Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
BMC Public Health ; 24(1): 865, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509529

ABSTRACT

BACKGROUND: Following China's official designation as malaria-free country by WHO, the imported malaria has emerged as a significant determinant impacting the malaria reestablishment within China. The objective of this study is to explore the application prospects of machine learning algorithms in imported malaria risk assessment of China. METHODS: The data of imported malaria cases in China from 2011 to 2019 was provided by China CDC; historical epidemic data of malaria endemic country was obtained from World Malaria Report, and the other data used in this study are open access data. All the data processing and model construction based on R, and map visualization used ArcGIS software. RESULTS: A total of 27,088 malaria cases imported into China from 85 countries between 2011 and 2019. After data preprocessing and classification, clean dataset has 765 rows (85 * 9) and 11 cols. Six machine learning models was constructed based on the training set, and Random Forest model demonstrated the best performance in model evaluation. According to RF, the highest feature importance were the number of malaria deaths and Indigenous malaria cases. The RF model demonstrated high accuracy in forecasting risk for the year 2019, achieving commendable accuracy rate of 95.3%. This result aligns well with the observed outcomes, indicating the model's reliability in predicting risk levels. CONCLUSIONS: Machine learning algorithms have reliable application prospects in risk assessment of imported malaria in China. This study provides a new methodological reference for the risk assessment and control strategies adjusting of imported malaria in China.


Subject(s)
Malaria , Humans , Reproducibility of Results , Malaria/epidemiology , Risk Assessment , China/epidemiology , Machine Learning
2.
Malar J ; 23(1): 58, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38408991

ABSTRACT

BACKGROUND: Qualified malaria diagnosis competency has contributed to the great achievement of malaria elimination in China. After eliminating malaria, it is still critical to the prevention of re-establishment of malaria transmission in China. This study was aimed to assess the malaria detection competency at national and provincial levels in China at the beginning of malaria post-elimination phase. METHODS: In the present study, different competency assessment activities on the laboratory malaria diagnosis were carried out for national and provincial malaria diagnostic laboratories based on the WHO scoring schedules, including malaria microscopy or nucleic acid amplification tests (NAAT), at the beginning of malaria post-elimination phase (2021-2022) in China. RESULTS: A total of 60 slides for malaria microscopy and 10 specimen for NAAT were included into the WHO External Quality Assessments of malaria parasite qualitative detection and species identification, and the scoring rate was 96.6% (microscopy: 171/177) and 85.0% (NAAT: 17/20), respectively. Moreover, 124 samples were included into the national NAAT quality assessment, and an accuracy of 87.9% (109/124) was found without significance among reference laboratories and non-reference laboratories. CONCLUSIONS: The findings suggest that there is still a need for sustained strengthening of malaria detection competency, particularly in the areas of parasite counting and detection of low-density parasitemia, to ensure prompt detection of the sources of infection and accurate identification of Plasmodium species, and contribute to case management and focus disposal, thereby effectively preventing the malaria re-establishment.


Subject(s)
Malaria , Plasmodium , Humans , Malaria/prevention & control , Clinical Laboratory Techniques , Laboratories , China
3.
Infect Dis Poverty ; 12(1): 101, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37986018

ABSTRACT

BACKGROUND: Plasmodium malariae was always neglected compared with P. falciparum and P. vivax. In the present study, we aimed to describe the epidemiology of reported cases infected with P. malariae in the past decade to raise awareness of the potential threat of this malaria parasite in China. METHODS: Individual data of malaria cases infected with P. malariae reported in China in the past decade were collected via the China Information System for Disease Control and Prevention and Parasitic Diseases Information Reporting Management System, to explore their epidemiological characteristics. Pearson Chi-square tests or Fisher's Exact Test was used in the statistical analysis. RESULTS: From 2013 to 2022, a total of 581 P. malariae cases were reported in China, and mainly concentrated in 20-59 years old group (P < 0.001), and there was no significant trend in the number of cases reported per month. Moreover, four kinds of P. malariae cases were classified, including 567 imported cases from 41 countries in 8 regions and distributed in 27 provinces (autonomous regions, municipalities) in China, six indigenous cases in a small outbreak in Hainan, seven recurrent cases in Guangdong and Shanghai, and one induced case in Shanghai, respectively. In addition, only 379 cases (65.2%) were diagnosed as malaria on the first visit (P < 0.001), and 413 cases (71.1%) were further confirmed as P. malariae cases (P = 0.002). Meanwhile, most cases sought healthcare first in the health facilities at the county and prefectural levels, but only 76.7% (161/210) and 73.7% (146/198) cases were diagnosed as malaria, and the accuracy of confirmed diagnosis as malaria cases infected with P. malariae was only 77.2% (156/202) and 69.9% (167/239) in these health facilities respectively. CONCLUSIONS: Even though malaria cases infected with P. malariae didn't account for a high proportion of reported malaria cases nationwide, the threat posed by widely distributed imported cases, a small number of indigenous cases, recurrent cases and induced case cannot be ignored in China. Therefore, it is necessary to raise awareness and improve the surveillance and response to the non-falciparum species such as P. malariae, and prevent the reestablishment of malaria transmission after elimination.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Malaria , Humans , Young Adult , Adult , Middle Aged , Plasmodium malariae , China/epidemiology , Malaria/prevention & control
4.
Travel Med Infect Dis ; 53: 102575, 2023.
Article in English | MEDLINE | ID: mdl-37100163

ABSTRACT

OBJECTIVE: No indigenous malaria cases have been reported since 2017 in China, but a large number of imported cases are still reported every year, including those from the land bordering countries. To characterize their epidemiological profiles will provide evidence for the development of appropriate strategies to effectively address the challenges of border malaria in the post-elimination phase. METHODS: Individual-level data of imported malaria cases from the land bordering countries were collected from 2017 to 2021 in China via the web-based surveillance systems, and analyzed by SPSS, ArcGIS and WPS software, to explore their epidemiological profiles. RESULTS: A total of 1170 malaria cases imported into China from six of the fourteen land bordering countries were reported between 2017 and 2021 with a decline trend. Overall, cases were widely distributed in 31-97 counties from 11 to 21 provinces but mainly in Yunnan. Moreover, these imported cases were mainly infected with P. vivax (94.8%), and a total of 68 recurrent cases were reported in 6-14 counties from 4 to 8 provinces. In addition, nearly 57.1% of the total reported cases could seek healthcare within 2 days of getting sick, and 71.3% of the reported cases could be confirmed as malaria on the day they sought medical care. CONCLUSIONS: China still needs to attach great importance to the risk and challenge of the imported malaria from bordering countries particularly from Myanmar in preventing reestablishment of malaria transmission in the post-elimination phase. It is necessary not only to strengthen collaboration and cooperation with the bordering countries, but also coordinate multiple departments at home to improve malaria surveillance and response system and prevent the reestablishment of malaria transmission in China.


Subject(s)
Malaria, Vivax , Malaria , Humans , China/epidemiology , Malaria/epidemiology , Malaria/prevention & control , Malaria, Vivax/epidemiology , Myanmar
5.
Infect Dis Poverty ; 12(1): 23, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36941701

ABSTRACT

BACKGROUND: Malaria is caused by multiple parasitic species of the genus Plasmodium. Plasmodium vivax is the most geographically widespread and poses challenges in elimination due to its unique biological and epidemiological characteristics. The aim of study was to highlight the practices and experience targeting vivax malaria control and elimination in China. MAIN BODY: P. vivax malaria was historically endemic in more than 70% of counties in China, with reported vivax malaria cases as high as 26 million a year. After around 70 years of effort, China was certified as malaria-free in June of 2021. The key insights into China's vivax malaria control and elimination were offered, including radical cure strategies, comprehensive but adaptive strategies targeting species of Plasmodium and Anopheles, mass drug administration, and case-/focus-centred surveillance and response systems. CONCLUSION: The complete global eradication of P. vivax and eventually malaria will be more difficult, and China's practices and experience could be a valuable reference in this campaign.


Subject(s)
Anopheles , Malaria, Vivax , Malaria , Animals , Humans , Malaria, Vivax/epidemiology , Malaria, Vivax/prevention & control , Malaria/epidemiology , Plasmodium vivax , China/epidemiology
6.
Front Cell Infect Microbiol ; 13: 1132917, 2023.
Article in English | MEDLINE | ID: mdl-36968112

ABSTRACT

China was declared malaria free in June of 2021. In the post-elimination setting, vigilant surveillance is essential to sustain malaria free status. Serological surveillance has been recognized as an efficient tool for assessing the immunity levels and exposure risk in a population. In this study, a cross-sectional serological survey was conducted in Yingjiang County, China, in August-September, 2021. The study sites were villages along the borders with Myanmar, which have no local transmission since the last indigenous case registered in 2016. A total of 923 participants from six villages were enrolled. The majority was aged > 36 years (56.12%) and 12.46% (115/923) participants had experienced malaria infection at least once. A magnetic- bead-based assay was used to test antibodies against Plasmodium vivax antigen PvMSP-119 to evaluate the prevalence of antibody positive subjects. A reversible catalytic model was used to assess the risk of exposure. The prevalence of anti-PvMSP-119 IgG was 12.84% [95% confidence interval (CI): 9.22%-16.47%], 13.93% (95% CI: 10.11%-17.74%), and 3.57% (95% CI: 1.40%-5.75%) in three different line-of-defense areas, which differed significantly (P < 0.0001). The prevalence of anti-PvMSP-119 IgG increased with age and no statistically significant difference was detected between the sexes. The reversible catalytic model indicated that the seropositive conversion rate and seronegative reversion rate were 0.0042, 0.0034, 0.0032 and 0.0024, 0.0004, 0.0065 in the first-, second-line-of-defense area and total areas, respectively, and the fitted value did not differ significantly from the observed value (P > 0.1). Although this study found the prevalence of antibody-positive subjects and the seroconversion rate in this post-elimination setting were lower than that in transmission setting, the population still had an exposure risk. Serological surveillance should be considered in post-elimination settings to provide valuable information with which to evaluate the risk of malaria re-establishment.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Malaria , Humans , Plasmodium vivax , Malaria, Vivax/epidemiology , Plasmodium falciparum , Cross-Sectional Studies , Seroepidemiologic Studies , Antibodies, Protozoan , Immunoglobulin G
7.
Front Public Health ; 11: 1094859, 2023.
Article in English | MEDLINE | ID: mdl-36935657

ABSTRACT

Malaria is a major public health threat worldwide, and it was also widely prevalent in the history in China, seriously endangering people's health and affecting socioeconomic development. China was certified malaria elimination in 2021 with unremitting efforts since the founding of the People's Republic of China in 1949. This great achievement has been another milestone in the fight against major infectious diseases following the elimination of smallpox, poliomyelitis, leprosy, filariasis, neonatal tetanus and blinding trachoma in China. This paper briefly introduces the malaria burden dynamics and the corresponding malaria transmission risk stratificantions, as well as systematically reviews the evolution of anti-malaria policies and measures from severe epidemic to elimination in China. Meanwhile, five key lessons in malaria control and elimination in China are also briefly summarized. All of the above provide evidences for promoting global malaria eradication and preventing reestablishment of malaria transmission, finally benefit all individuals still suffering from the scourge of malaria.


Subject(s)
Antimalarials , Communicable Diseases , Malaria , Infant, Newborn , Humans , Antimalarials/therapeutic use , Disease Eradication , Malaria/epidemiology , Malaria/prevention & control , China/epidemiology
8.
Am J Trop Med Hyg ; 108(3): 599-608, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36689943

ABSTRACT

Malaria is a parasitic disease caused by Plasmodium, and Anopheles sinensis is a vector of malaria. Although malaria is no longer indigenous to China, a high risk remains for local transmission of imported malaria. This study aimed to identify the risk distribution of vector An. sinensis and malaria transmission. Using data collected from routine monitoring in Shanghai from 2010 to 2020, online databases for An. sinensis and malaria, and environmental variables including climate, geography, vegetation, and hosts, we constructed 10 algorithms and developed ensemble models. The ensemble models combining multiple algorithms (An. sinensis: area under the curve [AUC] = 0.981, kappa = 0.920; malaria: AUC = 0.959, kappa = 0.800), with the best out-of-sample performance, were used to identify important environmental predictors for the risk distributions of An. sinensis and malaria transmission. For An. sinensis, the most important predictor in the ensemble model was moisture index, which reflected degree of wetness; the risk of An. sinensis decreased with higher degrees of wetness. For malaria transmission, the most important predictor in the ensemble model was the normalized differential vegetation index, which reflected vegetation cover; the risk of malaria transmission decreased with more vegetation cover. Risk levels for An. sinensis and malaria transmission for each district of Shanghai were presented; however, there was a mismatch between the risk classification maps of An. sinensis and malaria transmission. Facing the challenge of malaria transmission in Shanghai, in addition to precise An. sinensis monitoring in risk areas of malaria transmission, malaria surveillance should occur even in low-risk areas for An. sinensis.


Subject(s)
Anopheles , Malaria , Plasmodium , Animals , Humans , Anopheles/parasitology , Mosquito Vectors/parasitology , China/epidemiology , Malaria/epidemiology
9.
China Tropical Medicine ; (12): 585-2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-979770

ABSTRACT

@#Abstract: Objective To analyze the recent cluster outbreaks of imported malaria and explore the risks, challenges and countermeasures for dealing with such events during malaria post-elimination era of malaria, and to provide reference for effectively addressing the risks and consolidating the achievements of malaria elimination. Methods The individual malaria case data from "The Information System for Infectious Disease Surveillance" and "The Information System For Parasitic Diseases Prevention And Control" were collected,and the diagnosis classification, infection source, time and space distribution of cases were analyzed. Results From January 1 to August 11, 2022, a total of 429 malaria cases were reported nationwide, an 18.9% decrease compared to the same period last year (529 cases), all of which were imported cases. The overall weekly trend of the outbreak remained stable, but since Week 31 (July 25-31), there has been a significant increase in the number of cases, with a peak on August 5. From July 25 to August 11, 2022, a total of 162 malaria cases were reported nationwide, up 315.4% from 39 cases in the same period last year, accounting for 37.8% of the total cases up to August 11, 2022. The main source of imported infections was Guinea (95 cases, 58.6%), with most cases reported in Longgang District, Shenzhen City, Guangdong Province (30 cases), Shilin County, Kunming City, Yunnan Province (21 cases), Chaoyang District, Beijing (11 cases), and Xiaoshan District, Hangzhou City, Zhejiang Province (7 cases). Conclusions Due to the concentration of returnees to China, several entry port cities simultaneously experienced cluster outbreaks of imported malaria, which brought immense pressure and challenges to local medical and health institutions. Health facilities at all levels need to maintain high vigilance and sensitivity, be well prepared, and avoid death and secondary transmission caused by imported cases.

10.
Emerg Microbes Infect ; 11(1): 314-325, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34989665

ABSTRACT

ABSTRACTOn 30 June 2021, China was certified malaria-free by the World Health Organization. In this study, the evolution, performance, outcomes, and impact of China's adaptive strategy and approach for malaria elimination from 2011 to 2020 were analysed using 10-year data. The strategy and approach focused on timely detection and rapid responses to individual cases and foci. Indigenous cases declined from 1,308 in 2011 to 36 in 2015, and the last one was reported from Yunnan Province in April 2016, although thousands of imported cases still occur annually. The "1-3-7" approach was implemented successfully between 2013 and 2020, with 100% of cases reported within 24 h, 94.5% of cases investigated within three days of case reporting, and 93.4% of foci responses performed within seven days. Additionally, 81.6% of patients attended the first healthcare visit within 1-3 days of onset and 58.4% were diagnosed as malaria within three days of onset, in 2017-2020. The adaptive strategy and approach, along with their universal implementation, are most critical in malaria elimination. In addition to strengthening surveillance on drug resistance and vectors and border malaria collaboration, a further adapted three-step strategy and the corresponding "3-3-7" model are recommended to address the risks of re-transmission and death by imported cases after elimination. China's successful practice and lessons learnt through long-term efforts provide a reference for countries moving towards elimination.


Subject(s)
Malaria , China/epidemiology , Humans , Malaria/epidemiology , Malaria/prevention & control , World Health Organization
11.
Emerg Infect Dis ; 27(11): 2869-2873, 2021 11.
Article in English | MEDLINE | ID: mdl-34670652

ABSTRACT

Malaria cases have dramatically declined in China along the Myanmar border, attributed mainly to adoption of the 1-3-7 surveillance and response approach. No indigenous cases have been reported in China since 2017. Counties in the middle and southern part of the border area have a higher risk for malaria importation and reestablishment after elimination.


Subject(s)
Malaria , China/epidemiology , Humans , Malaria/epidemiology , Malaria/prevention & control , Myanmar/epidemiology
12.
Front Cell Infect Microbiol ; 11: 673194, 2021.
Article in English | MEDLINE | ID: mdl-34568082

ABSTRACT

Background: Sulfadoxine-pyrimethamine (SP) is recommended for intermittent preventive treatment in Africa against Plasmodium falciparum infection. However, increasing SP resistance (SPR) of P. falciparum affects the therapeutic efficacy of SP, and pfdhfr (encoding dihydrofolate reductase) and pfdhps (encoding dihydropteroate synthase) genes are widely used as molecular markers for SPR surveillance. In the present study, we analyzed single nucleotide polymorphisms (SNPs) of pfdhfr and pfdhps in P. falciparum isolated from infected Chinese migrant workers returning from Africa. Methods: In total, 159 blood samples from P. falciparum-infected workers who had returned from Africa to Anhui, Shangdong, and Guangxi provinces were successfully detected and analyzed from 2017 to 2019. The SNPs in pfdhfr and pfdhps were analyzed using nested PCR. The genotypes and linkage disequilibrium (LD) were analyzed using Haploview. Results: High frequencies of the Asn51Ile (N51I), Cys59Arg(C59R), and Ser108Asn(S108N) mutant alleles were observed, with mutation frequencies of 97.60, 87.43, and 97.01% in pfdhfr, respectively. A triple mutation (IRN) in pfdhfr was the most prevalent haplotype (86.83%). Six point mutations were detected in pfdhps DNA fragment, Ile431Val (I431V), Ser436Ala (S436A), Ala437Gly (A437G), Lys540Glu(K540E), Ala581Gly(A581G), Ala613Ser(A613S). The pfdhps K540E (27.67%) was the most predominant allele, followed by S436A (27.04%), and a single mutant haplotype (SGKAA; 62.66%) was predominant in pfdhps. In total, 5 haplotypes of the pfdhfr gene and 13 haplotypes of the pfdhps gene were identified. A total of 130 isolates with 12 unique haplotypes were found in the pfdhfr-pfdhps combined haplotypes, most of them (n = 85, 65.38%) carried quadruple allele combinations (CIRNI-SGKAA). Conclusion: A high prevalence of point mutations in the pfdhfr and pfdhps genes of P. falciparum isolates was detected among Chinese migrant workers returning from Africa. Therefore, continuous in vitro molecular monitoring of Sulfadoxine-Pyrimethemine combined in vivo therapeutic monitoring of artemisinin combination therapy (ACT) efficacy and additional control efforts among migrant workers are urgently needed.


Subject(s)
Antimalarials , Malaria, Falciparum , Africa , Antimalarials/pharmacology , China , Cross-Sectional Studies , Drug Combinations , Drug Resistance/genetics , Humans , Mutation , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Pyrimethamine , Sulfadoxine , Tetrahydrofolate Dehydrogenase/genetics
13.
Sci Rep ; 11(1): 14129, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34239003

ABSTRACT

Yingjiang County, which is on the China-Myanmar border, is the main focus for malaria elimination in China. The epidemiological characteristics of malaria in Yingjiang County were analysed in a retrospective analysis. A total of 895 malaria cases were reported in Yingjiang County between 2013 and 2019. The majority of cases occurred in males (70.7%) and individuals aged 19-59 years (77.3%). Plasmodium vivax was the predominant species (96.6%). The number of indigenous cases decreased gradually and since 2017, no indigenous cases have been reported. Malaria cases were mainly distributed in the southern and southwestern areas of the county; 55.6% of the indigenous cases were reported in Nabang Township, which also had the highest risk of imported malaria. The "1-3-7" approach has been implemented effectively, with 100% of cases reported within 24 h, 88.9% cases investigated and confirmed within 3 days and 98.5% of foci responded to within 7 days. Although malaria elimination has been achieved in Yingjiang County, sustaining elimination and preventing the re-establishment of malaria require the continued strengthening of case detection, surveillance and response systems targeting the migrant population in border areas.


Subject(s)
Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Plasmodium falciparum/pathogenicity , Plasmodium vivax/pathogenicity , Adult , China/epidemiology , Epidemiologic Studies , Female , Humans , Malaria, Falciparum/parasitology , Malaria, Vivax/parasitology , Male , Middle Aged , Myanmar/epidemiology , Transients and Migrants , Young Adult
14.
Malar J ; 20(1): 73, 2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33549122

ABSTRACT

BACKGROUND: The emergence and spread of multidrug resistance poses a significant risk to malaria control and eradication goals in the world. There has been no indigenous malaria cases reported in China since 2017, and China is approaching national malaria elimination. Therefore, anti-malarial drug resistance surveillance and tracking the emergence and spread of imported drug-resistant malaria cases will be necessary in a post-elimination phase in China. METHODS: Dried blood spots were obtained from Plasmodium falciparum-infected cases returned from Africa to China between 2012 and 2015, prior to anti-malarial drug treatment. Whole DNA were extracted and known polymorphisms relating to drug resistance of pfcrt, pfmdr1 gene, and the propeller domain of pfk13 were evaluated by nested PCR and sequencing. The haplotypes and prevalence of these three genes were evaluated separately. Chi-squared test and Fisher's exact test were used to evaluate differences among the different sub-regions of Africa. A P value < 0.05 was used to evaluate differences with statistical significance. The maps were created using ArcGIS. RESULTS: A total of 731 P. falciparum isolates were sequenced at the pfcrt locus. The wild type CVMNK was the most prevalent haplotype with prevalence of 62.8% and 29.8% of the isolates showed the triple mutant haplotype CVIET. A total of 434 P. falciparum isolates were successfully sequenced and pfmdr1 allelic variants were observed in only codons 86, 184 and 1246. Twelve haplotypes were identified and the prevalence of the wild type pfmdr1 NYD was 44.1%. The single mutant pfmdr1 in codons 86 and 184 was predominant but the haplotype NYY with single mutation in codon 1246 was not observed. The double mutant haplotype YFD was common in Africa. About 1,357 isolates were successfully sequenced of pfk13-propeller domain, the wild type was found in 1,308 samples (96.4%) whereby 49 samples (3.6%) had mutation in pfk13. Of 49 samples with pfk13 mutations, 22 non-synonymous and 4 synonymous polymorphic sites were confirmed. The A578S was the most common mutation in pfk13-propeller domain and three mutations associated with artemisinin resistance (M476I, R539T, P553L) were identified in three isolates. CONCLUSION: This study provides evidence that could give insight into potential issues with anti-malarial drug resistance to inform national drug policy in China in order to treat imported cases.


Subject(s)
Plasmodium falciparum/genetics , Protozoan Proteins/analysis , Africa , China , Epidemiological Monitoring , Membrane Transport Proteins/analysis , Multidrug Resistance-Associated Proteins/analysis
15.
Infect Dis Poverty ; 9(1): 158, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33213516

ABSTRACT

BACKGROUND: Malaria cases have declined significantly along the China-Myanmar border in the past 10 years and this region is going through a process from control to elimination. The aim of this study is to investigate the epidemiology of malaria along the border, will identify challenges in the progress from control to elimination. METHODS: National reported malaria cases from China and Myanmar, along with the data of 18 Chinese border counties and 23 townships in Myanmar were obtained from a web-based diseases information reporting system in China and the national malaria control program of Myanmar, respectively. Epidemiological data was analyzed, including the number of reported cases, annual parasite index and proportion of vivax infection. Spatial mapping of the annual parasite index (API) at county or township level in 2014 and 2018 was performed by ArcGIS. The relationship of malaria endemicity on both sides of the border was evaluated by regression analysis. RESULTS: The number of reported malaria cases and API declined in the border counties or townships. In 2014, 392 malaria cases were reported from 18 Chinese border counties, including 8.4% indigenous cases and 91.6% imported cases, while the highest API (0.11) was occurred in Yingjiang County. There have been no indigenous cases reported since 2017, but 164 imported cases were reported in 2018 and 97.6% were imported from Myanmar. The average API in 2014 in 23 Myanmar townships was significantly greater than that of 18 Chinese counties (P < 0.01). However, the API decreased significantly in Myanmar side from 2014 to 2018 (P < 0.01). The number of townships with an API between 0 and 1 increased to 15 in 2018, compared to only five in 2014, while still four townships had API > 10. Plasmodium vivax was the predominant species along the border. The number of reported malaria cases and the proportion of vivax infection in the 18 Chinese counties were strongly correlated with those of the 23 Myanmar townships (P < 0.05). CONCLUSIONS: Malaria elimination is approaching along the China-Myanmar border. However, in order to achieve the malaria elimination in this region and prevent the re-establishment of malaria in China after elimination, continued political, financial and scientific commitment is required.


Subject(s)
Malaria/epidemiology , Malaria/prevention & control , China/epidemiology , Disease Eradication , Humans , Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Myanmar/epidemiology , Plasmodium falciparum/isolation & purification , Plasmodium vivax/isolation & purification , Regression Analysis , Seasons , Spatio-Temporal Analysis
16.
Adv Parasitol ; 110: 401-427, 2020.
Article in English | MEDLINE | ID: mdl-32563333

ABSTRACT

China has achieved a great success in control and elimination of key parasitic diseases. In 2007, the elimination of lymphatic filariasis was verified by WHO. The schistosomiasis incidence and snail-distributed areas have reduced to the lowest level in the history. The transmission and disease burden of echinococcosis have been contained largely, and the populations infected with soil-transmitted trematode and food-borne parasites have also shown a significantly declining trend. Because of rapid globalization and climate changes, however, many new challenges have arisen. In his paper, the 2020-2030 roadmaps towards the control and elimination of these key parasitic diseases are described. Moreover, China is actively implementing its global health strategy, and will be more and more engaged into global health affairs, in which a series of China-Africa health cooperation projects have been in planning with a wish of making a greater contribution to the SDGs.


Subject(s)
Academies and Institutes , Global Health , Government Programs , National Health Programs , Parasitic Diseases , Animals , China/epidemiology , Disease Eradication , Humans , Parasitic Diseases/epidemiology , Parasitic Diseases/prevention & control
17.
Adv Parasitol ; 110: 63-105, 2020.
Article in English | MEDLINE | ID: mdl-32563334

ABSTRACT

Although the past decades have seen a remarkable decrease in malaria-caused mortality and morbidity, the infection remains a significant challenge to global health. In the battle against malaria, China has gained notable feat and achievement since the 1940s through the efforts of several generations. Notably, China has not recorded a single indigenous malaria case since August 2016. The National Institute of Parasitic Diseases of the Chinese Center for Disease Control and Prevention (NIPD), as the only specialized institution for parasitic disease at the national level, has played a significant role in the malaria control, prevention, and elimination in China in the different historical periods. In order to transfer Chinese experiences on malaria control and elimination to other Low and Middle Income Countries (LMICs) and to improve global health collaboration, we have summarized and reviewed the contributions and achievements by the NIPD over the past 70 years, covering the epidemic situation; field investigation and laboratory experimental research on both parasite and vector; research and development on diagnostics, drugs, and insecticides; surveillance and response; technical and international. Support and cooperation. In addition, we also focus in particular on malaria retransmission risk, strategies on management of imported malaria cases and mobile populations, surveillance and response capacity to be maintained in post-elimination stage, challenges on diagnosis, drug resistance, and insecticide resistance as future concerns.


Subject(s)
Academies and Institutes , Government Programs , Malaria , National Health Programs , Animals , China/epidemiology , Disease Eradication , Drug Development , Drug Resistance , Humans , Insecticides , Malaria/drug therapy , Malaria/epidemiology , Malaria/prevention & control
18.
Front Cell Infect Microbiol ; 10: 610985, 2020.
Article in English | MEDLINE | ID: mdl-33489939

ABSTRACT

Emerging artemisinin resistance in Southeast Asia poses a significant risk to malaria control and eradication goals, including China's plan to eliminate malaria nationwide by 2020. Plasmodium falciparum was endemic in China, especially in Southern China. Parasites from this region have shown decreased susceptibility to artemisinin and delayed parasite clearance after artemisinin treatment. Understanding the genetic basis of artemisinin resistance and identifying specific genetic loci associated with this phenotype is crucial for surveillance and containment of resistance. In this study, parasites were collected from clinical patients from Yunnan province and Hainan island. The parasites were genotyped using a P. falciparum-specific single nucleotide polymorphism (SNP) microarray. The SNP profiles examined included a total of 27 validated and candidate molecular markers of drug resistance. The structure of the parasite population was evaluated by principal component analysis by using the EIGENSOFT program, and ADMIXTURE was used to calculate maximum likelihood estimates for the substructure analysis. Parasites showed a high prevalence of resistance haplotypes of pfdhfr and pfdhps and moderate prevalence of pfcrt. There was no mutation identified on pfmdr1. Candidate SNPs on chromosomes 10, 13, and 14 that were associated with delayed parasite clearance showed a low prevalence of mutants. Parasites from Southern China were clustered and separated from those from Southeast Asia. Parasites from Yunnan province were substructured from parasites from Hainan island. This study provides evidence for a genomic population with drug resistance in Southern China and also illustrates the utility of SNP microarrays for large-scale parasite molecular epidemiology.


Subject(s)
Antimalarials , Malaria, Falciparum , Antimalarials/pharmacology , China/epidemiology , Drug Resistance/genetics , Genomics , Humans , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Protozoan Proteins
19.
Malar J ; 17(1): 315, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30157876

ABSTRACT

BACKGROUND: Malaria was once one of the most serious public health problems in China. However, the disease burden has sharply declined and epidemic areas have shrunk after the implementation of an integrated malaria control and elimination strategy, especially since 2000. In this review, the lessons were distilled from the Chinese national malaria elimination programme and further efforts to mitigate the challenges of malaria resurgence are being discussed. METHODS: A retrospective evaluation was performed to assess the changes in malaria epidemic patterns from 1950 to 2017 at national level. The malaria data before 2004 were collected from paper-based annual reports. After 2004, each of the different cases from the Infectious Diseases Information Reporting Management System (IDIRMS) was closely examined and scrutinized. An additional documenting system, the National Information Management System for Malaria, established in 2012 to document the interventions of three parasitic diseases, was also examined to complete the missing data from IDIRMS. RESULTS: From 1950 to 2017, the occurrence of indigenous malaria has been steeply reduced, and malaria-epidemic regions have substantially shrunk, especially after the launch of the national malaria elimination programme. There were approximately 30 million malaria cases annually before 1949 with a mortality rate of 1%. A total of 5999 indigenous cases were documented from 2010 to 2016, with a drastic reduction of 99% over the 6 years (2010, n = 4262; 2016, n = 3). There were indigenous cases reported in 303 counties from 18 provinces in 2010, but only 3 indigenous cases were reported in 2 provinces nationwide in 2016. While in 2017, for the first time, zero indigenous case was reported in China, and only 7 of imported cases were in individuals who died of Plasmodium falciparum infection. CONCLUSION: Malaria elimination in China is a country-led and country-owned endeavour. The country-own efforts were a clear national elimination strategy, supported by two systems, namely a case-based surveillance and response system and reference laboratory system. The country-led efforts were regional and inter-sectoral collaboration as well as sustained monitoring and evaluation. However, there are still some challenges, such as the maintenance of non-transmission status, the implementation of a qualified verification and assessment system, and the management of imported cases in border areas, through regional cooperation. The findings from this review can probably help improving malaria surveillance systems in China, but also in other elimination countries.


Subject(s)
Disease Eradication/statistics & numerical data , Malaria, Falciparum/prevention & control , Malaria, Vivax/prevention & control , China/epidemiology , Communicable Disease Control/statistics & numerical data , Incidence , Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Retrospective Studies
20.
Infect Dis Poverty ; 7(1): 36, 2018 Apr 29.
Article in English | MEDLINE | ID: mdl-29704895

ABSTRACT

BACKGROUND: The China-Myanmar border region presents a great challenge in malaria elimination in China, and it is essential to understand the relationship between malaria vulnerability and population mobility in this region. METHODS: A community-based, cross-sectional survey was performed in five villages of Yingjiang county during September 2016. Finger-prick blood samples were obtained to identify asymptomatic infections, and imported cases were identified in each village (between January 2013 and September 2016). A stochastic simulation model (SSM) was used to test the relationship between population mobility and malaria vulnerability, according to the mechanisms of malaria importation. RESULTS: Thirty-two imported cases were identified in the five villages, with a 4-year average of 1 case/year (range: 0-5 cases/year). No parasites were detected in the 353 blood samples from 2016. The median density of malaria vulnerability was 0.012 (range: 0.000-0.033). The average proportion of mobile members of the study population was 32.56% (range: 28.38-71.95%). Most mobile individuals lived indoors at night with mosquito protection. The SSM model fit the investigated data (χ2 = 0.487, P = 0.485). The average probability of infection in the members of the population that moved to Myanmar was 0.011 (range: 0.0048-0.1585). The values for simulated vulnerability increased with greater population mobility in each village. CONCLUSIONS: A high proportion of population mobility was associated with greater malaria vulnerability in the China-Myanmar border region. Mobile population-specific measures should be used to decrease the risk of malaria re-establishment in China.


Subject(s)
Malaria/epidemiology , Population Dynamics , Adolescent , Adult , Aged , Child , Child, Preschool , China/epidemiology , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Models, Theoretical , Myanmar , Stochastic Processes , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...