Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Neurol ; 22(1): 438, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36397039

ABSTRACT

BACKGROUND: Idiopathic basal ganglia calcification (IBGC) is a genetic disorder of the nervous system commonly known as Fahr disease. IBGC patients with a genetic background are considered to have primary familial brain calcification (PFBC), also known as familial basal ganglia calcification (FBGC), or familial Fahr disease. It is a rare degenerative neurological disorder characterized by extensive bilateral basal ganglia calcification that can lead to a range of extrapyramidal symptoms and neuropsychiatric manifestations. Studies have suggested that more than 50 variants of SLC20A2 gene mutations account for approximately 50% of IBGC cases. There is a wide spectrum of mutation types, including frameshift, nonsense, and splice site mutations in addition to deletion and missense mutations. Here we report a case of familial basal ganglia calcification caused by a frameshift mutation in the SLC20A2 gene. We identified a heterozygous mutation in the SLC20A2 gene, c.1097delG (p.G366fs*89). To our knowledge, this mutation site has not been reported before. CASE PRESENTATION: A 57-year-old male patient was admitted to the hospital with "unstable walking and involuntary movements between the eyes and eyebrows for 6 months". Based on the patient's family history, symmetrical calcification foci in the bilateral caudate nucleus head, thalamus, cerebellum and parietal lobe indicated by head CT, and gene test results, the diagnosis of familial Fahr disease caused by mutations in the SLC20A2 gene, c.1097delG p.G366fs*89) was confirmed. CONCLUSION: For the first time, we identified c.1097delG (p.G366fs*89) as a frameshift mutation in the IBGC family. This frameshift mutation caused the condition in this family of patients. This mutation not only broadens the range of known SLC20A2 mutations but also aids in the genetic diagnosis of IBGC.


Subject(s)
Basal Ganglia Diseases , Calcinosis , Male , Humans , Middle Aged , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Basal Ganglia Diseases/diagnostic imaging , Basal Ganglia Diseases/genetics , Calcinosis/diagnostic imaging , Calcinosis/genetics , Basal Ganglia/diagnostic imaging , Basal Ganglia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL