Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 65
1.
Article En | MEDLINE | ID: mdl-38797757

A simple, low-cost, and highly sensitive method using a modified QuECHERS procedure based on a liquid chromatography-tandem mass spectrometer (LC-MS/MS) was established to simultaneously quantify lufenuron and chlorfenapyr and the corresponding metabolite tralopyril in cabbage for the first time. On the basis of this method, terminal residue and dietary risk of lufenuron and chlorfenapyr in cabbage were investigated. The recoveries of lufenuron, chlorfenapyr, and tralopyril ranged from 88 to 110%, with relative standard deviation of less than 12.4%. The field trial results showed that at the pre-harvest interval (PHI) of 21 days, the terminal residues of lufenuron, chlorfenapyr, and tralopyril in the supervised trials were not higher than 0.02 mg/kg, and the highest detected residue levels of lufenuron, chlorfenapyr, and tralopyril were 0.047, 0.055, and <0.02 mg·kg-1 at 14-day pre-harvest respectively, which were lower than the maximum residue limits (MRLs) for cabbage established in China. For the dietary risk assessment, the national estimated daily intakes (NEDIs) as proportion of acceptable daily intakes (ADIs) were 80.4% and 29.9% for chlorfenapyr and lufenuron respectively indicating an acceptable dietary risk to Chinese population.

2.
ACS Nano ; 18(21): 13781-13793, 2024 May 28.
Article En | MEDLINE | ID: mdl-38752333

Pine wood nematode (PWN) disease is a globally devastating forest disease caused by infestation with PWN, Bursaphelenchus xylophilus, which mainly occurs through the vector insect Japanese pine sawyer (JPS), Monochamus alternatus. PWN disease is notoriously difficult to manage effectively and is known as the "cancer of pine trees." In this study, dual enzyme-responsive nanopesticides (AVM@EC@Pectin) were prepared using nanocoating avermectin (AVM) after modification with natural polymers. The proposed treatment can respond to the cell wall-degrading enzymes secreted by PWNs and vector insects during pine tree infestation to intelligently release pesticides to cut off the transmission and infestation pathways and realize the integrated control of PWN disease. The LC50 value of AVM@EC@Pectin was 11.19 mg/L for PWN and 26.31 mg/L for JPS. The insecticidal activity of AVM@EC@Pectin was higher than that of the commercial emulsifiable concentrate (AVM-EC), and the photostability, adhesion, and target penetration were improved. The half-life (t1/2) of AVM@EC@Pectin was 133.7 min, which is approximately twice that of AVM-EC (68.2 min). Sprayed and injected applications showed that nanopesticides had superior bidirectional transportation, with five-times higher AVM contents detected in the roots relative to those of AVM-EC when sprayed at the top. The safety experiment showed that the proposed treatment had lower toxicity and higher safety for nontarget organisms in the application environment and human cells. This study presents a green, safe, and effective strategy for the integrated management of PWN disease.


Biomass , Ivermectin , Pinus , Animals , Pinus/parasitology , Pinus/chemistry , Ivermectin/analogs & derivatives , Ivermectin/pharmacology , Ivermectin/chemistry , Ivermectin/metabolism , Plant Diseases/parasitology , Plant Diseases/prevention & control , Nematoda/drug effects , Insecticides/pharmacology , Insecticides/chemistry , Nanoparticles/chemistry , Humans
3.
BMC Surg ; 24(1): 104, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38609936

BACKGROUND: To compare the outcomes of hypospadias repair using tubularized incised plate (TIP) urethroplasty and modified TIP with lateral skin to widen the urethral plate (WTIP). MATERIALS AND METHODS: Data were obtained from pre-pubertal boys who underwent primary hypospadias repair between May 2018 and July 2023. The cases were divided into two groups; one group underwent TIP with urethral plate ≥ 6 mm width and the other group with urethral plate width < 6 mm underwent WTIP. WTIP urethroplasty was performed by widening incisions on the outer margins of the urethral plate to incorporate penile and glandular skin lateral to the urethral plate to facilitate tubularization. Complication rates and urinary functions were compared. RESULTS: A total of 157 patients were enrolled in this study. Eighty-eight cases with narrow urethral plate were subjected to WTIP urethroplasty, and the rest were subjected to TIP urethroplasty. The preoperative glans width in WTIP group was less than that in TIP group (P < 0.001), and 44.3% had midshaft meatus in WTIP group compared to 17.4% in TIP group (P < 0.001). However, the incidences of postoperative complications (17.6% vs. 21.6%, P = 0.550) were not statistically different between the TIP and WTIP groups. In addition, both groups did not differ significantly in postoperative uroflowmetry assessment. CONCLUSIONS: The described technique helps to create an adequately caliber aesthetic neomeatus and facilitates tubularization, especially in hypospadias with a narrow urethral plate. Our data suggest that augmentation of a narrow urethral plate with WTIP has a similar surgical outcome to that of the TIP procedure in patients with a wide urethral plate.


Hypospadias , Plastic Surgery Procedures , Male , Humans , Hypospadias/surgery , Penis/surgery , Skin , Esthetics , Cytoskeletal Proteins , Co-Repressor Proteins
4.
Vet Microbiol ; 291: 110014, 2024 Apr.
Article En | MEDLINE | ID: mdl-38335675

It is widely known that integrative and conjugative elements (ICEs) play an important role in the transmission of resistance genes and other exogenous genes. The present study aimed to characterize the three novel ICEs including ICEGpa76, ICEGpa44, and ICEGpa11, from Glaesserella parasuis. The ICEs from G. parasuis strains d76, Z44, and XP11 were predicted and identified by whole-genome sequencing (WGS) analysis, ICEfinder, and PCR. Characterization of G. parasuis strains carrying ICEs were determined by conjugation assay, antimicrobial susceptibility testing, WGS, phylogenetic analysis, and comparative sequence analysis.The WGS results showed that three ICEs from G. parasuis have a common genetic backbone belonging to characteristics ofthe ICEHpa1 family. The sequence comparison showed that the ICEHpa1 family has five hot spots (HSs) determined by IS6, IS110, and IS256. Moreover, two variable regions (VRs), VR1 and VR2 were determined by multidrug resistance genes and the rearrangement hotspot (rhs) family, respectively. VR1 consists of multidrug resistance genes, ISApl1s, and other accessory genes, while VR2 is composed of IS4, rhs family, transposase, and hypothetical protein genes. Conjugation experiments and MICs revealed that three ICEs could be transferred to G. parasuis strain IV52, indicating these three ICEs could be transmitted horizontally among G. parasuis strains. Additionally, the difference in resistance genes from ICEs might be due to the insertion function of the ISApl1s in VR1, and the rhs family in VR2 might evolve andthen be stably inherited in G. parasuis. These results further elucidated the transmission mechanism of exogenous genes in G. parasuis.


Conjugation, Genetic , Genes, MDR , Animals , Phylogeny
5.
Pest Manag Sci ; 80(3): 1632-1644, 2024 Mar.
Article En | MEDLINE | ID: mdl-37987532

BACKGROUND: Suspension concentrate (SC) is one of the most widely used formulations for agricultural plant protection. With the rapid development of unmanned aerial vehicle (UAV) plant protection, the problems of spray drift, droplet rebound and poor wettability in the application of SC from UAVs have attracted wide attention. Although some tank-mix adjuvants have been used to enhance dosage delivery for UAV, their effects and mechanisms are not fully clear, and few formulations are specifically designed for UAV. RESULTS: The type and concentration of tank-mix adjuvant affect the dosage delivery of SC. MO501 can significantly reduce DV<100µm , and inhibit droplet rebound on peanut leaves at concentrations ≥0.5%. Silwet 408 can achieve complete wetting and superspreading after adding ≥0.2% concentrations, but only ≥0.5% can inhibit rebound. XL-70 shows excellent regulation ability even at low concentration, and 0.2% concentration can simultaneously suppress impact and promote spreading. Besides, the formulation oil dispersion (OD) can significantly reduce the driftable fine fraction and inhibit rebound at dilution ratios of ≤250-fold, thus enhancing dosage delivery. CONCLUSION: SC is prone to rebound on hydrophobic leaf surfaces and shows poor wetting and spreading properties. Appropriate types and concentrations of tank-mix adjuvants and formulation improvement are two effective strategies for improving the dosage delivery of pesticides, whereas the addition of inappropriate adjuvants may cause potential risks instead. These findings provide guidance for the rational selection of tank-mix adjuvants and potential applications of OD for UAV plant protection. © 2023 Society of Chemical Industry.


Pesticides , Pesticides/chemistry , Arachis , Unmanned Aerial Devices , Agriculture , Wettability
6.
Pestic Biochem Physiol ; 197: 105682, 2023 Dec.
Article En | MEDLINE | ID: mdl-38072539

High-performance pesticide formulations are essential for sustainable agriculture. Among these, nano-pesticides exhibit great advantages in pest control because of their unique size effects. However, the direct effects of nano-formulation fungicides on fungal pathogens remain largely unexplored. In this study, three qualified formulations, suspension concentrate (SC), microcapsules (CS), and nanocapsules (NCS) of pyraclostrobin (PYR) were prepared and utilized to reveal their biocontrol activities against Rhizoctonia solani. Among these three formulations, NCS exhibited notable biocontrol efficacy against R. solani exemplified by an EC50 of 0.319 mg/L for mycelia, distortion of mycelia and abnormalities in cell ultrastructure. Moreover, NCS displayed excellent internalization within R. solani mycelia, contributing to severe damage to cell membrane permeability. Importantly, an equivalent quantity of NCS-PYR showed potent inhibitory effects on the target pathogen, as indicated by reduced adenosine triphosphate (ATP) content and mitochondrial Complex III activity. The NCS consistently exhibited superior in vivo protective and curative activities against R. solani compared to those of CS and SC in rice and faba bean. In summary, we uncovered the strength of rapid efficacy and biocontrol activity of NCS against R. solani and elucidated the advantages of NCS-PYR from the perspective of the target pathogen in agriculture.


Nanocapsules , Plant Diseases/prevention & control , Plant Diseases/microbiology , Rhizoctonia
7.
Front Plant Sci ; 14: 1257672, 2023.
Article En | MEDLINE | ID: mdl-37780520

Introduction: Adjuvants can effectively enhance the utilization rate of pesticides, but the application of adjuvants in plant growth regulators is rarely studied. Methods: This work explored the effects of adjuvants dioctyl sulfosuccinate sodium salt (AOT) and methyl oleate (MO) on lime sulfur (LS), especially the drop behavior on flower and paraffin surface. Results: The results showed that the addition of AOT and AOT+MO can significantly reduce the static and dynamic surface tension of LS from 72mN/m to 28mN/m and 32mN/m respectively, and increase the spreading factor from 0.18 to 1.83 and 3.10 respectively, reduce the bounce factor from 2.72 to 0.37 and 0.27 respectively. The fluorescence tracer test showed that the addition of adjuvants could promote the spreading and permeation of droplets. The field test results revealed that the flower thinning rate of adjuvant and non-adjuvant were 80.55% and 54.4% respectively, and the flower thinning effect of adding adjuvant was the same as that of artificial which the flower thinning rate was 84.77%. The quality of apples treated with adjuvants was similar to that treated with artificial, and the weight of single fruit increased by 24.08% compared with CK (spray water). Discussion: The application of tank-mixture adjuvant could reduce the dosage of LS for thinning agent application, improve apple's quality, and decrease labor cost and improve the economic benefits of fruit planting and the environmental benefits of plant growth regulators.

8.
J Glob Antimicrob Resist ; 35: 163-171, 2023 12.
Article En | MEDLINE | ID: mdl-37726088

OBJECTIVES: The aim of this study was to characterize the floR-carrying plasmids originating from Glaesserella parasuis and Actinobacillus indolicus isolated from pigs with respiratory disease in China. METHODS: A total of 125 G. parasuis and 28 A. indolicus strains collected between 2009 and 2022 were screened for florfenicol resistance. Characterization of floR-positive isolates and plasmids were determined by antimicrobial susceptibility testing, serotyping, multilocus sequence typing (MLST), conjugation and transformation assays, whole-genome sequencing (WGS), and phylogenetic analysis. RESULTS: One A. indolicus and six G. parasuis were identified as positive for floR. The six G. parasuis were assigned to four different serovars, including serovars 6, 7, 9, and unknown. In addition to strain XP11, six floR genes were located on plasmids. The six floR-bearing plasmids could be transformed into Pasteurella multocida and divided into two different types, including ∼5000 bp and ∼6000 bp plasmids. The ∼5000 bp plasmids consisting of rep, lysR, mobB, and floR genes, exhibited high similarity among Pasteurellaceae bacteria. Furthermore, the ∼6000 bp plasmids, consisting of rep, lysR, mobC, mobA/L, and floR genes, showed high similarity between G. parasuis and Actinobacillus Spp. Notably, WGS results showed that the floR modules of the two types of plasmids could be transferred and integrated into the diverse Pasteurellaceae- origined plasmids. CONCLUSION: This study firstly reported the characterization of floR-carrying plasmids from A. indolicus and a non-virulent serovar of G. parasuis in pigs in China and elucidated the transmission mechanism of the floR resistance gene among the Pasteurellaceae family.


Actinobacillus , Anti-Bacterial Agents , Animals , Swine , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Multilocus Sequence Typing , Phylogeny , Plasmids/genetics , Actinobacillus/genetics
9.
J Cancer Res Ther ; 19(4): 1061-1063, 2023 Aug.
Article En | MEDLINE | ID: mdl-37675737

The occurrence of horseshoe kidney with duplex urinary collecting systems is rare. Herein, we report a case of bilateral Wilms tumor (BWT) in a patient with a concurrent horseshoe kidney and left duplex kidney, which had not been previously reported. The patient was treated with neoadjuvant chemotherapy, followed by surgical resection and adjuvant chemotherapy. The tumor recurred 6 months postoperatively. A second resection was performed, followed by the administration of chemotherapy and radiotherapy. The patient passed away 15 months after the initial diagnosis of BWT.


Fused Kidney , Urinary Tract , Wilms Tumor , Humans , Fused Kidney/diagnosis , Fused Kidney/diagnostic imaging , Kidney/diagnostic imaging , Chemotherapy, Adjuvant , Wilms Tumor/complications , Wilms Tumor/diagnosis , Wilms Tumor/therapy
10.
Molecules ; 28(16)2023 Aug 17.
Article En | MEDLINE | ID: mdl-37630351

Nanotechnology is revolutionizing the efficient production and sustainable development of modern agriculture. Understanding the pesticide activity of both nano- and conventional methods is useful for developing new pesticide formulations. In this study, three solid fluopyram formulations with varying particle sizes were developed, and the mechanisms underlying the difference in the antifungal activity among these formulations were investigated. Wet media milling combined with freeze drying was used to prepare fluopyram nanoparticles (FLU-NS) and a micron-sized solid formulation (FLU-MS), and a jet grinding mill was employed to fabricate fluopyram wettable powder (FLU-WP). The mean particle sizes of FLU-NS, FLU-MS, and FLU-WP were 366.8 nm, 2.99 µm, and 10.16 µm, respectively. Notably, FLU-NS displayed a toxicity index against Botrytis cinerea (gray mold) that was approximately double those of FLU-MS and FLU-WP. Similar trends were noticed in the antifungal tests on Alternaria solani. The uptake of FLU-NS by B. cinerea was approximately twice that of FLU-MS and FLU-WP, indicating that fluopyram nanoparticles are more easily taken up by the pathogen (B. cinerea), and display better bioactivity than the larger fluopyram particles. Therefore, the nanosizing of pesticides appears to be a viable strategy to enhance efficiency without increasing the amount of pesticide used.


Antifungal Agents , Pesticides , Antifungal Agents/pharmacology , Benzamides
11.
Viruses ; 15(8)2023 08 17.
Article En | MEDLINE | ID: mdl-37632093

Porcine sapelovirus (PSV) is a ubiquitous virus in farmed pigs that is associated with SMEDI syndrome, polioencephalomyelitis, and diarrhea. However, there are few reports on the prevalence and molecular characterization of PSV in Fujian Province, Southern China. In this study, the prevalence of PSV and a poetical combinative strain PSV2020 were characterized using real-time PCR, sequencing, and bioinformatics analysis. As a result, an overall sample prevalence of 30.8% was detected in 260 fecal samples, and a farm prevalence of 76.7% was observed in 30 Fujian pig farms, from 2020 to 2022. Noteably, a high rate of PSV was found in sucking pigs. Bioinformatics analysis showed that the full-length genome of PSV2020 was 7550 bp, and the genetic evolution of its ORF region was closest to the G1 subgroup, which was isolated from Asia and America; the similarity of nucleotides and amino acids to other PSVs was 59.5~88.7% and 51.7~97.0%, respectively. However, VP1 genetic evolution analysis showed a distinct phylogenetic topology from the ORF region; PSV2020 VP1 was closer to the DIAPD5469-10 strain isolated from Italy than strains isolated from Asia and America, which comprise the G1 subgroup based on the ORF region. Amino acid discrepancy analysis illustrated that the PSV2020 VP1 gene inserted twelve additional nucleotides, corresponding to four additional amino acids (STAE) at positions 898-902 AAs. Moreover, a potential recombination signal was observed in the 2A coding region, near the 3' end of VP1, owing to recombination analysis. Additionally, 3D genetic evolutionary analysis showed that all reference strains demonstrated, to some degree, regional conservation. These results suggested that PSV was highly prevalent in Fujian pig farms, and PSV2020, a PSV-1 genotype strain, showed gene diversity and recombination in evolutionary progress. This study also laid a scientific foundation for the investigation of PSV epidemiology, molecular genetic characteristics, and vaccine development.


Amino Acids , Enteroviruses, Porcine , Swine , Animals , Prevalence , Farms , Phylogeny , China/epidemiology , Genetic Variation , Recombination, Genetic
12.
Front Pediatr ; 11: 1164474, 2023.
Article En | MEDLINE | ID: mdl-37425259

Background: To observe the postoperative recovery following ureteral dilation in primary obstructive megaureter (POM) after ureteral implantation, and evaluate the risk factors affecting ureter diameter resolution. Materials and Methods: A retrospective study was performed in patients with POM who underwent ureteral reimplantation using the Cohen procedure. Patient characteristics, perioperative parameters, and postoperative outcomes were also analysed. A widest ureteral diameter of <7 mm was defined as a normal shape and outcome. Survival time was defined as the time from surgery to ureteral dilation recovery or to the last follow-up. Results: A total of 49 patients (54 ureters) were included in the analysis. The survival time ranged from 1 to 53 months. The shapes of a total of 47 (87.04%) megaureters recovered, and most (29/47) resolutions happened within 6 months after surgery. In the univariate analysis, bilateral ureterovesical reimplantation (p = 0.015), ureteral terminal tapering (p = 0.019), weight (p = 0.036), and age (p = 0.015) were associated with the recovery time of ureteral dilation. A delayed recovery of ureteral diameter was noted in bilateral reimplantation (HR = 0.336, p = 0.017) using multivariate Cox regression. Conclusions: Ureteral dilation in POM mostly returned to normal within six postoperative months. Moreover, bilateral ureterovesical reimplantation is a risk factor for delayed postoperative recovery of ureter dilation in POM.

13.
Front Microbiol ; 14: 1153740, 2023.
Article En | MEDLINE | ID: mdl-37260682

This study aimed to characterize two novel mcr-1 variants, mcr-1.35 and mcr-1.36, which originated from Moraxella spp. that were isolated from diseased pigs in China. The Moraxella spp. carrying novel mcr-1 variants were subjected to whole-genome sequencing (WGS) and phylogenetic analysis based on the 16S rRNA gene. The mcr-1 variants mcr-1.35 and mcr-1.36 were characterized using phylogenetic analysis, a comparison of genetic environments, and protein structure prediction. The WGS indicated that two novel mcr-1 variants were located in the chromosomes of three Moraxella spp. with a genetic environment of mcr-1-pap2. In addition to the novel colistin resistance genes mcr-1.35 and mcr-1.36, the three Moraxella spp. contained other antimicrobial resistance genes, including aac(3)-IId, tet(O), sul2, floR, and blaROB-3. A functional cloning assay indicated that either the mcr-1.35 or mcr-1.36 gene could confer resistance to colistin in Escherichia coli DH5α and JM109. The nucleotide sequences of mcr-1.35 and mcr-1.36 presented 95.33 and 95.33% identities, respectively, to mcr-1.1. The phylogenetic analysis showed that mcr-1.35 and mcr-1.36 were derived from Moraxella spp. that belonged to subclades that were different from those of the mcr-1 variants (mcr-1.1 to mcr-1.34 except mcr-1.10) originating from Enterobacteriaceae. The deduced amino acid sequences of MCR-1.35 (MCR-1.36) showed 96.67% (96.49%), 82.59% (82.04%), 84.07% (83.52%), 55.52% (55.17%), 59.75% (59.57%), and 61.88% (61.69%) identity to MCR-1.10, MCR-2.2, MCR-6.1, MCR-LIN, MCR-OSL, and MCR-POR, respectively, that originated from Moraxella sp. Notably, protein structure alignment showed only a few changes in amino acid residues between MCR-1.1 and MCR-1.35, as well as between MCR-1.1 and MCR-1.36. In conclusion, this study identified Moraxella spp. carrying two novel mcr-1 variants, mcr-1.35 and mcr-1.36, conferring resistance to colistin, which were isolated from pig farms in China. In addition, mcr-like variants were observed to be located in the chromosomes of some species of Moraxella isolated from pig samples.

14.
Pest Manag Sci ; 79(10): 3808-3818, 2023 Oct.
Article En | MEDLINE | ID: mdl-37209281

BACKGROUND: Some traditional pesticide formulations are inefficient, leading to excessive use and abuse of pesticides, which in turn effects environment. Intelligent release pesticide formulations are ideal for improving pesticide utilization and persistence while reducing environmental pollution. RESULTS: We designed a benzil-modified chitosan oligosaccharide (CO-BZ) to encapsulate avermectin (Ave). Ave@CO-BZ nanocapsules are prepared based on a simple interfacial method via cross-linking of CO-BZ with diphenylmethane diisocyanate (MDI). The Ave@CO-BZ nanocapsules have an average particle size of 100 nm and exhibited a responsive release performance for ROS. The cumulative release rate of nanocapsules at 24 h with ROS increased by about 11.4% compared to that without ROS. The Ave@CO-BZ nanocapsules displayed good photostability. Ave@CO-BZ nanocapsules can penetrate root-knot nematodes more easily and exhibited better nematicidal activity against root-knot nematodes. The pot experiment showed that the control effect of Ave CS at low concentration was 53.31% at the initial stage of application (15 d), while Ave@CO-BZ nanocapsules was 63.54%. Under the same conditions, the control effect of Ave@CO-BZ nanocapsules on root-knot nematodes was 60.00% after 45 days of application, while Ave EC was only 13.33%. The acute toxicity experiments of earthworms showed that the toxicity of nanocapsules was significantly lower than that of EC. CONCLUSION: The ROS-responsive nanocapsules can improve the utilization of pesticides and non-target biosafety. This modified chitosan oligosaccharide has great potential as a bio stimuli-responsive material, and this simple and convenient method for preparing Ave@CO-BZ nanocapsules provides a direction for the effective utilization of pesticides. © 2023 Society of Chemical Industry.


Chitosan , Nanocapsules , Pesticides , Pesticides/toxicity , Reactive Oxygen Species , Oligosaccharides
15.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1535-1545, 2023 Mar.
Article Zh | MEDLINE | ID: mdl-37005841

To compare the pancreatic proteomics and autophagy between Rehmanniae Radix-and Rehmanniae Radix Praeparata-treated mice with type 2 diabetes mellitus(T2DM). The T2DM mouse model was established by high-fat diet coupled with streptozotocin(STZ, intraperitoneal injection, 100 mg·kg~(-1), once a day for three consecutive days). The mice were then randomly assigned into a control group, low-(5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) Rehmanniae Radix groups, low-(150 mg·kg~(-1)) and high-dose(300 mg·kg~(-1)) catalpol groups, low-(5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) Rehmanniae Radix Praeparata groups, low-(150 mg·kg~(-1)) and high-dose(300 mg·kg~(-1)) 5-hydroxymethyl furfuraldehyde(5-HMF) groups, and a metformin(250 mg·kg~(-1)) group. In addition, a normal group was also set and each group included 8 mice. The pancreas was collected after four weeks of administration and proteomics tools were employed to study the effects of Rehmanniae Radix and Rehmanniae Radix Praeparata on protein expression in the pancreas of T2DM mice. The expression levels of proteins involved in autophagy, inflammation, and oxidative stress response in the pancreatic tissues of T2DM mice were determined by western blotting, immunohistochemical assay, and transmission electron microscopy. The results showed that the differential proteins between the model group and Rehmanniae Radix/Rehmanniae Radix Prae-parata group were enriched in 7 KEGG pathways, such as autophagy-animal, which indicated that the 7 pathways may be associated with T2DM. Compared with the control group, drug administration significantly up-regulated the expression levels of beclin1 and phosphorylated mammalian target of rapamycin(p-mTOR)/mTOR and down-regulated those of the inflammation indicators, Toll-like receptor-4(TLR4) and Nod-like receptor protein 3(NLRP3), in the pancreas of T2DM mice, and Rehmanniae Radix showed better performance. In addition, the expression levels of inducible nitric oxide synthase(iNOS), nuclear factor erythroid 2-related factor 2(Nrf2), and heine oxygenase-1(HO-1) in the pancreas of T2DM mice were down-regulated after drug administration, and Rehmanniae Radix Praeparata demonstrated better performance. The results indicate that both Rehmanniae Radix and Rehmanniae Radix Praeparata can alleviate the inflammatory symptoms, reduce oxidative stress response, and increase the autophagy level in the pancreas of T2DM mice, while they exert the effect on different autophagy pathways.


Diabetes Mellitus, Type 2 , Mice , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Streptozocin/pharmacology , Diet, High-Fat/adverse effects , Proteomics , Inflammation , TOR Serine-Threonine Kinases , Autophagy , Mammals
16.
Int J Biol Macromol ; 241: 124561, 2023 Jun 30.
Article En | MEDLINE | ID: mdl-37094645

Developing an efficient drug delivery system to mitigate the harm caused by root-knot nematodes is crucial. In this study, enzyme-responsive release abamectin nanocapsules (AVB1a NCs) were prepared using 4, 4-diphenylmethane diisocyanate (MDI) and sodium carboxymethyl cellulose as response release factors. The results showed that the average size (D50) of the AVB1a NCs was 352 nm, and the encapsulation efficiency was 92 %. The median lethal concentration (LC50) of AVB1a NCs for Meloidogyne incognita activity was 0.82 mg L-1. Moreover, AVB1a NCs improved the permeability of AVB1a to root-knot nematodes and plant roots and the horizontal and vertical soil mobility. Furthermore, AVB1a NCs greatly reduced the adsorption of AVB1a by the soil compared to AVB1a emulsifiable concentrate (EC), and the effect of the AVB1a NCs on controlling root-knot nematode disease was increased by 36 %. Compared to the AVB1a EC, the pesticide delivery system significantly reduced the acute toxicity to the soil biological earthworms by approximately 16 times that of the AVB1a and had a lower overall impact on the soil microbial communities. This enzyme-responsive pesticide delivery system had a simple preparation method, excellent performance, and high level of safety, and thus has great application potential for plant diseases and insect pests control.


Nanocapsules , Pesticides , Solanum lycopersicum , Tylenchoidea , Animals , Carboxymethylcellulose Sodium/pharmacology , Pesticides/pharmacology , Soil , Sodium/pharmacology
17.
Microbiol Spectr ; : e0533722, 2023 Mar 28.
Article En | MEDLINE | ID: mdl-36975833

Anaerobic oxidation of methane (AOM) coupled with reduction of metal oxides is supposed to be a globally important bioprocess in marine sediments. However, the responsible microorganisms and their contributions to methane budget are not clear in deep sea cold seep sediments. Here, we combined geochemistry, muti-omics, and numerical modeling to study metal-dependent AOM in methanic cold seep sediments in the northern continental slope of the South China Sea. Geochemical data based on methane concentrations, carbon stable isotope, solid-phase sediment analysis, and pore water measurements indicate the occurrence of anaerobic methane oxidation coupled to metal oxides reduction in the methanic zone. The 16S rRNA gene and transcript amplicons, along with metagenomic and metatranscriptomic data suggest that diverse anaerobic methanotrophic archaea (ANME) groups actively mediated methane oxidation in the methanic zone either independently or in syntrophy with, e.g., ETH-SRB1, as potential metal reducers. Modeling results suggest that the estimated rates of methane consumption via Fe-AOM and Mn-AOM were both 0.3 µmol cm-2 year-1, which account for ~3% of total CH4 removal in sediments. Overall, our results highlight metal-driven anaerobic oxidation of methane as an important methane sink in methanic cold seep sediments. IMPORTANCE Anaerobic oxidation of methane (AOM) coupled with reduction of metal oxides is supposed to be a globally important bioprocess in marine sediments. However, the responsible microorganisms and their contributions to methane budget are not clear in deep sea cold seep sediments. Our findings provide a comprehensive view of metal-dependent AOM in the methanic cold seep sediments and uncovered the potential mechanisms for involved microorganisms. High amounts of buried reactive Fe(III)/Mn(IV) minerals could be an important available electron acceptors for AOM. It is estimated that metal-AOM at least contributes 3% of total methane consumption from methanic sediments to the seep. Therefore, this research paper advances our understanding of the role of metal reduction to the global carbon cycle, especially the methane sink.

18.
Small ; 19(9): e2206702, 2023 Mar.
Article En | MEDLINE | ID: mdl-36513389

2D materials have captured much recent research interest in a broad range of areas, including electronics, biology, sensors, energy storage, and others. In particular, preparing 2D nanosheets with high quality and high yield is crucial for the important applications in energy storage and conversion. Compared with other prevailing synthetic strategies, the electrochemical exfoliation of layered starting materials is regarded as one of the most promising and convenient methods for the large-scale production of uniform 2D nanosheets. Here, recent developments in electrochemical delamination are reviewed, including protocols, categories, principles, and operating conditions. State-of-the-art methods for obtaining 2D materials with small numbers of layers-including graphene, black phosphorene, transition metal dichalcogenides and MXene-are also summarized and discussed in detail. The applications of electrochemically exfoliated 2D materials in energy storage and conversion are systematically reviewed. Drawing upon current progress, perspectives on emerging trends, existing challenges, and future research directions of electrochemical delamination are also offered.

19.
J Med Virol ; 95(1): e28228, 2023 01.
Article En | MEDLINE | ID: mdl-36251622

Pseudorabies virus (PRV), as a neuroherpes virus, leads to heavy economic losses in the pig industry worldwide. This study was designed to establish recombinant PRV glycoprotein B (gB), C, and D proteins as PRV diagnostic antigens. The gB/C, gC/D, and gB/C/D fusion sequences were synthesized and inserted into pET-28a+ vector to generate the recombinant plasmids. The identified positive recombinant plasmids were transformed into BL21 Escherichia coli. The results of the polymerase chain reaction and enzyme digestion showed that the gB/C, gC/D, and gB/C/D fusion proteins were successfully expressed. An indirect sandwich ELISA was developed with the gB/C, gC/D, and gB/C/D as coating antigens. The results of indirect enzyme-linked immunosorbent assay (ELISA) analysis of 184 PRV-positive porcine sera showed that the positive coincidence rates of three recombinant proteins ELISAs relative to IDEXX kit were 98.25%, 95.32%, and 98.83%, and the negative coincidence rates were 85.71%, 75% and 100%, respectively. The inter and intra batch repeatability tests showed that the coefficient of variations of our kits were all less than 5%. Especially, the gB/C/D-ELISA has the highest specificity and sensitivity among the ELISA methods developed in this study. We established a series expression system of gB/C, gC/D, and gB/C/D antigen epitope genes and Recombinant protein-based indirect ELISA, providing new ideas for PV diagnosis and vaccine development.


Herpesvirus 1, Suid , Pseudorabies , Animals , Swine , Pseudorabies/diagnosis , Pseudorabies/prevention & control , Recombinant Proteins , Viral Envelope Proteins , Enzyme-Linked Immunosorbent Assay/methods , Herpesvirus 1, Suid/genetics , Epitopes/metabolism , Antibodies, Viral
20.
J Colloid Interface Sci ; 629(Pt A): 926-937, 2023 Jan.
Article En | MEDLINE | ID: mdl-36152617

Droplet rebound from hydrophobic leaves is a major factor influencing pesticide utilization. The use of a surfactant is a major strategy to reduce droplet rebound, promoting pesticide deposition on hydrophobic agricultural plant leaves. However, most surfactants known to regulate droplet rebound are either anionic or cationic. In this study, ethoxylated propoxylated 2-ethyl-1-haxanol (EH 6) was identified as a nonionic surfactant that inhibits droplet rebound while promoting the complete spreading of the droplet on hydrophobic leaves. Compared with the widely reported nonionic surfactant Tween 20, EH 6 performs better at concentrations above 0.3%. This phenomenon can be attributed to the rapid migration of EH 6 from the bulk to the newly generated interface, significantly reducing the surface tension. We introduce a simple and effective strategy that can be used to enhance droplet deposition on hydrophobic plant surfaces, which may offer future economic and environmental benefits.


Pesticides , Polysorbates , Plant Leaves/chemistry , Surface Properties , Surface-Active Agents/chemistry , Hydrophobic and Hydrophilic Interactions
...