Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 7111, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160153

ABSTRACT

In-depth multiomic phenotyping provides molecular insights into complex physiological processes and their pathologies. Here, we report on integrating 18 diverse deep molecular phenotyping (omics-) technologies applied to urine, blood, and saliva samples from 391 participants of the multiethnic diabetes Qatar Metabolomics Study of Diabetes (QMDiab). Using 6,304 quantitative molecular traits with 1,221,345 genetic variants, methylation at 470,837 DNA CpG sites, and gene expression of 57,000 transcripts, we determine (1) within-platform partial correlations, (2) between-platform mutual best correlations, and (3) genome-, epigenome-, transcriptome-, and phenome-wide associations. Combined into a molecular network of > 34,000 statistically significant trait-trait links in biofluids, our study portrays "The Molecular Human". We describe the variances explained by each omics in the phenotypes (age, sex, BMI, and diabetes state), platform complementarity, and the inherent correlation structures of multiomics data. Further, we construct multi-molecular network of diabetes subtypes. Finally, we generated an open-access web interface to "The Molecular Human" ( http://comics.metabolomix.com ), providing interactive data exploration and hypotheses generation possibilities.


Subject(s)
Phenotype , Humans , Male , Female , Metabolomics/methods , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , DNA Methylation , Transcriptome , Middle Aged , Genome-Wide Association Study , Qatar/epidemiology , Epigenome , Adult , CpG Islands/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Multiomics
2.
Commun Biol ; 7(1): 964, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122901

ABSTRACT

Broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) have the capacity to delay viral rebound when administered to people with HIV-1 (PWH) during anti-retroviral therapy (ART) interruption. To further enhance the performance of bNAbs through their Fc effector functions, in particular NK cell-mediated killing of HIV-1 infected cells, we have produced a panel of glyco-engineered (afucosylated) bNAbs with enhanced affinity for Fc gamma receptor IIIa. These afucosylated anti-HIV-1 bNAbs enhance NK cell activation and degranulation compared to fucosylated counterparts even at low antigen density. NK cells from PWH expressing exhaustion markers PD-1 and TIGIT are activated in a similar fashion by afucosylated bNAbs as NK cell from HIV-1 negative individuals. Killing of HIV-1 infected cells is most effective with afucosylated bNAbs 2G12, N6, PGT151 and PGDM1400, whereas afucosylated PGT121 and non-neutralizing antibody A32 only induce minor NK cell-mediated killing. These data indicate that the approach angle and affinity of Abs influence the capacity to induce antibody-dependent cellular cytotoxicity. Thus, afucosylated bNAbs have the capacity to induce NK cell-mediated killing of infected cells, which warrants further investigation of afucosylated bNAb administration in vivo, aiming for reduction of the viral reservoir and ART free durable control.


Subject(s)
Broadly Neutralizing Antibodies , HIV Antibodies , HIV Infections , HIV-1 , Killer Cells, Natural , Humans , HIV-1/immunology , Killer Cells, Natural/immunology , HIV Infections/immunology , HIV Infections/virology , HIV Infections/drug therapy , HIV Antibodies/immunology , Broadly Neutralizing Antibodies/immunology , Antibodies, Neutralizing/immunology , Receptors, IgG/immunology , Receptors, IgG/metabolism , Antibody-Dependent Cell Cytotoxicity/immunology , Fucose
3.
Genome Med ; 16(1): 96, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123268

ABSTRACT

BACKGROUND: Immunoglobulin (Ig) glycosylation modulates the immune response and plays a critical role in ageing and diseases. Studies have mainly focused on IgG glycosylation, and little is known about the genetics and epidemiology of IgA glycosylation. METHODS: We generated, using a novel liquid chromatography-mass spectrometry method, the first large-scale IgA glycomics dataset in serum from 2423 twins, encompassing 71 N- and O-glycan species. RESULTS: We showed that, despite the lack of a direct genetic template, glycosylation is highly heritable, and that glycopeptide structures are sex-specific, and undergo substantial changes with ageing. We observe extensive correlations between the IgA and IgG glycomes, and, exploiting the twin design, show that they are predominantly influenced by shared genetic factors. A genome-wide association study identified eight loci associated with both the IgA and IgG glycomes (ST6GAL1, ELL2, B4GALT1, ABCF2, TMEM121, SLC38A10, SMARCB1, and MGAT3) and two novel loci specifically modulating IgA O-glycosylation (C1GALT1 and ST3GAL1). Validation of our findings in an independent cohort of 320 individuals from Qatar showed that the underlying genetic architecture is conserved across ancestries. CONCLUSIONS: Our study delineates the genetic landscape of IgA glycosylation and provides novel potential functional links with the aetiology of complex immune diseases, including genetic factors involved in IgA nephropathy risk.


Subject(s)
Genome-Wide Association Study , Glycomics , Immunoglobulin A , Humans , Immunoglobulin A/blood , Immunoglobulin A/genetics , Glycosylation , Female , Male , Polysaccharides/metabolism , Adult , Immunoglobulin G/blood , Middle Aged , Aged
4.
iScience ; 27(7): 110374, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39100929

ABSTRACT

Total plasma protein N-glycosylation (TPNG) changes are a hallmark of many diseases. Here, we analyzed the TPNG of 169 COVID-19 patients and 12 healthy controls, using mass spectrometry, resulting in the relative quantification of 85 N-glycans. We found a COVID-19 N-glycomic signature, with 59 glycans differing between patients and controls, many of them additionally differentiating between severe and mild COVID-19. Tri- and tetra-antennary N-glycans were increased in patients, showing additionally elevated levels of antennary α2,6-sialylation. Conversely, bisection of di-antennary, core-fucosylated, nonsialylated glycans was low in COVID-19, particularly in severe cases, potentially driven by the previously observed low levels of bisection on antibodies of severely diseased COVID-19 patients. These glycomic changes point toward systemic changes in the blood glycoproteome, particularly involvement of acute-phase proteins, immunoglobulins and the complement cascade. Further research is needed to dissect glycosylation changes in a protein- and site-specific way to obtain specific functional leads.

5.
J Proteome Res ; 23(7): 2431-2440, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965920

ABSTRACT

Alpha-1-acid glycoprotein (AGP) is a heterogeneous glycoprotein fulfilling key roles in many biological processes, including transport of drugs and hormones and modulation of inflammatory and immune responses. The glycoform profile of AGP is known to change depending on (patho)physiological states such as inflammatory diseases or pregnancy. Besides complexity originating from five N-glycosylation sites, the heterogeneity of the AGP further expands to genetic variants. To allow in-depth characterization of this intriguing protein, we developed a method using anion exchange chromatography (AEX) coupled to mass spectrometry (MS) revealing the presence of over 400 proteoforms differing in their glycosylation or genetic variants. More precisely, we could determine that AGP mainly consists of highly sialylated higher antennary structures with on average 16 sialic acids and 0 or 1 fucose per protein. Interestingly, a slightly higher level of fucosylation was observed for AGP1 variants compared to that of AGP2. Proteoform assignment was supported by integrating data from complementary MS-based approaches, including AEX-MS of an exoglycosidase-treated sample and glycopeptide analysis after tryptic digestion. The developed analytical method was applied to characterize AGP from plasma of women during and after pregnancy, revealing differences in glycosylation profiles, specifically in the number of antennae, HexHexNAc units, and sialic acids.


Subject(s)
Orosomucoid , Humans , Orosomucoid/metabolism , Orosomucoid/chemistry , Female , Pregnancy , Chromatography, Ion Exchange/methods , Glycosylation , Mass Spectrometry/methods , Fucose/chemistry , Fucose/metabolism , Glycopeptides/analysis , Glycopeptides/chemistry , Glycopeptides/blood
6.
Commun Biol ; 7(1): 865, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39009807

ABSTRACT

Long-acting passive immunization strategies are needed to protect immunosuppressed vulnerable groups from infectious diseases. To further explore this concept for COVID-19, we constructed Adeno-associated viral (AAV) vectors encoding the human variable regions of the SARS-CoV-2 neutralizing antibody, TRES6, fused to murine constant regions. An optimized vector construct was packaged in hepatotropic (AAV8) or myotropic (AAVMYO) AAV capsids and injected intravenously into syngeneic TRIANNI-mice. The highest TRES6 serum concentrations (511 µg/ml) were detected 24 weeks after injection of the myotropic vector particles and mean TRES6 serum concentrations remained above 100 µg/ml for at least one year. Anti-drug antibodies or TRES6-specific T cells were not detectable. After injection of the AAV8 particles, vector mRNA was detected in the liver, while the AAVMYO particles led to high vector mRNA levels in the heart and skeletal muscle. The analysis of the Fc-glycosylation pattern of the TRES6 serum antibodies revealed critical differences between the capsids that coincided with different binding activities to murine Fc-γ-receptors. Concomitantly, the vector-based immune prophylaxis led to protection against SARS-CoV-2 infection in K18-hACE2 mice. High and long-lasting expression levels, absence of anti-drug antibodies and favourable Fc-γ-receptor binding activities warrant further exploration of myotropic AAV vector-based delivery of antibodies and other biologicals.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Dependovirus , Genetic Vectors , Receptors, IgG , SARS-CoV-2 , Animals , Dependovirus/genetics , SARS-CoV-2/immunology , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Mice , Humans , COVID-19/immunology , COVID-19/prevention & control , Genetic Vectors/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Receptors, IgG/metabolism , Receptors, IgG/genetics , Receptors, IgG/immunology , Viral Tropism , Immunization, Passive
7.
Allergy ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39049686

ABSTRACT

BACKGROUND: Recently, it has been questioned whether vaccination of patients with inflammatory (auto)immune diseases under anti-tumor necrosis factor (TNF) treatment leads to impaired vaccine-induced immune responses and protection against breakthrough infections. However, the effects of TNF blockade on short- and long-term immune responses after repeated vaccination remain unclear. Vaccination studies have shown that initial short-term IgG antibodies (Abs) carry highly galactosylated and sialylated Fc glycans, whilst long-term IgG Abs have low levels of galactosylation and sialylation and are most likely generated by long-lived plasma cells (PCs) derived primarily from the germinal center (GC) response. Thus, IgG Fc glycosylation patterns may be applicable to distinguish short- and long-term vaccine responses after repeated vaccination under the influence of anti-TNF treatment. METHODS: We used COVID-19 vaccination as a model to investigate vaccine-induced IgG subclass levels and Fc glycosylation patterns, B cell subsets, and effector functions of short- and long-term Ab responses after up to three vaccinations in patients on anti-TNF or other immunosuppressive treatments and in healthy individuals. Using TriNetX, a global healthcare database, we determined the risk of SARS-CoV-2 breakthrough infections in vaccinated patients treated with anti-TNF or other immunosuppressive drugs. RESULTS: Anti-TNF treatment reduced the long-term abundance of all anti-S IgG subclasses with low levels of galactosylation and sialylation. Re-activation of potential memory B cells initially generated highly galactosylated and sialylated IgG antibodies, which were progressively reduced after each booster dose in anti-TNF-treated patients, especially in the elderly. The reduced short- and long-term IgG (1) levels in anti-TNF-treated patients correlated with diminished functional activity and an increased risk for the development of COVID-19. CONCLUSIONS: The data suggest that anti-TNF treatment reduces both GC-dependent long-lived PCs and GC-dependent memory B cell-derived short-lived PCs, hence both the long- and short-term IgG subclass responses, respectively, after repeated vaccination. We propose that anti-TNF therapy, especially in the elderly, reduces the benefit of booster vaccination.

9.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928183

ABSTRACT

Sepsis is a life-threatening condition with a rising disease burden worldwide. It is a multifactorial disease and is defined as a dysregulated host response to infection. Neutrophils have been shown to be involved in the pathogenesis of sepsis by exacerbating inflammation. However, the exact effector mechanism of action still remains a mystery. Changes in the glycosylation pattern of the immunoglobulin G (IgG) Fc region are described for several diseases including meningococcal sepsis. In this study, we investigated the possible contribution of neutrophils and neutrophil implication, potentially related to degranulation or neutrophil extracellular trap (NET) formation in changing the IgG Fc N-glycosylation pattern in a murine sepsis model. We have measured the serum level of cytokines/chemokines and immunoglobulins, the serum activity of neutrophil elastase (NE), and analyzed the IgG Fc glycosylation pattern by Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (LC-ESI-MS) and Lectin enzyme-linked immunosorbent assay (ELISA). We observed an increased activity of NE- and neutrophil-associated cytokines such as keratinocyte chemoattractant (KC) with the development of sepsis. Regarding the IgG Fc N-glycosylation, we observed an increase in fucosylation and α1,3-galactosylation and a decrease for sialyation. Interestingly, these changes were not uniform for all IgG subclasses. After depletion of neutrophils, we saw a change in the exposure of fucose and α2,6-linked sialic acid during the time course of our experimental sepsis model. In conclusion, neutrophils can influence changes in the IgG glycosylation pattern in experimental sepsis.


Subject(s)
Disease Models, Animal , Immunoglobulin G , Neutrophils , Sepsis , Animals , Sepsis/metabolism , Sepsis/immunology , Neutrophils/metabolism , Neutrophils/immunology , Glycosylation , Immunoglobulin G/metabolism , Immunoglobulin G/immunology , Immunoglobulin G/blood , Mice , Cytokines/metabolism , Immunoglobulin Fc Fragments/metabolism , Mice, Inbred C57BL , Leukocyte Elastase/metabolism , Male , Extracellular Traps/metabolism , Glycoproteins
10.
Carbohydr Polym ; 341: 122327, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38876725

ABSTRACT

Bacterial pathogens can cause a broad range of infections with detrimental effects on health. Vaccine development is essential as multi-drug resistance in bacterial infections is a rising concern. Recombinantly produced proteins carrying O-antigen glycosylation are promising glycoconjugate vaccine candidates to prevent bacterial infections. However, methods for their comprehensive structural characterization are lacking. Here, we present a bottom-up approach for their site-specific characterization, detecting N-glycopeptides by nano reversed-phase liquid chromatography-mass spectrometry (RP-LC-MS). Glycopeptide analyses revealed information on partial site-occupancy and site-specific glycosylation heterogeneity and helped corroborate the polysaccharide structures and their modifications. Bottom-up analysis was complemented by intact glycoprotein analysis using nano RP-LC-MS allowing the fast visualization of the polysaccharide distribution in the intact glycoconjugate. At the glycopeptide level, the model glycoconjugates analyzed showed different repeat unit (RU) distributions that spanned from 1 to 21 RUs attached to each of the different glycosylation sites. Interestingly, the intact glycoprotein analysis displayed a RU distribution ranging from 1 to 28 RUs, showing the predominant species when the different glycopeptide distributions are combined in the intact glycoconjugate. The complete workflow based on LC-MS measurements allows detailed and comprehensive analysis of the glycosylation state of glycoconjugate vaccines.


Subject(s)
Bacterial Vaccines , Glycoconjugates , Glycopeptides , Glycoconjugates/chemistry , Glycoconjugates/immunology , Bacterial Vaccines/immunology , Bacterial Vaccines/chemistry , Glycosylation , Glycopeptides/chemistry , Glycopeptides/analysis , Mass Spectrometry/methods , Vaccines, Conjugate/chemistry , Vaccines, Conjugate/immunology , Chromatography, Liquid/methods , Chromatography, Reverse-Phase/methods
11.
FEBS J ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767318

ABSTRACT

A group of bacterial proteases, the Pro-Pro endopeptidases (PPEPs), possess the unique ability to hydrolyze proline-proline bonds in proteins. Since a protease's function is largely determined by its substrate specificity, methods that can extensively characterize substrate specificity are valuable tools for protease research. Previously, we achieved an in-depth characterization of PPEP prime-side specificity. However, PPEP specificity is also determined by the non-prime-side residues in the substrate. To gain a more complete insight into the determinants of PPEP specificity, we characterized the non-prime- and prime-side specificity of various PPEPs using a combination of synthetic combinatorial peptide libraries and mass spectrometry. With this approach, we deepened our understanding of the P3-P3' specificities of PPEP-1 and PPEP-2, while identifying the endogenous substrate of PPEP-2 as the most optimal substrate in our library data. Furthermore, by employing the library approach, we investigated the altered specificity of mutants of PPEP-1 and PPEP-2. Additionally, we characterized a novel PPEP from Anoxybacillus tepidamans, which we termed PPEP-4. Based on structural comparisons, we hypothesized that PPEP-4 displays a PPEP-1-like prime-side specificity, which was substantiated by the experimental data. Intriguingly, another putative PPEP from Clostridioides difficile, CD1597, did not display Pro-Pro endoproteolytic activity. Collectively, we characterized PPEP specificity in detail using our robust peptide library method and, together with additional structural information, provide more insight into the intricate mechanisms that govern protease specificity.

12.
J Transl Med ; 22(1): 456, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745252

ABSTRACT

BACKGROUND: Changes in plasma protein glycosylation are known to functionally affect proteins and to associate with liver diseases, including cirrhosis and hepatocellular carcinoma. Autoimmune hepatitis (AIH) is a liver disease characterized by liver inflammation and raised serum levels of IgG, and is difficult to distinguish from other liver diseases. The aim of this study was to examine plasma and IgG-specific N-glycosylation in AIH and compare it with healthy controls and other liver diseases. METHODS: In this cross-sectional cohort study, total plasma N-glycosylation and IgG Fc glycosylation analysis was performed by mass spectrometry for 66 AIH patients, 60 age- and sex-matched healthy controls, 31 primary biliary cholangitis patients, 10 primary sclerosing cholangitis patients, 30 non-alcoholic fatty liver disease patients and 74 patients with viral or alcoholic hepatitis. A total of 121 glycans were quantified per individual. Associations between glycosylation traits and AIH were investigated as compared to healthy controls and other liver diseases. RESULTS: Glycan traits bisection (OR: 3.78 [1.88-9.35], p-value: 5.88 × 10- 3), tetraantennary sialylation per galactose (A4GS) (OR: 2.88 [1.75-5.16], p-value: 1.63 × 10- 3), IgG1 galactosylation (OR: 0.35 [0.2-0.58], p-value: 3.47 × 10- 5) and hybrid type glycans (OR: 2.73 [1.67-4.89], p-value: 2.31 × 10- 3) were found as discriminators between AIH and healthy controls. High A4GS differentiated AIH from other liver diseases, while bisection associated with cirrhosis severity. CONCLUSIONS: Compared to other liver diseases, AIH shows distinctively high A4GS levels in plasma, with potential implications on glycoprotein function and clearance. Plasma-derived glycosylation has potential to be used as a diagnostic marker for AIH in the future. This may alleviate the need for a liver biopsy at diagnosis. Glycosidic changes should be investigated further in longitudinal studies and may be used for diagnostic and monitoring purposes in the future.


Subject(s)
Hepatitis, Autoimmune , Polysaccharides , Humans , Hepatitis, Autoimmune/blood , Female , Male , Polysaccharides/blood , Polysaccharides/metabolism , Middle Aged , Glycosylation , Case-Control Studies , Immunoglobulin G/blood , Liver Diseases/blood , Adult , Cross-Sectional Studies , Aged
13.
JACS Au ; 4(5): 1696-1708, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38818049

ABSTRACT

Most of the proteins in the circulation are N-glycosylated, shaping together the total blood N-glycome (TBNG). Glycosylation is known to affect protein function, stability, and clearance. The TBNG is influenced by genetic, environmental, and metabolic factors, in part epigenetically imprinted, and responds to a variety of bioactive signals including cytokines and hormones. Accordingly, physiological and pathological events are reflected in distinct TBNG signatures. Here, we assess the specificity of the emerging disease-associated TBNG signatures with respect to a number of key glycosylation motifs including antennarity, linkage-specific sialylation, fucosylation, as well as expression of complex, hybrid-type and oligomannosidic N-glycans, and show perplexing complexity of the glycomic dimension of the studied diseases. Perspectives are given regarding the protein- and site-specific analysis of N-glycosylation, and the dissection of underlying regulatory layers and functional roles of blood protein N-glycosylation.

14.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791405

ABSTRACT

Apolipoprotein-CIII (apo-CIII) inhibits the clearance of triglycerides from circulation and is associated with an increased risk of diabetes complications. It exists in four main proteoforms: O-glycosylated variants containing either zero, one, or two sialic acids and a non-glycosylated variant. O-glycosylation may affect the metabolic functions of apo-CIII. We investigated the associations of apo-CIII glycosylation in blood plasma, measured by mass spectrometry of the intact protein, and genetic variants with micro- and macrovascular complications (retinopathy, nephropathy, neuropathy, cardiovascular disease) of type 2 diabetes in a DiaGene study (n = 1571) and the Hoorn DCS cohort (n = 5409). Mono-sialylated apolipoprotein-CIII (apo-CIII1) was associated with a reduced risk of retinopathy (ß = -7.215, 95% CI -11.137 to -3.294) whereas disialylated apolipoprotein-CIII (apo-CIII2) was associated with an increased risk (ß = 5.309, 95% CI 2.279 to 8.339). A variant of the GALNT2-gene (rs4846913), previously linked to lower apo-CIII0a, was associated with a decreased prevalence of retinopathy (OR = 0.739, 95% CI 0.575 to 0.951). Higher apo-CIII1 levels were associated with neuropathy (ß = 7.706, 95% CI 2.317 to 13.095) and lower apo-CIII0a with macrovascular complications (ß = -9.195, 95% CI -15.847 to -2.543). In conclusion, apo-CIII glycosylation was associated with the prevalence of micro- and macrovascular complications of diabetes. Moreover, a variant in the GALNT2-gene was associated with apo-CIII glycosylation and retinopathy, suggesting a causal effect. The findings facilitate a molecular understanding of the pathophysiology of diabetes complications and warrant consideration of apo-CIII glycosylation as a potential target in the prevention of diabetes complications.


Subject(s)
Apolipoprotein C-III , Diabetes Mellitus, Type 2 , Aged , Female , Humans , Male , Middle Aged , Apolipoprotein C-III/genetics , Apolipoprotein C-III/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/genetics , Diabetic Angiopathies/etiology , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/genetics , Diabetic Retinopathy/etiology , Glycosylation , Polymorphism, Single Nucleotide
15.
Anal Chem ; 96(22): 8942-8948, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38758656

ABSTRACT

The diverse and unpredictable structures of O-GalNAc-type protein glycosylation present a challenge for its structural and functional characterization in a biological system. Porous graphitized carbon (PGC) liquid chromatography (LC) coupled to mass spectrometry (MS) has become one of the most powerful methods for the global analysis of glycans in complex biological samples, mainly due to the extensive chromatographic separation of (isomeric) glycan structures and the information delivered by collision induced fragmentation in negative mode MS for structural elucidation. However, current PGC-based methodologies fail to detect the smaller glycan species consisting of one or two monosaccharides, such as the Tn (single GalNAc) antigen, which is broadly implicated in cancer biology. This limitation is caused by the loss of small saccharides during sample preparation and LC. Here, we improved the conventional PGC nano-LC-MS/MS-based strategy for O-glycan analysis, enabling the detection of truncated O-glycan species and improving isomer separation. This was achieved by the implementation of 2.7 µm PGC particles in both the trap and analytical LC columns, which provided an enhanced binding capacity and isomer separation for O-glycans. Furthermore, a novel mixed-mode PGC-boronic acid-solid phase extraction during sample preparation was established to purify a broad range of glycans in an unbiased manner, including the previously missed mono- and disaccharides. Taken together, the optimized PGC nano-LC-MS/MS platform presents a powerful component of the toolbox for comprehensive O-glycan characterization.


Subject(s)
Graphite , Polysaccharides , Polysaccharides/analysis , Polysaccharides/chemistry , Porosity , Graphite/chemistry , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Nanotechnology , Humans , Carbon/chemistry
16.
Glycobiology ; 34(7)2024 05 26.
Article in English | MEDLINE | ID: mdl-38785323

ABSTRACT

Aberrant glycosylation is a key mechanism employed by cancer cells to evade immune surveillance, induce angiogenesis and metastasis, among other hallmarks of cancer. Sialic acids, distinctive terminal glycan structures located on glycoproteins or glycolipids, are prominently upregulated across various tumor types, including colorectal cancer (CRC). Sialylated glycans modulate anti-tumor immune responses through their interactions with Siglecs, a family of glycan-binding receptors with specificity for sialic acid-containing glycoconjugates, often resulting in immunosuppression. In this paper, we investigated the immunomodulatory function of ST3Gal5, a sialyltransferase that catalyzes the addition of α2-3 sialic acids to glycosphingolipids, since lower expression of ST3Gal5 is associated with better survival of CRC patients. We employed CRISPR/Cas9 to knock out the ST3Gal5 gene in two murine CRC cell lines MC38 and CT26. Glycomics analysis confirmed the removal of sialic acids on glycolipids, with no discernible impact on glycoprotein sialylation. Although knocking out ST3Gal5 in both cell lines did not affect in vivo tumor growth, we observed enhanced levels of regulatory T cells in CT26 tumors lacking ST3Gal5. Moreover, we demonstrate that the absence of ST3Gal5 affected size and blood vessel density only in MC38 tumors. In summary, we ascertain that sialylation of glycosphingolipids has a limited influence on the anti-tumor immune response in CRC, despite detecting alterations in the tumor microenvironment, possibly due to a shift in ganglioside abundance.


Subject(s)
Colorectal Neoplasms , Gangliosides , Sialyltransferases , Sialyltransferases/metabolism , Sialyltransferases/genetics , Gangliosides/metabolism , Gangliosides/immunology , Animals , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Mice , Cell Line, Tumor , Humans , beta-Galactoside alpha-2,3-Sialyltransferase
17.
Appl Environ Microbiol ; 90(4): e0208723, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38557137

ABSTRACT

Filamentous growth of streptomycetes coincides with the synthesis and deposition of an uncharacterized protective glucan at hyphal tips. Synthesis of this glucan depends on the integral membrane protein CslA and the radical copper oxidase GlxA, which are part of a presumably large multiprotein complex operating at growing tips. Here, we show that CslA and GlxA interact by forming a protein complex that is sufficient to synthesize cellulose in vitro. Mass spectrometry analysis revealed that the purified complex produces cellulose chains with a degree of polymerization of at least 80 residues. Truncation analyses demonstrated that the removal of a significant extracellular segment of GlxA had no impact on complex formation, but significantly diminished activity of CslA. Altogether, our work demonstrates that CslA and GlxA form the active core of the cellulose synthase complex and provide molecular insights into a unique cellulose biosynthesis system that is conserved in streptomycetes. IMPORTANCE: Cellulose stands out as the most abundant polysaccharide on Earth. While the synthesis of this polysaccharide has been extensively studied in plants and Gram-negative bacteria, the mechanisms in Gram-positive bacteria have remained largely unknown. Our research unveils a novel cellulose synthase complex formed by the interaction between the cellulose synthase-like protein CslA and the radical copper oxidase GlxA from Streptomyces lividans, a soil-dwelling Gram-positive bacterium. This discovery provides molecular insights into the distinctive cellulose biosynthesis machinery. Beyond expanding our understanding of cellulose biosynthesis, this study also opens avenues for exploring biotechnological applications and ecological roles of cellulose in Gram-positive bacteria, thereby contributing to the broader field of microbial cellulose biosynthesis and biofilm research.


Subject(s)
Polysaccharides , Streptomyces lividans , Streptomyces lividans/genetics , Streptomyces lividans/metabolism , Polysaccharides/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Cellulose/metabolism
18.
Commun Biol ; 7(1): 430, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594506

ABSTRACT

Despite recent advances in cancer immunotherapy, pancreatic ductal adenocarcinoma (PDAC) remains unresponsive due to an immunosuppressive tumor microenvironment, which is characterized by the abundance of cancer-associated fibroblasts (CAFs). Once identified, CAF-mediated immune inhibitory mechanisms could be exploited for cancer immunotherapy. Siglec receptors are increasingly recognized as immune checkpoints, and their ligands, sialic acids, are known to be overexpressed by cancer cells. Here, we unveil a previously unrecognized role of sialic acid-containing glycans on PDAC CAFs as crucial modulators of myeloid cells. Using multiplex immunohistochemistry and transcriptomics, we show that PDAC stroma is enriched in sialic acid-containing glycans compared to tumor cells and normal fibroblasts, and characterized by ST3GAL4 expression. We demonstrate that sialic acids on CAF cell lines serve as ligands for Siglec-7, -9, -10 and -15, distinct from the ligands on tumor cells, and that these receptors are found on myeloid cells in the stroma of PDAC biopsies. Furthermore, we show that CAFs drive the differentiation of monocytes to immunosuppressive tumor-associated macrophages in vitro, and that CAF sialylation plays a dominant role in this process compared to tumor cell sialylation. Collectively, our findings unravel sialic acids as a mechanism of CAF-mediated immunomodulation, which may provide targets for immunotherapy in PDAC.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , N-Acetylneuraminic Acid/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/metabolism , Macrophages/metabolism , Polysaccharides/metabolism , Tumor Microenvironment
19.
Aging Cell ; 23(7): e14167, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38616780

ABSTRACT

Down syndrome (DS) is characterized by lowered immune competence and premature aging. We previously showed decreased antibody response following SARS-CoV-2 vaccination in adults with DS. IgG1 Fc glycosylation patterns are known to affect the effector function of IgG and are associated with aging. Here, we compare total and anti-spike (S) IgG1 glycosylation patterns following SARS-CoV-2 vaccination in DS and healthy controls (HC). Total and anti-Spike IgG1 Fc N-glycan glycoprofiles were measured in non-exposed adults with DS and controls before and after SARS-CoV-2 vaccination by liquid chromatography-mass spectrometry (LC-MS) of Fc glycopeptides. We recruited N = 44 patients and N = 40 controls. We confirmed IgG glycosylation patterns associated with aging in HC and showed premature aging in DS. In DS, we found decreased galactosylation (50.2% vs. 59.0%) and sialylation (6.7% vs. 8.5%) as well as increased fucosylation (97.0% vs. 94.6%) of total IgG. Both cohorts showed similar bisecting GlcNAc of total and anti-S IgG1 with age. In contrast, anti-S IgG1 of DS and HC showed highly comparable glycosylation profiles 28 days post vaccination. The IgG1 glycoprofile in DS exhibits strong premature aging. The combination of an early decrease in IgG1 Fc galactosylation and sialylation and increase in fucosylation is predicted to reduce complement activity and decrease FcγRIII binding and subsequent activation, respectively. The altered glycosylation patterns, combined with decreased antibody concentrations, help us understand the susceptibility to severe infections in DS. The effect of premature aging highlights the need for individuals with DS to receive tailored vaccines and/or vaccination schedules.


Subject(s)
Aging, Premature , Down Syndrome , Immunoglobulin G , Humans , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Glycosylation , Female , Male , Aging, Premature/metabolism , Aging, Premature/immunology , Adult , Middle Aged , Down Syndrome/immunology , Down Syndrome/metabolism , COVID-19/immunology , COVID-19/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Vaccination , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Glycoproteins
20.
Mol Cell Proteomics ; 23(6): 100776, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670309

ABSTRACT

Alterations in the glycomic profile are a hallmark of cancer, including colorectal cancer (CRC). While, the glycosylation of glycoproteins and glycolipids has been widely studied for CRC cell lines and tissues, a comprehensive overview of CRC glycomics is still lacking due to the usage of different samples and analytical methods. In this study, we compared glycosylation features of N-, O-glycans, and glycosphingolipid glycans for a set of 22 CRC cell lines, all measured by porous graphitized carbon nano-liquid chromatography-tandem mass spectrometry. An overall, high abundance of (sialyl)Lewis antigens for colon-like cell lines was found, while undifferentiated cell lines showed high expression of H blood group antigens and α2-3/6 sialylation. Moreover, significant associations of glycosylation features were found between the three classes of glycans, such as (sialyl)Lewis and H blood group antigens. Integration of the datasets with transcriptomics data revealed positive correlations between (sialyl)Lewis antigens, the corresponding glycosyltransferase FUT3 and transcription factors CDX1, ETS, HNF1/4A, MECOM, and MYB. This indicates a possible role of these transcription factors in the upregulation of (sialyl)Lewis antigens, particularly on glycosphingolipid glycans, via FUT3/4 expression in colon-like cell lines. In conclusion, our study provides insights into the possible regulation of glycans in CRC and can serve as a guide for the development of diagnostic and therapeutic biomarkers.


Subject(s)
Cell Differentiation , Colorectal Neoplasms , Glycosphingolipids , Polysaccharides , Humans , Glycosphingolipids/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Polysaccharides/metabolism , Cell Line, Tumor , Colon/metabolism , Glycosylation , Lewis Blood Group Antigens/metabolism , Fucosyltransferases/metabolism , Fucosyltransferases/genetics , Glycomics/methods , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL