Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.453
1.
Opt Express ; 32(8): 14054-14066, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38859361

We present a laser-driven interferometric fiber optic gyroscope (IFOG) with polarization self-compensation to achieve high scale-factor stability, sensitivity, and long-term stability. Coherent light with 200kHz linewidth is employed to keep the scale factor stable. The optical scheme ensures polarization reciprocity as well as the optimal working point for good sensitivity. Furthermore, a hybrid machine learning loop (MLL) method, combining the advantages of PID fast response and artificial neural network (ANN) dynamic search, can control a liquid crystal rotator (LCR) to dynamically compensate for slow drift induced by polarization coupling. In open environment, when the sensitivity is 0.005 ∘/h, the bias instability (BI) is significantly optimized from 0.6723°/h at 60s (PID) to 0.3869°/h at 200s (MLL), which is close to the Sagnac interferometric limit (SIL). Such IFOG can meet the real-time and robust requirements for inertial navigation systems in long-term measurement.

2.
Front Pharmacol ; 15: 1284371, 2024.
Article En | MEDLINE | ID: mdl-38881872

Background: Cynanchum paniculatum (Bunge) Kitag. ex H.Hara, a member of the Asclepiadaceae family, has a rich history as a traditional Chinese medicinal plant used to treat digestive disorders. However, its potential anti-cancer effects in pancreatic cancer remain largely unexplored. Aim: This study delves into the intricate anti-pancreatic cancer mechanisms of C. paniculatum (Bunge) Kitag. ex H.Hara aqueous extract (CPAE) by elucidating its role in apoptosis induction and the inhibition of invasion and migration. Methods: A comprehensive set of methodologies was employed to assess CPAE's impact, including cell viability analyses using MTT and colony formation assays, flow cytometry for cell cycle distribution and apoptosis assessment, scratch-wound and Matrigel invasion assays for migration and invasion capabilities, and immunoblotting to measure the expression levels of key proteins involved in apoptosis and metastasis. Additionally, a murine xenograft model was established to investigate CPAE's in vivo anti-cancer potential. Results: CPAE exhibited time- and dose-dependent suppression of proliferation and colony formation in pancreatic cancer cells. Notably, CPAE induced apoptosis and G2/M phase arrest, effectively activating the caspase-dependent PARP pathway. At non-cytotoxic doses, CPAE significantly curtailed the metastatic abilities of pancreatic cells, effectively suppressing epithelial-mesenchymal transition (EMT) and downregulating the TGF-ß1/Smad2/3 pathway. In vivo experiments underscored CPAE's ability to inhibit tumor proliferation. Conclusion: This study illuminates the multifaceted anti-proliferative, pro-apoptotic, anti-invasive, and anti-migratory effects of CPAE, both in vitro and in vivo. CPAE emerges as a promising herbal medicine for pancreatic cancer treatment, with its potential mediated through apoptosis induction via the caspase-dependent PARP pathway and MET suppression via the TGF-ß1/Smad2/3 signaling pathway at non-cytotoxic doses. These findings advocate for further exploration of CPAE's therapeutic potential in pancreatic cancer.

3.
Drug Des Devel Ther ; 18: 2169-2187, 2024.
Article En | MEDLINE | ID: mdl-38882048

Purpose: Traditional Chinese medicine (TCM) therapy is an important means to treat hepatocellular carcinoma (HCC), Astragalus (Latin name: Hedysarum Multijugum Maxim; Chinese name: Huangqi, HQ) and Atractylodes (Latin name: Atractylodes Macrocephala Koidz; Chinese name: Baizhu, BZ) (HQBZ), a classic herb pair, is often used in combination to HCC. However, the main components and potential mechanisms of HQBZ therapy in HCC remain unclear. This study aimed to identify the potential active ingredients and molecular mechanisms of action of HQBZ in HCC treatment. Methods: The HQBZ-Compound-Target-HCC network and HQBZ-HCC transcriptional regulatory network were constructed to screen the core active compound components and targets of HQBZ therapy for HCC. Molecular docking techniques are used to verify the stability of binding core active compound components to targets. GO and KEGG enrichment analysis were used to explore the signaling pathway of HQBZ in HCC treatment, the mechanism of HQBZ treatment of HCC was verified based on in vivo H22 tumor bearing mice and in vitro cell experiments. Results: Network pharmacology and molecular docking studies showed that HQBZ treatment of HCC was related to the targeted regulation of IL-6 and STAT3 by the active compound biatractylolide, KEGG pathway enrichment analysis suggest that HQBZ may play a role in the treatment of HCC through IL-6/STAT3 signaling pathway. In vitro experiment results proved that HQBZ could regulate IL-6/STAT3 signaling pathway transduction on CD8+T cells, inhibit CD8+T cell exhaustion and restore the function of exhausted CD8+T cells. In vivo experiment results proved that HQBZ can regulate IL-6/STAT3 signaling pathway transduction in H22 liver cancer model mouse tumor tissue, increased the proportion of tumor infiltrating CD8+T cells. Conclusion: This study found that HQBZ may play a therapeutic role in HCC by targeting IL-6 and STAT3 through biatractylolide, its mechanism of action is related to regulating IL-6/STAT3 signaling pathway, reversing T cell failure and increasing tumor infiltration CD8+T cells.


Antineoplastic Agents, Phytogenic , Atractylodes , Carcinoma, Hepatocellular , Drugs, Chinese Herbal , Liver Neoplasms , Network Pharmacology , STAT3 Transcription Factor , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Animals , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Mice , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Atractylodes/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Docking Simulation , Astragalus Plant/chemistry , Cell Proliferation/drug effects , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/pathology , Liver Neoplasms, Experimental/metabolism , Interleukin-6/metabolism , Interleukin-6/antagonists & inhibitors , Medicine, Chinese Traditional , Drug Screening Assays, Antitumor
4.
Ultrason Sonochem ; 107: 106935, 2024 Jul.
Article En | MEDLINE | ID: mdl-38850642

Myofibrillar proteins (MPs) have a notable impact on the firmness and flexibility of gel-based products. Therefore, enhancing the gelation and emulsification properties of scallop MPs is of paramount significance for producing high-quality scallop surimi products. In this study, we investigated the effects of high-intensity ultrasound on the physicochemical and gelation properties of MPs from bay scallops (Argopecten irradians). The carbonyl content of MPs significantly increased with an increase in ultrasound power (150, 350, and 550 W), indicating ultrasound-induced MP oxidation. Meanwhile, high-intensity ultrasound treatment (550 W) enhanced the emulsifying capacity and the short-term stability of MPs (up to 72.05 m2/g and 153.05 min, respectively). As the ultrasound power increased, the disulfide bond content and surface hydrophobicity of MPs exhibited a notable increase, indicating conformational changes in MPs. Moreover, in the secondary structure of MPs, the α-helix content significantly decreased, whereas the ß-sheet content increased, thereby suggesting the ultrasound-induced stretching and flexibility of MP molecules. Sodium-dodecyl sulfate-polyacrylamide gel electrophoresis and scanning electron microscopy analysis further elucidated that high-intensity ultrasound induced MP oxidation, leading to modification of amino acid side chains, intra- and intermolecular cross-linking, and MP aggregation. Consequently, high-intensity ultrasound treatment was found to augment the viscoelasticity, gel strength, and water-holding capacity of MP gels, because ultrasound treatment facilitated the formation of a stable network structure in protein gels. Thus, this study offers theoretical insights into the functional modification of bay scallop MPs and the processing of its surimi products.


Gels , Muscle Proteins , Pectinidae , Pectinidae/chemistry , Animals , Gels/chemistry , Muscle Proteins/chemistry , Ultrasonic Waves , Chemical Phenomena , Hydrophobic and Hydrophilic Interactions , Emulsions/chemistry
5.
Technol Cancer Res Treat ; 23: 15330338241258570, 2024.
Article En | MEDLINE | ID: mdl-38832431

Background: Colon adenocarcinoma (COAD) has increasing incidence and is one of the most common malignant tumors. The mitochondria involved in cell energy metabolism, oxygen free radical generation, and cell apoptosis play important roles in tumorigenesis and progression. The relationship between mitochondrial genes and COAD remains largely unknown. Methods: COAD data including 512 samples were set out from the UCSC Xena database. The nuclear mitochondrial-related genes (NMRGs)-related risk prognostic model and prognostic nomogram were constructed, and NMRGs-related gene mutation and the immune environment were analyzed using bioinformatics methods. Then, a liver metastasis model of colorectal cancer was constructed and protein expression was detected using Western blot assay. Results: A prognostic model for COAD was constructed. Comparing the prognostic model dataset and the validation dataset showed considerable correlation in both risk grouping and prognosis. Based on the risk score (RS) model, the samples of the prognostic dataset were divided into high risk group and low risk group. Moreover, pathologic N and T stage and tumor recurrence in the two risk groups were significantly different. The four prognostic factors, including age and pathologic T stage in the nomogram survival model also showed excellent predictive performance. An optimal combination of nine differentially expressed NMRGs was finally obtained, including LARS2, PARS2, ETHE1, LRPPRC, TMEM70, AARS2, ACAD9, VARS2, and ATP8A2. The high-RS group had more inflamed immune features, including T and CD4+ memory cell activation. Besides, mitochondria-associated LRPPRC and LARS2 expression levels were increased in vivo xenograft construction and liver metastases assays. Conclusion: This study established a comprehensive prognostic model for COAD, incorporating nine genes associated with nuclear-mitochondrial functions. This model demonstrates superior predictive performance across four prognostic factors: age, pathological T stage, tumor recurrence, and overall prognosis. It is anticipated to be an effective model for enhancing the prognosis and treatment of COAD.


Adenocarcinoma , Biomarkers, Tumor , Colonic Neoplasms , Gene Expression Regulation, Neoplastic , Humans , Prognosis , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/mortality , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/secondary , Mice , Animals , Biomarkers, Tumor/genetics , Nomograms , Computational Biology/methods , Genes, Mitochondrial , Disease Models, Animal , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Liver Neoplasms/pathology , Gene Expression Profiling , Neoplasm Staging , Male , Databases, Genetic , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Female
6.
Sci Rep ; 14(1): 13950, 2024 06 17.
Article En | MEDLINE | ID: mdl-38886395

Tumor-to-normal ratio (T/N) measurement of 18F-FBPA is crucial for patient eligibility to receive boron neutron capture therapy. This study aims to compare the difference in standard uptake value ratios on brain tumors and normal brains using PET/MR ZTE and atlas-based attenuation correction with the current standard PET/CT attenuation correction. Regarding the normal brain uptake, the difference was not significant between PET/CT and PET/MR attenuation correction methods. The T/N ratio of PET/CT-AC, PET/MR ZTE-AC and PET/MR AB-AC were 2.34 ± 0.95, 2.29 ± 0.88, and 2.19 ± 0.80, respectively. The T/N ratio comparison showed no significance using PET/CT-AC and PET/MR ZTE-AC. As for the PET/MRI AB-AC, significantly lower T/N ratio was observed (- 5.18 ± 9.52%; p < 0.05). The T/N difference between ZTE-AC and AB-AC was also significant (4.71 ± 5.80%; p < 0.01). Our findings suggested PET/MRI imaging using ZTE-AC provided superior quantification on 18F-FBPA-PET compared to atlas-based AC. Using ZTE-AC on 18F-FBPA-PET /MRI might be crucial for BNCT pre-treatment planning.


Boron Neutron Capture Therapy , Brain Neoplasms , Magnetic Resonance Imaging , Positron Emission Tomography Computed Tomography , Humans , Boron Neutron Capture Therapy/methods , Brain Neoplasms/radiotherapy , Brain Neoplasms/diagnostic imaging , Female , Male , Magnetic Resonance Imaging/methods , Positron Emission Tomography Computed Tomography/methods , Middle Aged , Positron-Emission Tomography/methods , Adult , Aged , Brain/diagnostic imaging , Fluorine Radioisotopes , Boron Compounds , Phenylalanine/analogs & derivatives
7.
Arch Dermatol Res ; 316(7): 425, 2024 Jun 21.
Article En | MEDLINE | ID: mdl-38904754

Psoriasis and insomnia have co-morbidities, however, their common genetic basis is still unclear. We analyzed psoriasis and insomnia with summary statistics from genome-wide association studies. We first quantified overall genetic correlations, then ascertained multiple effector loci and expression-trait associations, and lastly, we analyzed the causal effects between psoriasis and insomnia. A prevalent genetic link between psoriasis and insomnia was found, four pleiotropic loci affecting psoriasis and insomnia were identified, and 154 genes were shared, indicating a genetic link between psoriasis and insomnia. Yet, there is no causal relationship between psoriasis and insomnia by two-sample Mendelian randomization. We discovered a genetic connection between insomnia and psoriasis driven by biological pleiotropy and unrelated to causation. Cross-trait analysis indicates a common genetic basis for psoriasis and insomnia. The results of this study highlight the importance of sleep management in the pathogenesis of psoriasis.


Genetic Predisposition to Disease , Genome-Wide Association Study , Psoriasis , Sleep Initiation and Maintenance Disorders , Psoriasis/genetics , Psoriasis/epidemiology , Humans , Sleep Initiation and Maintenance Disorders/genetics , Sleep Initiation and Maintenance Disorders/epidemiology , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Comorbidity , Genetic Pleiotropy
8.
Thorac Cancer ; 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38881388

BACKGROUND: Limited literature exists on the feasibility and effectiveness of integrating stereotactic ablative radiotherapy (SABR) techniques with hyperfractionated regimens for patients with lung cancer. This study aims to assess whether the SABR technique with hyperfractionation can potentially reduce lung toxicity. METHODS: We utilized the linear-quadratic model to find the optimal fraction to maximize the tumor biological equivalent dose (BED) to normal-tissue BED ratio. Validation was performed by comparing the SABR plans with 50 Gy/5 fractions and hyperfractionationed plans with 88.8 Gy/74 fractions with the same tumor BED and planning criteria for 10 patients with early-stage lung cancer. Mean lung BED, Lyman-Kutcher-Burman (LKB) normal tissue complication probability (NTCP), critical volume (CV) criteria (volume below BED of 22.92 and 25.65 Gy, and mean BED for lowest 1000 and 1500 cc) and the percentage of the lung receiving 20Gy or more (V20) were compared using the Wilcoxon signed-rank test. RESULTS: The transition point occurs when the tumor-to-normal tissue ratio (TNR) of the physical dose equals the TNR of α/ß in the BED dose-volume histogram of the lung. Compared with the hypofractionated regimen, the hyperfractionated regimen is superior in the dose range above but inferior below the transition point. The hyperfractionated regimen showed a lower mean lung BED (6.40 Gy vs. 7.73 Gy) and NTCP (3.50% vs. 4.21%), with inferior results concerning CV criteria and higher V20 (7.37% vs. 7.03%) in comparison with the hypofractionated regimen (p < 0.01 for all). CONCLUSIONS: The hyperfractionated regimen has an advantage in the high-dose region of the lung but a disadvantage in the low-dose region. Further research is needed to determine the superiority between hypo- and hyperfractionation.

9.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1007-1015, 2024 Apr 18.
Article Zh | MEDLINE | ID: mdl-38884235

Soil matrix infiltration is an important pathway for plantations to obtain water, which affects ecological benefits and water conservation function of plantations. The changes of soil matrix infiltration and its influencing factors in different growth stages of Chinese fir plantations remain unclear. We measured soil matrix infiltration process using a tension infiltrometer in Chinese fir plantations (5, 8, 11, and 15 years old) of Beijiang River Forest Farm in Rongshui, Guangxi, and analyzed soil basic physicochemical properties to identify the dominant factors influencing soil matrix infiltration. The results showed that initial infiltration rate, stable infiltration rate, and cumulative infiltration increased with stand ages. The ranges of different stand ages were 141-180 mm·h-1, 109-150 mm·h-1, and 188-251 mm, respectively. The initial infiltration rate, stable infiltration rate, and cumulative infiltration were significantly positively correlated with soil capillary porosity, soil organic matter, soil water stable macroaggregate, sand content, and clay content, while negatively correlated with soil bulk density and silt content. Early thinning had a positive effect on soil matrix infiltration, but thinning measures after 11 years did not enhance soil matrix infiltration further. Philip model was optimal for describing soil matrix infiltration process in this region. In conclusion, soil matrix infiltration capacity of Chinese fir plantations gradually increased from young to middle-aged stands, but matrix infiltration capacity tended to stabilize after 11 years old. Silt content and water stable macroaggregate were the dominant factors influencing matrix infiltration.


Soil , Soil/chemistry , China , Cunninghamia/growth & development , Water/analysis , Ecosystem , Time Factors , Abies/growth & development
10.
J Hepatocell Carcinoma ; 11: 1049-1063, 2024.
Article En | MEDLINE | ID: mdl-38863997

Purpose: Portal vein tumor thrombosis (PVTT) is one of the hallmarks of advanced Hepatocellular carcinoma (HCC). Platelet (PLT) function parameters and CD8+T cells (CD8+Ts) play an important role in HCC progression and metastasis. This study is committed to establishing an efficient prognosis prediction model and exploring the combined effect of PLT and CD8+Ts on PVTT prognosis. Patients and Methods: This retrospective study collected 932 HCC patients with PVTT from 2007 to 2017 and randomly divided them into a training cohort (n = 656) and a validation cohort (n = 276). We performed multivariable Cox and Elastic-net regression analysis, constructed a nomogram and used Kaplan-Meier survival curves to compare overall survival and progression-free survival rates in different substrata. Relationships between indicators involved were also analyzed. Results: We found tumor number, size, treatment, PLT, γ-glutamyl transferase, alpha-fetoprotein, mean platelet volume, and CD8+Ts were related to the 5-year OS of patients with PVTT, and established a nomogram. The area under the receiver operating characteristic curve (AUCs) for predicting the 1-year OS rates were 0.767 and 0.794 in training and validation cohorts. The calibration curve and decision curve indicated its predictive consistency and strong clinical utility. We also found those with low PLT (<100*10^9/L) and high CD8+Ts (>320 cells/µL) had a better prognosis. Conclusion: We established a well-performing prognostic model for PVTT based on platelet functional parameters and CD8+Ts, and found that PT-8 formed by PLT and CD8+Ts was an excellent predictor of the prognosis of PVTT.

11.
ACS Chem Neurosci ; 15(10): 1951-1966, 2024 05 15.
Article En | MEDLINE | ID: mdl-38696478

Aims: the study aimed to (i) use adeno-associated virus technology to modulate parvalbumin (PV) gene expression, both through overexpression and silencing, within the hippocampus of male mice and (ii) assess the impact of PV on the metabolic pathway of glutamate and γ-aminobutyric acid (GABA). Methods: a status epilepticus (SE) mouse model was established by injecting kainic acid into the hippocampus of transgenic mice. When the seizures of mice reached SE, the mice were killed at that time point and 30 min after the onset of SE. Hippocampal tissues were extracted and the mRNA and protein levels of PV and the 65 kDa (GAD65) and 67 kDa (GAD67) isoforms of glutamate decarboxylase were assessed using real-time quantitative polymerase chain reaction and Western blot, respectively. The concentrations of glutamate and GABA were detected with high-performance liquid chromatography (HPLC), and the intracellular calcium concentration was detected using flow cytometry. Results: we demonstrate that the expression of PV is associated with GAD65 and GAD67 and that PV regulates the levels of GAD65 and GAD67. PV was correlated with calcium concentration and GAD expression. Interestingly, PV overexpression resulted in a reduction in calcium ion concentration, upregulation of GAD65 and GAD67, elevation of GABA concentration, reduction in glutamate concentration, and an extension of seizure latency. Conversely, PV silencing induced the opposite effects. Conclusion: parvalbumin may affect the expression of GAD65 and GAD67 by regulating calcium ion concentration, thereby affecting the metabolic pathways associated with glutamate and GABA. In turn, this contributes to the regulation of seizure activity.


Calcium , Glutamate Decarboxylase , Glutamic Acid , Kainic Acid , Mice, Transgenic , Parvalbumins , Status Epilepticus , gamma-Aminobutyric Acid , Animals , Parvalbumins/metabolism , Glutamate Decarboxylase/metabolism , Status Epilepticus/metabolism , Status Epilepticus/chemically induced , gamma-Aminobutyric Acid/metabolism , Glutamic Acid/metabolism , Male , Calcium/metabolism , Mice , Hippocampus/metabolism , Disease Models, Animal
12.
Nat Commun ; 15(1): 4599, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816379

Elastic stability is the basis for understanding structural responses to external stimuli in crystalline solids, including melting, incipient plasticity and fracture. In this work, elastic stability is investigated in a series of high-entropy alloys (HEAs) using in situ mechanical tests and atomic-resolution characterization in transmission electron microscopy. Under tensile loading, the HEA lattices are observed to undergo a sudden loss of ordering as the elastic strain reached ∽ 10%. Such elastic strain-induced amorphization stands in intrinsic contrast to previously reported dislocation-mediated elastic instability and defect accumulation-mediated amorphization, introducing a form of elastic instability. Together with the first principle calculations and atomic-resolution chemical mapping, we identify that the elastic strain-induced amorphization is closely related to the depressed dislocation nucleation due to the local atomic environment inhomogeneity of HEAs. Our findings provide insights for the understanding of the fundamental nature of physical mechanical phenomena like elastic instability and incipient plasticity.

13.
J Proteomics ; 301: 105191, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38697285

Cystic echinococcosis is a zoonotic disease resulting from infection caused by the larval stage of Echinococcus granulosus. This study aimed to assess the specific proteins that are potential candidates for the development of a vaccine against E. granulosus. The data-independent acquisition approach was employed to identify differentially expressed proteins (DEPs) in E. granulosus samples. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was employed to identify several noteworthy proteins. Results: The DEPs in E. granulosus samples were identified (245 pericystic wall vs. parasite-free yellowish granuloma (PYG, 1725 PY vs. PYG, 2274 PN vs. PYG). Further examination of these distinct proteins revealed their predominant enrichment in metabolic pathways, amyotrophic lateral sclerosis, and neurodegeneration-associated pathways. Notably, among these DEPs, SH3BGRL, MST1, TAGLN2, FABP5, UBE2V2, and RARRES2 exhibited significantly higher expression levels in the PYG group compared with the PY group (P < 0.05). The findings may contribute to the understanding of the pathological mechanisms underlying echinococcosis, providing valuable insights into the development of more effective diagnostic tools, treatment modalities, and preventive strategies. SIGNIFICANCE: CE is a major public health hazard in the western regions of China, Central Asia, South America, the Mediterranean countries, and eastern Africa. Echinococcus granulosus is responsible for zoonotic disease through infection Our analysis focuses on the proteins in various samples by data-dependent acquisition (DIA) for proteomic analysis. The importance of this research is to develop new strategies and targets to protect against E. granulosus infections in humans.


Echinococcus granulosus , Proteomics , Proteomics/methods , Humans , Echinococcus granulosus/metabolism , Animals , Helminth Proteins/metabolism , Helminth Proteins/analysis , Echinococcosis, Hepatic/metabolism , Echinococcosis, Hepatic/parasitology , Proteome/analysis , Proteome/metabolism
14.
J Thorac Dis ; 16(4): 2539-2549, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38738241

Background: A rapid and precise etiological diagnosis is crucial for the effective treatment of bloodstream infection (BSI). In this study, the performance of probe capture-based targeted next-generation sequencing (tNGS) was compared to that of blood culture and metagenomic next-generation sequencing (mNGS) in detecting potential pathogens in patients with BSI. Methods: A total of 80 patients with suspected BSI were prospectively enrolled from 24 November 2023 to 30 December 2023 at Zhongshan Hospital, Shanghai, China. All 80 participants underwent simultaneous blood culture, blood mNGS, and blood tNGS after admission when febrile, and the results were compared. Results: Among the 80 participants, 11 were clinically diagnosed with noninfectious fever, and 69 were diagnosed with BSI. Blood tNGS had a higher sensitivity for the diagnosis of BSI than blood culture (91.3% vs. 23.2%, P<0.001) and blood mNGS (91.3% vs. 69.6%, P=0.001). There was no significant difference in specificity between blood mNGS and tNGS (81.8% vs. 100.0%, P=0.13). Blood tNGS demonstrated a faster turnaround time than blood culture and blood mNGS. In 22 (31.9%) patients with BSI, targeted adjustment of the anti-infectious therapy according to the blood tNGS results resulted in clinical improvement. Conclusions: Blood tNGS may be a promising tool for detecting potential pathogens in patients with BSI. The application of blood tNGS for BSI could guide anti-infectious treatment strategies and might improve clinical outcomes.

15.
J Matern Fetal Neonatal Med ; 37(1): 2351196, 2024 Dec.
Article En | MEDLINE | ID: mdl-38735863

OBJECTIVE: Although early evidence shows that epilepsy can increase the risks of adverse pregnancy, some outcomes are still debatable. We performed a systematic review and meta-analysis to explore the effects of maternal and fetal adverse outcomes in pregnant women with epilepsy. METHODS: PubMed, Embase, Cochrane, and Web of Science were employed to collect studies that investigated the potential risk of obstetric complications during the antenatal, intrapartum, or postnatal period, as well as any neonatal complications. The search was conducted from inception to November 16, 2022. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of the included original studies. The odds ratio (OR) values were extracted after adjusting for confounders to measure the relationship between pregnant women with epilepsy and adverse maternal or fetal outcomes. The protocol for this systematic review is registered with PROSPERO ID CRD42023391539. RESULTS: Of 35 articles identified, there were 142,577 mothers with epilepsy and 34,381,373 mothers without epilepsy. Our study revealed a significant association between pregnant women with epilepsy (PWWE) and the incidence of cesarean section, preeclampsia/eclampsia, gestational hypertension, induction of labor, gestational diabetes and postpartum hemorrhage compared with those without epilepsy. Regarding newborns outcomes, PWWE versus those without epilepsy had increased odds of preterm birth, small for gestational age, low birth weight (<2500 g), and congenital malformations, fetal distress. The odds of operative vaginal delivery, newborn mortality, and Apgar (≤ 7) were similar between PWWE and healthy women. CONCLUSION: Pregnant women affected by epilepsy encounter a higher risk of adverse obstetric outcomes and fetal complications. Therefore, it is crucial to develop appropriate prevention and intervention strategies prior to or during pregnancy to minimize the negative impacts of epilepsy on maternal and fetal health.


Epilepsy , Pregnancy Complications , Pregnancy Outcome , Humans , Pregnancy , Female , Epilepsy/epidemiology , Epilepsy/complications , Pregnancy Complications/epidemiology , Pregnancy Outcome/epidemiology , Infant, Newborn
16.
World J Pediatr ; 2024 May 24.
Article En | MEDLINE | ID: mdl-38789720

BACKGROUND: Autism spectrum disorder (ASD) is a complex group of neurodevelopmental disorders. Research has highlighted a close association between the retinoic acid (RA) signaling pathway and ASD. This study investigates alterations in the vitamin A (VA, retinol) to RA metabolic pathway in children with ASD and speculates on the underlying reasons for these changes. We propose a subtype characterized by downregulated RA signaling in ASD, laying the groundwork for precise diagnosis and treatment research. METHODS: We included 489 children with ASD and 280 typically developing (TD) children. Those with ASD underwent evaluations of core symptoms and neuro-developmental levels, which were conducted by professional developmental behavior physicians using assessment scales. Serum VA and all-trans RA (atRA) levels were determined by high-performance liquid chromatography and ultra-high-performance liquid chromatography-tandem mass spectrometry. The expression levels and concentrations of enzyme molecules such as retinol dehydrogenase 10 were assessed using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS: Children with ASD exhibited reduced serum atRA, accompanied by a downregulation of atRA synthesis enzymes. The reduction in serum atRA levels was linked not only to VA levels but also to the aberrant expression of metabolic enzymes responsible for atRA. Furthermore, the serum atRA levels in children with ASD were more strongly correlated with core symptoms and neurodevelopmental levels than VA levels. CONCLUSION: Children with ASD exhibited a dual regulation of reduced serum atRA levels, influenced by both VA levels and abnormal expression of atRA metabolic enzymes.

17.
ACS Omega ; 9(17): 19148-19157, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38708247

The long-term prognosis of nonsmall cell lung cancer (NSCLC) remains unsatisfactory, which is a major challenge in lung cancer treatment. BIRC3 is an inhibitor of apoptosis (IAP) protein that contributes to tumor regulation. However, the underlying regulatory mechanisms of BIRC3 in NSCLC remains unknown. We initiated an analysis of BIRC3 expression data in NSCLC tumors and adjacent tissues using the TCGA and GEO databases and examined the variations in prognosis. Further, we conducted overexpression (OE) and knockdown (KD) studies on BIRC3 to evaluate its effects on NSCLC cell proliferation, migration, and invasion. Additionally, through utilization of a nude mouse model, the regulatory effects of BIRC3 on NSCLC were verified in vivo. Co-immunoprecipitation (Co-IP) assay served to pinpoint the proteins with which BIRC3 interacts. The results indicated that BIRC3 is down-regulated in NSCLC tissues and that patients with high BIRC3 expression demonstrate a better prognosis. BIRC3 is a tumor suppressor, inhibiting the proliferation and metastasis of NSCLC. Co-IP results revealed that BIRC3 interacts with HSP90B1, leading to a decrease in HSP90B1 expression and subsequent negative regulation of the ERK signaling pathway. BIRC3 may serve as a prognostic biomarker for NSCLC. It directly interacts with HSP90B1 to negatively regulate the ERK signaling pathway, thereby hindering the progression of NSCLC.

18.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 371-377, 2024 Apr 15.
Article Zh | MEDLINE | ID: mdl-38660901

OBJECTIVES: To investigate the levels of serum folate and vitamin B12 (VB12) and their association with the level of neurodevelopment in preschool children with autism spectrum disorder (ASD). METHODS: A total of 324 ASD children aged 2-6 years and 318 healthy children aged 2-6 years were recruited. Serum levels of folate and VB12 were measured using chemiluminescent immunoassay. The Social Responsiveness Scale and the Childhood Autism Rating Scale were used to assess the core symptoms of ASD children, and the Gesell Developmental Schedule was employed to evaluate the level of neurodevelopment. RESULTS: The levels of serum folate and VB12 in ASD children were significantly lower than those in healthy children (P<0.05). Serum folate levels in ASD children were positively correlated with gross and fine motor developmental quotients (P<0.05), and serum VB12 levels were positively correlated with adaptive behavior, fine motor, and language developmental quotients (P<0.05). In ASD children aged 2 to <4 years, serum folate levels were positively correlated with developmental quotients in all domains (P<0.05), and serum VB12 levels were positively correlated with language developmental quotient (P<0.05). In male ASD children, serum VB12 levels were positively correlated with language and personal-social developmental quotients (P<0.05). CONCLUSIONS: Serum folate and VB12 levels in preschool ASD children are lower than those in healthy children and are associated with neurodevelopmental levels, especially in ASD children under 4 years of age. Therefore, maintaining normal serum folate and VB12 levels may be beneficial for the neurodevelopment of ASD children, especially in ASD children under 4 years of age.


Autism Spectrum Disorder , Folic Acid , Vitamin B 12 , Humans , Autism Spectrum Disorder/blood , Autism Spectrum Disorder/etiology , Child, Preschool , Male , Female , Folic Acid/blood , Vitamin B 12/blood , Child , Child Development
20.
J Mol Histol ; 55(3): 317-328, 2024 Jun.
Article En | MEDLINE | ID: mdl-38630414

BACKGROUND: Autophagy plays multifaceted roles in regulating hepatocellular carcinoma (HCC) and the mechanisms involved are under-explored. Regulatory microRNAs (miRNAs) have been reported to target autophagy proteins but their roles in HCC is not well studied. Using HCC patient tissues, this study aims to investigate the association of autophagy with several clinicopathological parameters as well as identifying the autophagy-related miRNAs and the possible pathways. METHODS AND RESULTS: Autophagy level in the HCC patient-derived cancer and non-cancer tissues was determined by immunohistochemistry (IHC) targeting SQSTM1, LC3A and LC3B proteins. Significance tests of clinicopathological variables were tested using the Fisher's exact or Chi-square tests. Gene and miRNA expression assays were carried out and analyzed using Nanostring platform and software followed by validation of other online bioinformatics tools, namely String and miRabel. Autophagy expression was significantly higher in cancerous tissues compared to adjacent non-cancer tissues. High LC3B expression was associated with advanced tumor histology grade and tumor location. Nanostring gene expression analysis revealed that SQSTM1, PARP1 and ATG9A genes were upregulated in HCC tissues compared to non-cancer tissues while SIRT1 gene was downregulated. These genes are closely related to an autophagy pathway in HCC. Further, using miRabel tool, three downregulated miRNAs (hsa-miR-16b-5p, hsa-miR-34a-5p, and hsa-miR-660-5p) and one upregulated miRNA (hsa-miR-539-5p) were found to closely interact with the abovementioned autophagy-related genes. We then mapped out the possible pathway involving the genes and miRNAs in HCC tissues. CONCLUSIONS: We conclude that autophagy events are more active in HCC tissues compared to the adjacent non-cancer tissues. We also reported the possible role of several miRNAs in regulating autophagy-related genes in the autophagy pathway in HCC. This may contribute to the development of potential therapeutic targets for improving HCC therapy. Future investigations are warranted to validate the target genes reported in this study using a larger sample size and more targeted molecular technique.


Autophagy , Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Liver Neoplasms , MicroRNAs , Microtubule-Associated Proteins , Sequestosome-1 Protein , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Autophagy/genetics , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Male , Female , Middle Aged , Aged , Signal Transduction/genetics , Adult
...