Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2304867, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837502

ABSTRACT

A disordered crystal structure is an asymmetrical atomic lattice resulting from the missing atoms (vacancies) or the lattice misarrangement in a solid-state material. It has been widely proven to improve the electrocatalytic hydrogen evolution reaction (HER) process. In the present work, due to the special physical properties (the low evaporation temperature of below 900 °C), Zn is utilized as a sacrificial component to create senary PtIrNiCoFeZn high-entropy alloy (HEA) with highly disordered lattices. The structure of the lattice-disordered PtIrNiCoFeZn HEA is characterized by the thermal diffusion scattering (TDS) in transmission electron microscope. Density functional theory calculations reveal that lattice disorder not only accelerates both the Volmer step and Tafel step during the HER process but also optimizes the intensity and distribution of projected density of states near the Fermi energy after the H2O and H adsorption. Anomalously high alkaline HER activity and stability are proven by experimental measurements. This work introduces a novel approach to preparing irregular lattices offering highly efficient HEA and a TDS characterization method to reveal the disordered lattice in materials. It provides a new route toward exploring and developing the catalytic activities of materials with asymmetrically disordered lattices.

2.
Adv Sci (Weinh) ; 10(14): e2300094, 2023 May.
Article in English | MEDLINE | ID: mdl-36950752

ABSTRACT

High catalytic efficiency and long-term stability are two main components for the performance assessment of an electrocatalyst. Previous attention has been paid more to efficiency other than stability. The present work is focused on the study of the stability processed on the FeCoNiRu high-entropy alloy (HEA) in correlation with its catalytic efficiency. This catalyst has demonstrated not only performing the simultaneous hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) with high efficiency but also sustaining long-term stability upon HER and OER. The study reveals that the outstanding stability is attributed to the spinel oxide surface layer developed during evolution reactions. The spinel structure preserves the active sites that are inherited from the HEA's intrinsic structure. This work will provide an insightful direction/pathway for the design and manufacturing activities of other metallic electrocatalysts and a benchmark for the assessment of their efficiency-stability relationship.

SELECTION OF CITATIONS
SEARCH DETAIL