreover, our web-based tool greatly assisted surgeons in distinguishing PJI patients comprehensively. Level of evidence: Diagnostic Level III.

15.
Sci Rep ; 14(1): 10430, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714826

ABSTRACT

Absent in melanoma 2 (AIM2) is implicated in neuroinflammation. Here, we explored the prognostic significance of serum AIM2 in human aneurysmal subarachnoid hemorrhage (aSAH). We conducted a consecutive enrollment of 127 patients, 56 of whom agreed with blood-drawings not only at admission but also at days 1, 2, 3, 5, 7 and 10 days after aSAH. Serum AIM2 levels of patients and 56 healthy controls were measured. Disease severity was assessed using the modified Fisher scale (mFisher) and World Federation of Neurological Surgeons Scale (WFNS). Neurological outcome at poststroke 90 days was evaluated via the modified Rankin Scale (mRS). Univariate analysis and multivariate analysis were sequentially done to ascertain relationship between serum AIM2 levels, severity, delayed cerebral ischemia (DCI) and 90-day poor prognosis (mRS scores of 3-6). Patients, in comparison to controls, had a significant elevation of serum AIM2 levels at admission and at days 1, 2, 3, 5, 7 and 10 days after aSAH, with the highest levels at days 1, 2, 3 and 5. AIM2 levels were independently correlated with WFNS scores and mFisher scores. Significantly higher serum AIM2 levels were detected in patients with a poor prognosis than in those with a good prognosis, as well as in patients with DCI than in those without DCI. Moreover, serum AIM2 levels independently predicted a poor prognosis and DCI, and were linearly correlated with their risks. Using subgroup analysis, there were no significant interactions between serum AIM2 levels and age, gender, hypertension and so on. There were substantially high predictive abilities of serum AIM2 for poor prognosis and DCI under the receiver operating characteristic curve. The combination models of DCI and poor prognosis, in which serum AIM2, WFNS scores and mFisher scores were incorporated, showed higher discriminatory efficiencies than anyone of the preceding three variables. Moreover, the models are delineated using the nomogram, and performed well under the calibration curve and decision curve. Serum AIM2 levels, with a substantial enhancement during early phase after aSAH, are closely related to bleeding severity, poor 90-day prognosis and DCI of patients, substantializing serum AIM2 as a potential prognostic biomarker of aSAH.


Subject(s)
DNA-Binding Proteins , Subarachnoid Hemorrhage , Humans , Male , Female , Middle Aged , Subarachnoid Hemorrhage/blood , Subarachnoid Hemorrhage/diagnosis , Subarachnoid Hemorrhage/mortality , Prognosis , Prospective Studies , DNA-Binding Proteins/blood , Aged , Adult , Biomarkers/blood , Case-Control Studies , Longitudinal Studies , Severity of Illness Index , Brain Ischemia/blood
16.
Brain Behav ; 14(5): e3522, 2024 May.
Article in English | MEDLINE | ID: mdl-38773776

ABSTRACT

BACKGROUND: Chemokine-like factor 1 (CKLF1) may be involved in the inflammatory response and secondary brain injury after severe traumatic brain injury (sTBI). We determined serum CKLF1 levels of sTBI patients to further investigate the correlation of CKLF1 levels with disease severity, functional prognosis, and 180-day mortality of sTBI. METHODS: Serum CKLF1 levels were measured at admission in 119 sTBI patients and at entry into study in 119 healthy controls. Serum CKLF levels of 50 patients were also quantified at days 1-3, 5, and 7 after admission. Glasgow coma scale (GCS) scores and Rotterdam computerized tomography (CT) classification were utilized to assess disease severity. Extended Glasgow outcome scale (GOSE) scores were recorded to evaluate function prognosis at 180 days after sTBI. Relations of serum CKLF1 levels to 180-day poor prognosis (GOSE scores of 1-4) and 180-day mortality were analyzed using univariate analysis, followed by multivariate analysis. Receiver-operating characteristic (ROC) curve was built to investigate prognostic predictive capability. RESULTS: Serum CKLF1 levels of sTBI patients increased at admission, peaked at day 2, and then gradually decreased; they were significantly higher during the 7 days after sTBI than in healthy controls. Differences of areas under ROC curve (areas under the curve [AUCs]) were not significant among the six time points. Multivariate analysis showed that serum CKLF1 levels were independently correlated with GCS scores, Rotterdam CT classification, and GOSE scores. Serum CKLF1 levels were significantly higher in non-survivors than in survivors and in poor prognosis patients than in good prognosis patients. Serum CKLF1 levels independently predicted 180-day poor prognosis and 180-day mortality, and had high 180-day prognosis and mortality predictive abilities, and their AUCs were similar to those of GCS scores and Rotterdam CT classification. Combination model containing serum CKLF1, GCS scores, and Rotterdam CT classification performed more efficiently than any of them alone in predicting mortality and poor prognosis. The models were visually described using nomograms, which were comparatively stable under calibration curve and were relatively of clinical benefit under decision curve. CONCLUSION: Serum CKLF1 levels are significantly associated with disease severity, poor 180-day prognosis, and 180-day mortality in sTBI patients. Hence, complement CKLF1 may serve as a potential prognostic biomarker of sTBI.


Subject(s)
Biomarkers , Brain Injuries, Traumatic , MARVEL Domain-Containing Proteins , Humans , Male , Female , Prognosis , Biomarkers/blood , Middle Aged , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/mortality , Brain Injuries, Traumatic/diagnosis , Adult , Prospective Studies , MARVEL Domain-Containing Proteins/blood , Severity of Illness Index , Glasgow Coma Scale , Aged , Chemokines/blood , Tomography, X-Ray Computed , Young Adult , Glasgow Outcome Scale , ROC Curve
17.
PLoS One ; 19(5): e0301300, 2024.
Article in English | MEDLINE | ID: mdl-38709763

ABSTRACT

OBJECTIVE: The purpose of this study was to investigate whether the combination of abnormal systemic immune-inflammation index (SII) levels and hyperglycemia increased the risk of cognitive function decline and reduced survival rate in the United States. METHODS: This cross-sectional study used data from the National Health and Nutrition Examination Survey (NHANES) database from 2011-2014 and enrolled 1,447 participants aged 60 years or older. Restricted cubic splines (RCS), linear regression and kaplan-meier(KM) curve were employed to explore the combined effects of abnormal SII and hyperglycemia on cognitive function and survival rate, and subgroup analysis was also conducted. RESULTS: The RCS analysis revealed an inverted U-shaped relationship between lgSII levels and cognitive function. Linear regression analysis indicated that neither abnormal SII nor diabetes alone significantly contributed to the decline in cognitive function compared to participants with normal SII levels and blood glucose. However, when abnormal SII coexisted with diabetes (but not prediabetes), it resulted to a significant decline in cognitive function. After adjusting for various confounding factors, these results remained significant in Delayed Word Recall (ß:-0.76, P<0.05) and Digit Symbol Substitution tests (ß:-5.02, P<0.05). Nevertheless, these results showed marginal significance in Total Word Recall test as well as Animal Fluency test. Among all subgroup analyses performed, participants with both abnormal SII levels and diabetes exhibited the greatest decline in cognitive function compared to those with only diabetes. Furthermore, KM curve demonstrated that the combination of abnormal SII levels and diabetes decreased survival rate among participants. CONCLUSION: The findings suggest that the impact of diabetes on cognitive function/survival rate is correlated with SII levels, indicating that their combination enhances predictive power.


Subject(s)
Cognition , Inflammation , Nutrition Surveys , Humans , Female , Male , Aged , Middle Aged , Cross-Sectional Studies , Inflammation/blood , Survival Rate , Diabetes Mellitus/mortality , Diabetes Mellitus/immunology , Diabetes Mellitus/epidemiology , United States/epidemiology , Hyperglycemia/mortality , Blood Glucose/analysis
18.
PLoS One ; 19(5): e0301317, 2024.
Article in English | MEDLINE | ID: mdl-38696407

ABSTRACT

With the predicament of sustainable improvement in traditional cities, the low-carbon city pilot policy (LCCPP), as a novel development mode, provides thinking for resolving the tensions of green development, resource conservation and environmental protection among firms. Using Chinese A-share listed companies panel data during 2007-2019, this study adopts the difference-in-differences model to explore the impact of LCCPP on firm green innovation. Based on theoretical analysis, LCCPP-driven environmental rules have the impact of encouraging business green innovation. The relationship between LCCPP and green innovation is strengthened by external media attention and organizational redundancy resources. The mechanism study shows that the incentive effect of LCCPP on firm green innovation is mainly due to the improvement of enterprises' green total factor productivity and financial stability. In addition, the heterogeneity analysis shows that the LCCPP has significantly positive effects in promoting green innovation in high-carbon industries and state-owned enterprises. This research contributes to the understanding of city-level low-carbon policies as a driving force for corporate green innovation, offering practical implications for policymakers and businesses striving for sustainability.


Subject(s)
Carbon , Cities , Sustainable Development , China , Sustainable Development/economics , Pilot Projects , Conservation of Natural Resources/methods , Conservation of Natural Resources/economics , Humans
19.
Anal Chim Acta ; 1307: 342648, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38719409

ABSTRACT

In contrast to the conventional fluorescence enhancement resulting from the cessation of the photoinduced electron transfer effect upon capturing nitric oxide (NO) by o-phenylenediamine, we found an interesting fluorescence quench within small molecule fluorophores characterized by intramolecular hydrogen bonding. Herein, the integration of a push-pull electron system with intramolecular hydrogen bonding onto an ultra-small fluorophore was employed to fabricate a hydrogen bond-tuned single benzene core fluorescent probe with an exceptional fluorescence quantum yield of 26 %, denoted as HSC-1. By virtue of its small size and low molecular weight (mere 192 g/mol), it demonstrated superior solubility and biocompatibility. Given the optimized conditions, HSC-1 manifested extraordinary linearity in detecting NO concentrations ranging from 0.5 to 60 µM, with an outstanding detection limit of 23.8 nM. Theoretical calculations unraveled the photophysical properties of hydrogen bonding-related probe molecules and highlighted the NO sensing mechanism. This pioneering work offers an important platform for the design of small fluorescence probes only with a single benzene core applied to NO sensing, which will potentially emerge as a new frontier in the area.

20.
ESC Heart Fail ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783684

ABSTRACT

AIMS: A recent guideline presented by the ESC Congress in 2022 had indicated a novel therapy targeted at pulmonary artery hypertension, known as pulmonary artery denervation (PADN), which get inspired from a laboratorial trial that could lowering the pulmonary artery pressure through the intervention on the animals. Our aim is to conduct a network meta-analysis to compare the efficacy and safety of PADN from six aspects with the current conventional therapies. METHODS AND RESULTS: According to the PRISMA guidance, databases including Ovid, ClinicalTrials.gov, Medline, Embase, and PubMed were searched from inception to 22 August 2023, along with a full assessment of the previous five meta-analyses. Data were extracted and curated for Bayesian network meta-analysis. The primary outcome was the change in the 6-min walking distance (6MWD) from baseline with a secondary outcome called change in mean pulmonary artery pressure (mPAP) from baseline. The four safety outcomes included risk of clinical worsening, hospitalization, mortality and severe adverse events (SAEs). The comparison is structured on a contrast model based on 65 randomized controlled trials (RCTs) on PADN and the other conventional mainstream drugs. PADN had a better effect in improving 6MWD than Placebo (-77.76 m, 95% CI: -102.04 to -54.34 m), Macitentan (-65.32 m, 95% CI: -95.34 to -36.1 m), Bosentan (-64.5 m, 95% CI: -94.7 to -35.07 m), Iloprost (-62.66 m, 95% CI: -99.48 to -27.13 m), Oxygen (-62.42 m, 95% CI: -100.01 to -25.78 m), Treprostinil (-62.01 m, 95% CI: -89.04 to -35.61 m), Riociguat (-60.59 m, 95% CI: -86.11 to -35.98 m), Selexipag (-47.2 m, 95% CI: -85.61 to -10.19 m), Sildenafil (-44.92 m, 95% CI: -74.43 to -16.15 m), or Sitaxsentan (-39.53 m, 95% CI: -78.99 to -0.76 m). PADN had a better antihypertensive effect than placebo and showed statistical significant lower risks to induce clinical worsening and re-hospitalization than treprostinil, riociguat, and placebo groups. No statistically significant difference in risk of mortality and severe adverse events was observed between PADN versus the other interventions. CONCLUSIONS: Compared with 16 types of conventional therapies and Placebo, PADN has advantage over nine single therapies and Placebo in improving 6MWD and appears to be better than two types of dual-drug combined therapies while with no statistical significance. PADN shows a favourable antihypertensive effect on mPAP and has a lower risk to trigger clinical worsening or hospitalization, while its risk on mortality and severe adverse events is still inconclusive.

SELECTION OF CITATIONS
SEARCH DETAIL
...