Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 605
Filter
1.
Nat Commun ; 15(1): 6478, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090126

ABSTRACT

Human enteroviruses (HEV) can cause a range of diseases from mild to potentially life-threatening. Identification and genotyping of HEV are crucial for disease management. Existing typing methods, however, have inherent limitations. Developing alternative methods to detect HEV with more virus types, high accuracy, and sensitivity in an accessible manner presents a technological and analytical challenge. Here, a sequence-specific nanoparticle barcode (SSNB) method is presented for simultaneous detection of 10 HEV types. This method significantly increases sensitivity, enhancing detection by 10-106 times over the traditional multiplex hybrid genotyping (MHG) method, by resolving cross-interference between the multiple primer sets. Furthermore, the SSNB method demonstrates a 100% specificity in accurately distinguishing between 10 different HEV types and other prevalent clinical viruses. In an analysis of 70 clinical throat swab samples, the SSNB method shows slightly higher detection rate for positive samples (50%) compared to the RT-PCR method (48.6%). Additionally, further assessment of the typing accuracy for samples identified as positive by SSNB using sequencing method reveals a concordance rate of 100%. The combined high sensitivity and specificity level of the methodology, together with the capability for multiple type analysis and compatibility with clinical workflow, make this approach a promising tool for clinical settings.


Subject(s)
Enterovirus Infections , Enterovirus , Nanoparticles , Humans , Nanoparticles/chemistry , Enterovirus Infections/virology , Enterovirus Infections/diagnosis , Enterovirus/genetics , Enterovirus/classification , Enterovirus/isolation & purification , DNA Barcoding, Taxonomic/methods , Sensitivity and Specificity , Genotyping Techniques/methods , Genotype , RNA, Viral/genetics
2.
iScience ; 27(7): 110208, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39015149

ABSTRACT

The emergence of SARS-CoV-2 variants raises concerns about the efficacy of existing COVID-19 vaccines and therapeutics. Previously, we identified a conserved cryptic class 5 epitope of SARS-CoV-2 receptor binding domain (RBD) by two cross-neutralizing antibodies 7D6 and 6D6. Intriguingly, this site remains resistant to substantial mutations occurred in ever-changing SARS-CoV-2 subvariants. As compared to class 3 antibody S309, 6D6 maintains broad and consistent neutralizing activities against SARS-CoV-2 variants. Furthermore, 6D6 effectively protected hamster from the virulent Beta strain. Sequence alignment of approximately 6 million documented SARS-CoV-2 isolates revealed that 6D6 epitope maintains an exceptionally high conservation rate (99.92%). Structural analysis demonstrated that all 33 mutations accumulated in XBB.1.5 since the original strain do not perturb the binding 6D6 to RBD, in line with the sequence analysis throughout the antigenicity evolution of SARS-CoV-2. These findings suggest the potential of this epitope serving as a critical determinant for vaccines and therapeutic design.

3.
MedComm (2020) ; 5(8): e642, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39036342

ABSTRACT

The poor prognosis observed in elderly individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a serious clinical burden and the underlying mechanism is unclear, which necessities detailed investigation of disease characteristics and research for efficient countermeasures. To simulate lethal coronavirus disease 2019 (COVID-19) in senescent human patients, 80-week-old male hamsters are intranasally inoculated with different doses of SARS-CoV-2 Omicron BA.5 variant. Exposure to a low dose of the Omicron BA.5 variant results in early activation of the innate immune response, followed by rapid viral clearance and minimal lung damage. However, a high dose of BA.5 results in impaired interferon signaling, cytokine storm, uncontrolled viral replication, and severe lung injury. To decrease viral load and reverse the deterioration of COVID-19, a new bio-mimic decoy called CoVR-MV is used as a preventive or therapeutic agent. Administration of CoVR-MV as a preventive or therapeutic intervention in the early stages of infection can effectively suppress viral load, regulate the immune response, and rescue animals from death and critical illness. These findings underscore the risk associated with SARS-CoV-2 Omicron BA.5 exposure in senescent hamsters and highlight the importance of early intervention to prevent disease progression.

4.
Front Med ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39039315

ABSTRACT

Antibody-drug conjugates (ADCs) are biologically targeted drugs composed of antibodies and cytotoxic drugs connected by linkers. These innovative compounds enable precise drug delivery to tumor cells, minimizing harm to normal tissues and offering excellent prospects for cancer treatment. However, monoclonal antibody-based ADCs still present challenges, especially in terms of balancing efficacy and safety. Bispecific antibodies are alternatives to monoclonal antibodies and exhibit superior internalization and selectivity, producing ADCs with increased safety and therapeutic efficacy. In this review, we present available evidence and future prospects regarding the use of bispecific ADCs for cancer treatment, including a comprehensive overview of bispecific ADCs that are currently in clinical trials. We offer insights into the future development of bispecific ADCs to provide novel strategies for cancer treatment.

5.
Sci Adv ; 10(31): eadn5691, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39083599

ABSTRACT

As a sirtuin (SIR2) family protein, defense-associated sirtuin2 (DSR2) has been demonstrated to participate in bacterial anti-phage resistance via depleting nicotinamide adenine dinucleotide (NAD+) of infected cells, which can be activated by tail tube protein (TTP) and inhibited by DSR anti-defense 1 (DSAD1) of diverse phages. However, the regulating mechanism remains elusive. Here, we determined the cryo-electron microscopy structure of apo DSR2, as well as the respective complex structures with TTP and DSAD1. Structural analyses and biochemical studies reveal that DSR2 forms a tetramer with a SIR2 central core and two distinct conformations. Monomeric TTP preferentially binds to the closed conformation of DSR2, inducing conformational distortions on SIR2 tetramer assembly to activate its NADase activity. DSAD1 combines with the open conformation of DSR2, directly or allosterically inhibiting TTP activation on DSR2 NAD+ hydrolysis. Our findings decipher the detailed molecule mechanisms for DSR2 NADase activity regulation and lay a foundation for in-depth understanding of the DSR2 anti-phage defense system.


Subject(s)
Bacteriophages , Cryoelectron Microscopy , Bacteriophages/metabolism , NAD+ Nucleosidase/metabolism , NAD+ Nucleosidase/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Models, Molecular , NAD/metabolism , Protein Binding , Protein Conformation , Sirtuin 2/metabolism , Sirtuin 2/chemistry , Protein Multimerization
6.
Vaccines (Basel) ; 12(7)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39066357

ABSTRACT

Hepatitis E is a significant cause of acute hepatitis, contributing to high morbidity and mortality rates, and capable of causing large epidemics through fecal-oral transmission. Currently, no specific treatment for hepatitis E has been approved. Given the notably high mortality rate among HEV-infected pregnant women and individuals with underlying chronic liver disease, concerted efforts have been made to develop effective vaccines. The only licensed hepatitis E vaccine worldwide, the HEV 239 (Hecolin) vaccine, has been demonstrated to be safe and efficacious in Phase III clinical trials, in which the efficacy of three doses of HEV 239 remained at 86.6% (95% confidence interval (CI): 73.0-94.1) at the end of 10 years follow-up. In this review, the progress and challenges for hepatitis E vaccines are summarized.

7.
J Virol ; : e0192923, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078152

ABSTRACT

Hepatitis B virus (HBV) expresses co-terminal large (L), middle (M), and small (S) envelope proteins containing preS1/preS2/S, preS2/S, and S domain alone, respectively. S and preS1 domains mediate sequential virion attachment to heparan sulfate proteoglycans and sodium taurocholate cotransporting polypeptide (NTCP), respectively, which can be blocked by anti-S and anti-preS1 antibodies. How anti-preS2 antibodies neutralize HBV infectivity remains enigmatic. The late stage of chronic HBV infection often selects for mutated preS2 translation initiation codon to prevent M protein expression, or in-frame preS2 deletions to shorten both L and M proteins. When introduced to infectious clone of genotype C or D, both M-minus mutations and most 5' preS2 deletions sustained virion production. Such mutant progeny viral particles were infectious in NTCP-reconstituted HepG2 cells. Neutralization experiments were performed on the genotype D clone. Although remaining susceptible to anti-preS1 and anti-S neutralizing antibodies, M-minus mutants were only partially neutralized by two anti-preS2 antibodies tested while preS2 deletion mutants were resistant. By infection experiments using viral particles with lost versus increased M protein expression, or a neutralization escaping preS2 deletion only present on L or M protein, we found that both full-length L and M proteins contributed to virus neutralization by the two anti-preS2 antibodies. Thus, immune escape could be a driving force for the selection of M-minus mutations, and especially preS2 deletions. The fact that both L and M proteins could mediate neutralization by anti-preS2 antibodies may shed light on the underlying molecular mechanism.IMPORTANCEThe large (L), middle (M), and small (S) envelope proteins of hepatitis B virus (HBV) contain preS1/preS2/S, preS2/S, and S domain alone, respectively. The discovery of heparan sulfate proteoglycans and sodium taurocholate cotransporting polypeptide (NTCP) as the low- and high-affinity HBV receptors could explain neutralizing potential of anti-S and anti-preS1 antibodies, respectively, but how anti-preS2 neutralizing antibodies work remains enigmatic. In this study, we found two M-minus mutants in the context of genotype D partially escaped two anti-preS2 neutralizing antibodies in NTCP-reconstituted HepG2 cells, while several naturally occurring preS2 deletion mutants escaped both antibodies. By point mutations to eliminate or enhance M protein expression, and by introducing preS2 deletion selectively to L or M protein, we found binding of anti-preS2 antibodies to both L and M proteins contributed to neutralization of wild-type HBV infectivity. Our finding may shed light on the possible mechanism(s) whereby anti-preS2 antibodies neutralize HBV infectivity.

8.
Acta Pharm Sin B ; 14(6): 2361-2377, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828136

ABSTRACT

T cell-redirecting bispecific antibodies are specifically designed to bind to tumor-associated antigens, thereby engaging with CD3 on the T cell receptor. This linkage between tumor cells and T cells actively triggers T cell activation and initiates targeted killing of the identified tumor cells. These antibodies have emerged as one of the most promising avenues within tumor immunotherapy. However, despite success in treating hematological malignancies, significant advancements in solid tumors have yet to be explored. In this review, we aim to address the critical challenges associated with T cell-redirecting bispecific antibodies and explore novel strategies to overcome these obstacles, with the ultimate goal of expanding the application of this therapy to include solid tumors.

10.
Antib Ther ; 7(2): 157-163, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38933531

ABSTRACT

The recent discovery of public antibodies targeting Plasmodium falciparum-encoded repetitive interspersed families of polypeptides (RIFINs), which contain extracellular immunoglobulin-like domains from LAIR1 or LILRB1, constitutes a significant step forward in comprehending the reactivity of the Plasmodium parasite. These antibodies arise from unique B cell clones and demonstrate extensive cross-reactivity through their interaction with P. falciparum RIFINs. LAIR1 and LILRBs are specialized type I transmembrane glycoproteins, classified as immune inhibitory receptors, restricted to primates and mainly found on hematopoietic cells. They are instrumental in modulating interactions within the tumor microenvironment and across the immune system, and are increasingly recognized as important in anti-cancer immunotherapy and pathogen defense. The presence of LAIR1/LILRB1-containing antibodies offers new insights into malaria parasite evasion strategies and the immune system's response. Additionally, the innovative method of integrating extra exons into the antibody switch region is a noteworthy advancement, enriching the strategies for the generation of a varied array of bispecific and multispecific antibodies.

11.
Viruses ; 16(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38932192

ABSTRACT

Currently, SARS-CoV-2 has evolved into various variants, including the numerous highly mutated Omicron sub-lineages, significantly increasing immune evasion ability. The development raises concerns about the possibly diminished effectiveness of available vaccines and antibody-based therapeutics. Here, we describe those representative categories of broadly neutralizing antibodies (bnAbs) that retain prominent effectiveness against emerging variants including Omicron sub-lineages. The molecular characteristics, epitope conservation, and resistance mechanisms of these antibodies are further detailed, aiming to offer suggestion or direction for the development of therapeutic antibodies, and facilitate the design of vaccines with broad-spectrum potential.


Subject(s)
Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19 , Epitopes , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/immunology , Humans , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Broadly Neutralizing Antibodies/immunology , Epitopes/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing/immunology , Immune Evasion , COVID-19 Vaccines/immunology
12.
Emerg Microbes Infect ; 13(1): 2373315, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38922438

ABSTRACT

Hepatitis E virus (HEV) is an important cause of acute hepatitis, however, is highly neglected and largely underreported. This study aimed to describe the detailed epidemiology of hepatitis E (HE) through a 10-year surveillance. A community-based active hepatitis surveillance was conducted between November 2007 and October 2017 in 11 townships of Dongtai City in China, involving 355,673 residents. Serum samples were obtained from patients presenting with hepatitis symptoms for more than 3 days. Serum alanine aminotransferase (ALT) levels greater than 2.5 times the upper limit of normal (ULN) were considered acute hepatitis. Samples were subsequently tested for IgG and IgM anti-HEV antibodies, HEV RNA, and hepatitis B surface antigen (HBsAg). The data indicated the incidence of HE fluctuated downward from 2007 to 2017, with an average annual age-standardized incidence of 17.50 per 100,000, exceeding the 10.26 per 100,000 in the National Notifiable Disease Report System (NNDRS). The incidence was notably higher among males (20.95 per 100,000) and individuals aged 50-69 years (37.47 per 100,000). Genotype 4 (HEV-4) was the predominantly circulating genotype during the study period. Furthermore, the study revealed the incidence of hepatitis with HEV and hepatitis B virus (HBV) co-infection was 4.99 per 100,000. The active surveillance system identified a higher incidence of HE compared to NNDRS, with a decreased prevalence over a 10-year period. While efforts are still needed to prevent HE in high-risk populations, including individuals with hepatitis B and the elderly.


Subject(s)
Hepatitis Antibodies , Hepatitis E virus , Hepatitis E , Humans , Hepatitis E/epidemiology , Hepatitis E/virology , China/epidemiology , Male , Middle Aged , Hepatitis E virus/genetics , Hepatitis E virus/immunology , Hepatitis E virus/classification , Hepatitis E virus/isolation & purification , Female , Adult , Aged , Adolescent , Young Adult , Incidence , Child , Child, Preschool , Hepatitis Antibodies/blood , Genotype , Infant , Hepatitis B/epidemiology , Hepatitis B/virology , RNA, Viral/genetics , Coinfection/epidemiology , Coinfection/virology , Immunoglobulin M/blood , Epidemiological Monitoring , Aged, 80 and over , Immunoglobulin G/blood , Hepatitis B virus/genetics , Hepatitis B virus/immunology , Hepatitis B virus/isolation & purification , Hepatitis B Surface Antigens/blood , Infant, Newborn , Cities/epidemiology
13.
PNAS Nexus ; 3(5): pgae183, 2024 May.
Article in English | MEDLINE | ID: mdl-38800610

ABSTRACT

The XBB.1.5 subvariant has garnered significant attention due to its exceptional immune evasion and transmissibility. Significantly, the evolutionary trajectory of SARS-CoV-2 has shown continual progression, with a recent global shift observed from XBB to BA.2.86, exemplified by the emergence of the predominant JN.1 subvariant. This phenomenon highlights the need for vaccines that can provide broad-spectrum antigenic coverage. In this study, we utilized a NS1-deleted (dNS1) influenza viral vector to engineer an updated live-attenuated vectored vaccine called dNS1-XBB-RBD. This vaccine encodes the receptor-binding domain (RBD) protein of the XBB.1.5 strain. Our findings demonstrate that the dNS1-XBB-RBD vaccine elicits a similar systemic and mucosal immune response compared to its prototypic form, dNS1-RBD. In hamsters, the dNS1-XBB-RBD vaccine provided robust protection against the SARS-CoV-2 immune-evasive strains XBB.1.9.2.1 and Beta. Remarkably, nasal vaccination with dNS1-RBD, which encodes the ancestor RBD gene, also effectively protected hamsters against both the XBB.1.9.2.1 and Beta strains. These results provide valuable insights about nasal influenza-vectored vaccine and present a promising strategy for the development of a broad-spectrum vaccine against COVID-19 in the future.

14.
Vaccines (Basel) ; 12(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38793763

ABSTRACT

Influenza virus is one of the main pathogens causing respiratory diseases in humans. Vaccines are the most effective ways to prevent viral diseases. However, the limited protective efficacy of current influenza vaccines highlights the importance of novel, safe, and effective universal influenza vaccines. With the progress of the COVID-19 pandemic, live-attenuated vaccines delivered through respiratory mucosa have shown robustly protective efficacy. How to obtain a safe and effective live-attenuated vaccine has become a major challenge. Herein, using the influenza virus as a model, we have established a strategy to quickly obtain a live-attenuated vaccine by mutating the cleavage site of the influenza virus. This mutated influenza virus can be specifically cleaved by chymotrypsin. It has similar biological characteristics to the original strain in vitro, but the safety is improved by at least 100 times in mice. It can effectively protect against lethal doses of both homologous H1N1 and heterologous H5N1 viruses post mucosal administration, confirming that the vaccine generated by this strategy has good safety and broad-spectrum protective activities. Therefore, this study can provide valuable insights for the development of attenuated vaccines for respiratory viruses or other viruses with cleavage sites.

15.
Signal Transduct Target Ther ; 9(1): 118, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702343

ABSTRACT

Antitumor therapies based on adoptively transferred T cells or oncolytic viruses have made significant progress in recent years, but the limited efficiency of their infiltration into solid tumors makes it difficult to achieve desired antitumor effects when used alone. In this study, an oncolytic virus (rVSV-LCMVG) that is not prone to induce virus-neutralizing antibodies was designed and combined with adoptively transferred T cells. By transforming the immunosuppressive tumor microenvironment into an immunosensitive one, in B16 tumor-bearing mice, combination therapy showed superior antitumor effects than monotherapy. This occurred whether the OV was administered intratumorally or intravenously. Combination therapy significantly increased cytokine and chemokine levels within tumors and recruited CD8+ T cells to the TME to trigger antitumor immune responses. Pretreatment with adoptively transferred T cells and subsequent oncolytic virotherapy sensitizes refractory tumors by boosting T-cell recruitment, down-regulating the expression of PD-1, and restoring effector T-cell function. To offer a combination therapy with greater translational value, mRNA vaccines were introduced to induce tumor-specific T cells instead of adoptively transferred T cells. The combination of OVs and mRNA vaccine also displays a significant reduction in tumor burden and prolonged survival. This study proposed a rational combination therapy of OVs with adoptive T-cell transfer or mRNA vaccines encoding tumor-associated antigens, in terms of synergistic efficacy and mechanism.


Subject(s)
Oncolytic Virotherapy , Oncolytic Viruses , Animals , Mice , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Oncolytic Virotherapy/methods , Combined Modality Therapy , mRNA Vaccines/immunology , Melanoma, Experimental/therapy , Melanoma, Experimental/immunology , Tumor Microenvironment/immunology , CD8-Positive T-Lymphocytes/immunology , T-Lymphocytes/immunology , Humans , Cell Line, Tumor , Cancer Vaccines/immunology , Cancer Vaccines/genetics , Cancer Vaccines/administration & dosage
16.
Vaccine ; 42(15): 3514-3521, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38670845

ABSTRACT

Group A rotavirus (RVA) is the primary etiological agent of acute gastroenteritis (AGE) in children under 5 years of age. Despite the global implementation of vaccines, rotavirus infections continue to cause over 120,000 deaths annually, with a majority occurring in developing nations. Among infants, the P[8] rotavirus strain is the most prevalent and can be categorized into four distinct lineages. In this investigation, we expressed five VP4(aa26-476) proteins from different P[8] lineages of human rotavirus in E. coli and assessed their immunogenicity in rabbits. Among the different P[8] strains, the Wa-VP4 protein, derived from the MT025868.1 strain of the P[8]-1 lineage, exhibited successful purification in a highly homogeneous form and significantly elicited higher levels of neutralizing antibodies (nAbs) against both homologous and heterologous rotaviruses compared to other VP4 proteins derived from different P[8] lineages in rabbits. Furthermore, we assessed the immunogenicity of the Wa-VP4 protein in mice, pigs, and cynomolgus monkeys, observing that it induced robust production of nAbs in all animals. Interestingly, there was no significant difference between in nAb titers against homologous and heterologous rotaviruses in pigs and mankeys. Collectively, these findings suggest that the Wa-VP4* protein may serve as a potential candidate for a rotavirus vaccine.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Capsid Proteins , Macaca fascicularis , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Antibodies, Viral/immunology , Antibodies, Viral/blood , Swine , Rabbits , Mice , Rotavirus/immunology , Rotavirus/genetics , Capsid Proteins/immunology , Capsid Proteins/genetics , Rotavirus Infections/prevention & control , Rotavirus Infections/immunology , Female , Mice, Inbred BALB C , Humans , Immunogenicity, Vaccine , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/genetics
17.
Commun Chem ; 7(1): 87, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637620

ABSTRACT

Asparaginyl ligases have been extensively utilized as valuable tools for site-specific bioconjugation or surface-modification. However, the application is hindered by the laborious and poorly reproducible preparation processes, unstable activity and ambiguous substrate requirements. To address these limitations, this study employed a structure-based rational approach to obtain a high-yield and high-activity protein ligase called OaAEP1-C247A-aa55-351. It was observed that OaAEP1-C247A-aa55-351 exhibits appreciable catalytic activities across a wide pH range, and the addition of the Fe3+ metal ion effectively enhances the catalytic power. Importantly, this study provides insight into the recognition and nucleophile peptide profiles of OaAEP1-C247A-aa55-351. The ligase demonstrates a higher recognition ability for the "Asn-Ala-Leu" motif and an N-terminus "Arg-Leu" as nucleophiles, which significantly increases the reaction yield. Consequently, the catalytic activity of OaAEP1-C247A-aa55-351 with highly efficient recognition and nucleophile motif, "Asn-Ala-Leu" and "Arg-Leu" under the buffer containing Fe3+ is 70-fold and 2-fold higher than previously reported OaAEP1-C247A and the most efficient butelase-1, respectively. Thus, the designed OaAEP1-C247A-aa55-351, with its highly efficient recognition and alternative nucleophile options, holds promising potential for applications in protein engineering, chemo-enzymatic modification, and the development of drugs.

18.
Cancer Immunol Res ; 12(7): 905-920, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38631019

ABSTRACT

The intrinsic pharmacokinetic limitations of traditional peptide-based cancer vaccines hamper effective cross-presentation and codelivery of antigens (Ag) and adjuvants, which are crucial for inducing robust antitumor CD8+ T-cell responses. In this study, we report the development of a versatile strategy that simultaneously addresses the different pharmacokinetic challenges of soluble subunit vaccines composed of Ags and cytosine-guanosine oligodeoxynucleotide (CpG) to modulate vaccine efficacy via translating an engineered chimeric peptide, eTAT, as an intramolecular adjuvant. Linking Ags to eTAT enhanced cytosolic delivery of the Ags. This, in turn, led to improved activation and lymph node-trafficking of Ag-presenting cells and Ag cross-presentation, thus promoting Ag-specific T-cell immune responses. Simple mixing of eTAT-linked Ags and CpG significantly enhanced codelivery of Ags and CpG to the Ag-presenting cells, and this substantially augmented the adjuvant effect of CpG, maximized vaccine immunogenicity, and elicited robust and durable CD8+ T-cell responses. Vaccination with this formulation altered the tumor microenvironment and exhibited potent antitumor effects, with generally further enhanced therapeutic efficacy when used in combination with anti-PD1. Altogether, the engineered chimeric peptide-based orchestrated codelivery of Ag and adjuvant may serve as a promising but simple strategy to improve the efficacy of peptide-based cancer vaccines.


Subject(s)
Adjuvants, Immunologic , Antigen-Presenting Cells , Antigens, Neoplasm , CD8-Positive T-Lymphocytes , Cancer Vaccines , Animals , Cancer Vaccines/immunology , Cancer Vaccines/administration & dosage , Antigen-Presenting Cells/immunology , Adjuvants, Immunologic/administration & dosage , Mice , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Humans , Peptides/immunology , Peptides/administration & dosage , Mice, Inbred C57BL , Female , Cell Line, Tumor , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Tumor Microenvironment/immunology , Oligodeoxyribonucleotides/immunology , Oligodeoxyribonucleotides/administration & dosage
19.
Lancet Infect Dis ; 24(8): 922-934, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38614117

ABSTRACT

BACKGROUND: The Oka varicella vaccine strain remains neurovirulent and can establish lifelong latent infection, raising safety concerns about vaccine-related herpes zoster. In this study, we aimed to evaluate the immunogenicity and safety of a skin-attenuated and neuro-attenuated varicella vaccine candidate (v7D vaccine). METHODS: We did this randomised, double-blind, controlled, phase 2a clinical trial in Jiangsu, China. Healthy children aged 3-12 years with no history of varicella infection or vaccination were enrolled and randomly assigned (1:1:1:1) to receive a single subcutaneous injection of the v7D vaccine at 3·3 log10 plaque forming units (PFU; low-dose v7D group), 3·9 log10 PFU (medium-dose v7D group), and 4·2 log10 PFU (high-dose v7D group), or the positive control varicella vaccine (vOka vaccine group). All the participants, laboratory personnel, and investigators other than the vaccine preparation and management staff were masked to the vaccine allocation. The primary outcome was assessment of the geometric mean titres (GMTs) and seroconversion rates of anti-varicella zoster virus immunoglobulin G (IgG) induced by different dose groups of v7D vaccine at 0, 42, 60, and 90 days after vaccination in the per-protocol set for humoral immune response analysis. Safety was a secondary outcome, focusing on adverse events within 42 days post-vaccination, and serious adverse events within 6 months after vaccination. This study was registered on Chinese Clinical Trial Registry, ChiCTR2000034434. FINDINGS: On Aug 18-21, 2020, 842 eligible volunteers were enrolled and randomly assigned treatment. After three participants withdrew, 839 received a low dose (n=211), middle dose (n=210), or high dose (n=210) of v7D vaccine, or the vOka vaccine (n=208). In the per-protocol set for humoral immune response analysis, the anti-varicella zoster virus IgG antibody response was highest at day 90. At day 90, the seroconversion rates of the low-dose, medium-dose, and high-dose groups of v7D vaccine and the positive control vOka vaccine group were 100·0% (95% CI 95·8-100·0; 87 of 87 participants), 98·9% (93·8-100·0; 87 of 88 participants), 97·8% (92·4-99·7; 91 of 93 participants), and 96·4% (89·8-99·2; 80 of 83 participants), respectively; the GMTs corresponded to values of 30·8 (95% CI 26·2-36·0), 31·3 (26·7-36·6), 28·2 (23·9-33·2), and 38·5 (31·7-46·7). The v7D vaccine, at low dose and medium dose, elicited a humoral immune response similar to that of the vOka vaccine. However, the high-dose v7D vaccine induced a marginally lower GMT compared with the vOka vaccine at day 90 (p=0·027). In the per-protocol set, the three dose groups of the v7D vaccine induced a similar humoral immune response at each timepoint, with no statistically significant differences. The incidence of adverse reactions in the low-dose, medium-dose, and high-dose groups of v7D vaccine was significantly lower than that in the vOka vaccine group (17% [35 of 211 participants], 20% [41 of 210 participants], and 13% [27 of 210 participants] vs 24% [50 of 208 participants], respectively; p=0·025), especially local adverse reactions (10% [22 of 211 participants], 14% [30 of 210 participants] and 9% [18 of 210 participants] vs 18% [38 of 208 participants], respectively; p=0·016). None of the serious adverse events were vaccine related. INTERPRETATION: The three dose groups of the candidate v7D vaccine exhibit similar humoral immunogenicity to the vOka vaccine and are well tolerated. These findings encourage further investigations on two-dose vaccination schedules, efficacy, and the potential safety benefit of v7D vaccine in the future. FUNDING: The National Natural Science Foundation of China, CAMS Innovation Fund for Medical Sciences, the Fundamental Research Funds for the Central Universities, and Beijing Wantai. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
Antibodies, Viral , Chickenpox Vaccine , Chickenpox , Vaccines, Attenuated , Humans , Chickenpox Vaccine/immunology , Chickenpox Vaccine/administration & dosage , Chickenpox Vaccine/adverse effects , Double-Blind Method , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Male , Female , Child, Preschool , Child , Antibodies, Viral/blood , Chickenpox/prevention & control , Chickenpox/immunology , China , Herpesvirus 3, Human/immunology , Immunogenicity, Vaccine , Vaccination/methods
20.
Hum Vaccin Immunother ; 20(1): 2334474, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38619081

ABSTRACT

To assess the pattern of multiple human papillomavirus infection to predict the type replacement postvaccination. A total of 7372 women aged 18-45y from a phase III trial of an Escherichia coli-produced HPV-16/18 vaccine were analyzed at enrollment visit before vaccination. Hierarchical multilevel logistic regression was used to evaluate HPV vaccine type and nonvaccine-type interactions with age as a covariate. Binary logistic regression was construed to compare multiple infections with single infections to explore the impact of multiple-type infections on the risk of cervical disease. Multiple HPV infections were observed in 25.2% of HPV-positive women and multiple infections were higher than expected by chance. Statistically significant negative associations were observed between HPV16 and 52, HPV18 and HPV51/52/58, HPV31 and HPV39/51/52/53/54/58, HPV33 and HPV52/58, HPV58 and HPV52, HPV6 and HPV 39/51/52/53/54/56/58. Multiple HPV infections increased the risk of CIN2+ and HSIL+, with the ORs of 2.27(95%CI: 1.41, 3.64) and 2.26 (95%CI: 1.29, 3.95) for multiple oncogenic HPV infection separately. However, no significant evidence for the type-type interactions on risk of CIN2+ or HSIL+. There is possibility of type replacement between several pairs of vaccine and nonvaccine HPV type. Multiple HPV infection increased the risk of cervical disease, but coinfection HPV types seem to follow independent disease processes. Continued post-vaccination surveillance for HPV 51/52/58 types and HPV 39/51 types separately was essential after the first and second generation of HPV vaccination implementation in China.


Subject(s)
Alphapapillomavirus , Escherichia coli Vaccines , Human Papillomavirus Viruses , Papillomavirus Infections , Papillomavirus Vaccines , Humans , Female , Human papillomavirus 16 , Human papillomavirus 18 , Papillomavirus Infections/epidemiology , Papillomavirus Infections/prevention & control , China/epidemiology , Papillomaviridae
SELECTION OF CITATIONS
SEARCH DETAIL