Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.852
Filter
1.
BMC Cardiovasc Disord ; 24(1): 479, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256710

ABSTRACT

BACKGROUND: In this study, we explored the impact of hypothyroidism and thyroid hormone replacement therapy on the risk of developing cardiovascular diseases, including myocardial infarction, heart failure, and cardiac death, via Mendelian randomization analysis. METHODS: Genetic instrumental variables related to hypothyroidism, levothyroxine treatment (refer to Participants were taking the medication levothyroxine sodium) and adverse cardiovascular events were obtained from a large publicly available genome-wide association study. Two-sample Mendelian randomization analysis was performed via inverse-variance weighting as the primary method. To ensure the reliability of our findings, we performed MR‒Egger regression, Cochran's Q statistic, and leave-one-out analysis. Additionally, multivariable Mendelian randomization was employed to regulate confounding factors, including systolic blood pressure (SBP), diastolic blood pressure (DBP), body mass index (BMI), diabetes, cholesterol, low-density lipoprotein (LDL), triglycerides and metformin. A mediation analysis was conducted to assess the mediating effects on the association between exposure and outcome by treating atrial fibrillation and stroke as mediator variables of levothyroxine treatment and bradycardia as mediator variables of hypothyroidism. RESULTS: Genetically predicted hypothyroidism and levothyroxine treatment were significantly associated with the risk of experiencing myocardial infarction [levothyroxine: odds ratio (OR) 3.75, 95% confidence interval (CI): 1.80-7.80; hypothyroidism: OR: 15.11, 95% CI: 2.93-77.88]. Levothyroxine treatment was also significantly related to the risk of experiencing heart failure (OR: 2.16, 95% CI: 1.21-3.88). However, no associations were detected between hypothyroidism and the risk of experiencing heart failure or between hypothyroidism or levothyroxine treatment and the risk of experiencing cardiac death. After adjusting for confounding factors, the results remained stable. Additionally, mediation analysis indicated that atrial fibrillation and stroke may serve as potential mediators in the relationships between levothyroxine treatment and the risk of experiencing heart failure or myocardial infarction. CONCLUSION: The results of our study suggest a positive association between hypothyroidism and myocardial infarction and highlight the potential effects of levothyroxine treatment, the main thyroid hormone replacement therapy approach, on increasing the risk of experiencing myocardial infarction and heart failure.


Subject(s)
Cardiovascular Diseases , Genetic Predisposition to Disease , Genome-Wide Association Study , Hypothyroidism , Mendelian Randomization Analysis , Thyroxine , Humans , Hypothyroidism/diagnosis , Hypothyroidism/genetics , Hypothyroidism/epidemiology , Thyroxine/therapeutic use , Risk Assessment , Cardiovascular Diseases/genetics , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/diagnosis , Hormone Replacement Therapy/adverse effects , Risk Factors , Phenotype , Female , Myocardial Infarction/genetics , Myocardial Infarction/epidemiology , Myocardial Infarction/diagnosis , Polymorphism, Single Nucleotide , Heart Failure/genetics , Heart Failure/diagnosis , Heart Failure/epidemiology , Male , Pharmacogenomic Variants , Heart Disease Risk Factors
2.
Neurosurg Rev ; 47(1): 560, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39242449

ABSTRACT

The role of a low-profile visualized intraluminal support stent (LVIS) and Enterprise in the treatment of unruptured intracranial aneurysms is well established. Although previous studies have investigated one single type of stent for the treatment of ruptured intracranial aneurysms (RIA), the safety and efficacy between the two types of stents has not been fully explored. Herein we conducted a study to compare the outcomes of the two stents for treatment of RIA. This is a prospective registry database of aneurysmal subarachnoid hemorrhage (aSAH) patients admitted to a single institution between 2018 and 2021. We collected patient baseline information, secondary complications, follow-up angiographic data, long-term prognostic outcomes, and conducted propensity score matching (PSM) analysis with 1:1 ratio and a multivariable logistic regression to compare the outcomes of the two types of stents. A total of 231 patients with RIAs were included in this study, with 108 treated using the LVIS device and 123 treated using the Enterprise device. Before PSM analysis, only the incidence of poor prognosis after 12 months was higher in the Enterprise group comparing to the LVIS group (20% vs. 10%, P = 0.049). After PSM analysis, there was a higher occurrence of delayed cerebral ischemia (DCI) in the Enterprise group compared to the LVIS group (odds ratio [OR] 3.95, 95% confidence interval [CI] [1.20-13.01], P = 0.024). However, no significant difference in prognosis was observed after PSM adjustment. Furthermore, subgroup analysis revealed that patients with female (P = 0.019), hypertension (P = 0.048), and anterior circulation aneurysms (P = 0.019) receiving the Enterprise device had a higher risk of DCI. The overall efficacy of LVIS and Enterprise in the treatment of RIA is comparable, while the incidence of DCI in the LVIS group is lower than that in the Enterprise group after PSM analysis. Registration number: NCT05738083 ( https://clinicaltrials.gov/ ).


Subject(s)
Aneurysm, Ruptured , Embolization, Therapeutic , Intracranial Aneurysm , Propensity Score , Stents , Humans , Intracranial Aneurysm/therapy , Female , Male , Aneurysm, Ruptured/therapy , Middle Aged , Embolization, Therapeutic/methods , Embolization, Therapeutic/instrumentation , Aged , Adult , Treatment Outcome , Cohort Studies , Endovascular Procedures/methods , Subarachnoid Hemorrhage/therapy
3.
Article in English | MEDLINE | ID: mdl-39233286

ABSTRACT

17α-Ethinylestradiol (EE2) is known for its endocrine-disrupting effects on embryonic and adult fish. However, its impact on juvenile zebrafish has not been well established. In this study, juvenile zebrafish were exposed to EE2 at concentrations of 5 ng/L (low dose, L), 10 ng/L (medium dose, M), and 50 ng/L (high dose, H) from 21 days post-fertilization (dpf) to 49 dpf. We assessed their growth, development, behavior, transcriptome, and metabolome. The findings showed that the survival rate in the EE2-H group was 66.8 %, with all surviving fish displaying stunted growth and swollen, transparent abdomens by 49 dpf. Moreover, severe organ deformities were observed in the gills, kidneys, intestines, and heart of fish in both the EE2-H and EE2-M groups. Co-expression analysis of mRNA and lncRNA revealed that EE2 downregulated the transcription of key genes involved in the cell cycle, DNA replication, and Fanconi anemia signaling pathways. Additionally, metabolomic analysis indicated that EE2 influenced metabolism and development-related signaling pathways. These pathways were also significantly identified based on the genes regulated by lncRNA. Consequently, EE2 induced organ deformities and mortality in juvenile zebrafish by disrupting signaling pathways associated with development and metabolism. The results of this study offer new mechanistic insights into the adverse effects of EE2 on juvenile zebrafish based on multiomics analysis. The juvenile zebrafish are highly sensitive to EE2 exposure, which is not limited to adult and embryonic stages. It is a potential model for studying developmental toxicity.


Subject(s)
Ethinyl Estradiol , Water Pollutants, Chemical , Zebrafish , Animals , Ethinyl Estradiol/toxicity , Water Pollutants, Chemical/toxicity , Endocrine Disruptors/toxicity , Transcriptome/drug effects , Multiomics
4.
Angew Chem Int Ed Engl ; : e202411840, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115358

ABSTRACT

Atherosclerosis is a primary global health concern due to its high morbidity and mortality. This disease is characterized by a complex interplay of chronic inflammation, oxidative stress, and proteolytic enzymes. Traditional imaging techniques struggle to capture the dynamic biochemical processes within atherosclerotic plaques. Herein, we have developed a novel unimolecular photoacoustic probe (UMAPP) that combines specific recognition sites for neutrophil elastase (NE) and the redox pair O2•‒/GSH into a cohesive molecular platform, allowing in vivo monitoring of oxidative stress and activated neutrophils within plaques. UMAPP features a boron-dipyrromethene (BODIPY) core linked to a hydrophilic NE-cleavable tetrapeptide, and dual oxidative stress-responsive catechol moieties, enabling NE-mediated modulation of photoinduced electron transfer, affecting the photoacoustic intensity at 685 nm (PA685), while oxidation and reduction of the catechol groups by O2•‒ and GSH lead to reversible, ratiometric changes in the photoacoustic spectrum. Preliminary applications of UMAPP have successfully differentiated between atherosclerotic and healthy mice, assessed the impact of pneumonia on plaque composition, and validated the probe's efficacy in drug-treatment studies, detecting molecular changes prior to observable histopathological alterations. UMAPP's integrated molecular imaging approach holds significant promise for advancing the diagnosis and management of atherosclerosis by enabling earlier and more precise detection of vulnerable plaques.

5.
Sci Total Environ ; 951: 175290, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117234

ABSTRACT

Ozone (O3) pollution is a severe environmental problem in China. The incomplete understanding of atmospheric photochemical reaction mechanisms prevents us from accurately understanding the chemistry of O3 production. Here, we used an improved dual-channel reaction chamber technique to measure net photochemical O3 production rate (P(O3)net) directly in Dongguan, a typical industrial city in China. The maximum P(O3)net was 46.3 ppbv h-1 during the observation period, which is at a relatively high level compared to previous observations under different environment worldwide. We employed an observation-based box model coupled with the state-of-the-art atmospheric chemical mechanism (MCM v3.3.1) to investigate the chemistry of O3 production. Under the base scenario, the modelling underestimates P(O3)net by ~30 %. Additionally considering HO2 uptake by ambient aerosols, inorganic deposition, and Cl chemistry only caused a small change (< 13 %) in the simulation of P(O3)net. Further analysis indicates that unmeasured reactive volatile organic compounds (VOCs), such as oxygenated VOCs and branched alkenes are potential contributors to the underestimation of P(O3)net. This study underscores the underestimation of P(O3)net in conventional atmospheric modelling setups, providing a crucial scientific foundation for further investigation aimed at promoting our understanding of photochemical O3 formation.

6.
ACS Appl Mater Interfaces ; 16(32): 42153-42163, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39091198

ABSTRACT

Aqueous zinc-ion batteries (AZIBs) are poised to play a pivotal part in meeting the growing demands for energy storage and powering portable electronics for their superior security, affordability, and environmentally friendly characteristics. However, the detrimental side reactions occurring at the zinc anode and the dendrite caused by uneven zinc plating/stripping have greatly compromised the cycling life of AZIBs, thereby impeding their practical prospects. In this study, the interfacial comodulation strategy was employed by combining the "electrostatic shielding" effect of cations with the characteristic adsorption of anions. Two molar ZnSO4 served as the matrix, and sodium hydroxyethyl sulfonate (SHES) was selected as a low-cost, nontoxic additive. Experimental results confirm that SHES and zinc anode exhibit robust interactions that lead to the formation of an electrostatic shield and a dynamic adsorption layer at the interface, thereby suppressing hydrogen evolution and corrosion. The combined "electrostatic shielding" effect of sodium ions and the robust characteristic adsorption of hydroxyethyl sulfonate anions serve to guide the directed three-dimensional (3D) diffusion of Zn2+, facilitating rapid, stable, and uniform deposition of zinc. Due to these effects, incorporating 0.2 M SHES as an additive extends the cycle life beyond 3600 h and enables a highly reversible process of deposition and stripping in symmetric cells. Additionally, the Zn-Cu half-cell exhibits reliable cycling for over 1400 cycles, achieving an average Coulombic efficiency of 99.6%. Moreover, the introduction of this additive substantially enhances the performance of Zn-MnO2 and Zn-NH4V4O10 full cells. This study demonstrates the practical feasibility of achieving anodes with high reversibility in AZIBs through the implementation of a strategy that involves anion adsorption at the interface, which holds paramount significance for the practical application of AZIBs.

7.
J Am Chem Soc ; 146(32): 22335-22347, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39092859

ABSTRACT

Searching for high energy-density electrode materials for sodium ion batteries has revealed Na-deficient intercalation compounds with lattice oxygen redox as promising high-capacity cathodes. However, anionic redox reactions commonly encountered poor electrochemical reversibility and unfavorable structural transformations during dynamic (de)sodiation processes. To address this issue, we employed lithium orbital hybridization chemistry to create Na-O-Li configuration in a prototype P2-layered Na43/60Li1/20Mg7/60Cu1/6Mn2/3O2 (P2-NaLMCM') cathode material. That Li+ ions, having low electronegativity, reside in the transition metal slabs serves to stimulate unhybridized O 2p orbitals to facilitate the stable capacity contribution of oxygen redox at high state of charge. The prismatic-type structure evolving to an intergrowth structure of the Z phase at high charging state could be simultaneously alleviated by reducing the electrostatic repulsion of O-O layers. As a consequence, P2-NaLMCM' delivers a high specific capacity of 183.8 mAh g-1 at 0.05 C and good cycling stability with a capacity retention of 80.2% over 200 cycles within the voltage range of 2.0-4.5 V. Our findings provide new insights into both tailoring oxygen redox chemistry and stabilizing dynamic structural evolution for high-energy battery cathode materials.

8.
Nano Lett ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39213537

ABSTRACT

Inspired by efficient natural biomolecule assembly with precise control on key parameters such as distance, number, orientation, and pattern, the constructions and applications of artificial precise molecule assembly are highly important in many research areas including chemistry, biology, and medicine. DNA origami, a sophisticated DNA nanotechnology with rational design, can offer a predictable, programmable, and addressable nanoscale scaffold for the precise assembly of various kinds of molecules. Herein, we summarize recent progress, particularly in the last three years, in DNA-origami-based precise molecule assembly and their emerging biological applications. We first introduce DNA origami and the progress on DNA-origami-based precise molecule assembly, including assembly of various kinds of molecules (e.g., nucleic acids, proteins, organic molecules, nanoparticles), and precise control of important parameters (e.g., distance, number, orientation, pattern). Their biological applications in sensing, imaging, therapy, bionics, biophysics, and chemical biology are then summarized, and current challenges and opportunities are finally discussed.

9.
Neuron ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39191260

ABSTRACT

The blood-brain barrier (BBB) serves as a crucial vascular specialization, shielding and nourishing brain neurons and glia while impeding drug delivery. Here, we conducted single-cell mRNA sequencing of human cerebrovascular cells from 13 surgically resected glioma samples and adjacent normal brain tissue. The transcriptomes of 103,230 cells were mapped, including 57,324 endothelial cells (ECs) and 27,703 mural cells (MCs). Both EC and MC transcriptomes originating from lower-grade glioma were indistinguishable from those of normal brain tissue, whereas transcriptomes from glioblastoma (GBM) displayed a range of abnormalities. Among these, we identified LOXL2-dependent collagen modification as a common GBM-dependent trait and demonstrated that inhibiting LOXL2 enhanced chemotherapy efficacy in both murine and human patient-derived xenograft (PDX) GBM models. Our comprehensive single-cell RNA sequencing-based molecular atlas of the human BBB, coupled with insights into its perturbations in GBM, holds promise for guiding future investigations into brain health, pathology, and therapeutic strategies.

10.
Nano Lett ; 24(35): 11002-11011, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39166738

ABSTRACT

Early stage hepatocellular carcinoma (HCC) presents a formidable challenge in clinical settings due to its asymptomatic progression and the limitations of current imaging techniques in detecting micro-HCC lesions. Addressing this critical issue, we introduce a novel ultrathin gadolinium-oxide (Gd-oxide) nanosheet-based platform with heightened sensitivity for high-field MRI and as a therapeutic agent for HCC. Synthesized via a digestive ripening process, these Gd-oxide nanosheets exhibit an exceptional acid-responsive profile. The integration of the ultrathin Gd-oxide with an acid-responsive polymer creates an ultrasensitive high-field MRI probe, enabling the visualization of submillimeter-sized tumors with superior sensitivity. Our research underscores the ultrasensitive probe's efficacy in the treatment of orthotopic HCC. Notably, the ultrasensitive probe functions dually as a companion diagnostic tool, facilitating simultaneous imaging and therapy with real-time treatment monitoring capabilities. In conclusion, this study showcases an innovative companion diagnostic tool that holds promise for the early detection and effective treatment of micro-HCC.


Subject(s)
Carcinoma, Hepatocellular , Contrast Media , Gadolinium , Liver Neoplasms , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/diagnosis , Liver Neoplasms/diagnostic imaging , Humans , Gadolinium/chemistry , Contrast Media/chemistry , Animals , Mice , Nanostructures/chemistry , Nanostructures/therapeutic use , Cell Line, Tumor
11.
Inorg Chem ; 63(36): 16824-16833, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39190538

ABSTRACT

The pursuit of highly efficient electrocatalysts for the alkaline hydrogen evolution reaction (HER) is of paramount importance for water splitting. However, it is still a formidable task in Mo2C-based materials because of the agglomeration and strong Mo-H binding of Mo2C units. Herein, a novel CeOCl-CeO2/Mo2C heterostructure nesting within a three-dimensional porous nitrogen-doped carbon matrix has been designed and used for catalyzing HER via simultaneous morphology and heterointerface engineering. As expected, the optimal CeOCl-CeO2(0.2)/Mo2C@3DNC exhibits impressive HER activity, with a low overpotential of 156 mV at a current density of 10 mA cm-2 coupled with a slight Tafel slope of 62.20 mV dec-1. Introducing a Ce promoter, that is CeOCl and CeO2, would endow the interface with an internal electric field and electron redistribution between CeOCl-CeO2 and Mo2C induced by the heterogeneous work function difference. Moreover, experimental investigation and density functional calculations confirm that the CeOCl-CeO2/Mo2C heterointerface can downshift the d-band center of the active Mo center, weakening the strength of the Mo-H coupling. This proposed concept, engineering Ce-based promoters into active entities involved in the heterostructure to modulate intermediate adsorption, offers a great opportunity for the design of superior electrocatalysts for energy conversion.

12.
FASEB J ; 38(15): e23864, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39109513

ABSTRACT

Little is known about the blood-feeding physiology of arbovirus vector Aedes aegypti although this type of mosquito is known to transmit infectious diseases dengue, Zika, yellow fever, and chikungunya. Blood feeding in the female A. aegypti mosquito is essential for egg maturation and for transmission of disease agents between human subjects. Here, we identify the A. aegypti sulfakinin receptor gene SKR from the A. aegypti genome and show that SKR is expressed at different developmental stages and in varied anatomical localizations in the adult mosquito (at three days after eclosion), with particularly high expression in the CNS. Knockingdown sulfakinin and sulfakinin receptor gene expression in the female A. aegypti results in increased blood meal intake, but microinjection in the thorax of the sulfakinin peptide 1 and 2 both inhibits dose dependently blood meal intake (and delays the time course of blood intake), which is reversible with receptor antagonist. Sulfakinin receptor expressed ectopically in mammalian cells CHO-K1 responds to sulfakinin stimulation with persistent calcium spikes, blockable with receptor antagonist. These data together suggest that activation of the Gq protein-coupled (i.e., calcium-mobilizing) sulfakinin receptor inhibits blood meal intake in female A. aegypti mosquitoes and could serve as a strategic node for the future control of A. aegypti mosquito reproduction/population and disease transmission.


Subject(s)
Aedes , Receptors, G-Protein-Coupled , Animals , Aedes/metabolism , Aedes/genetics , Female , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , CHO Cells , Insect Proteins/metabolism , Insect Proteins/genetics , Cricetulus , Feeding Behavior/physiology , Mosquito Vectors
13.
Anal Chem ; 96(33): 13447-13454, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39119849

ABSTRACT

Small-molecule fluorescent probes have emerged as potential tools for cancer cell imaging-based diagnostic and therapeutic applications, but their limited selectivity and poor imaging contrast hinder their broad applications. To address these problems, we present the design and construction of a novel near-infrared (NIR) biotin-conjugated and viscosity-activatable fluorescent probe, named as QL-VB, for selective recognition and imaging of cancer cells. The designed probe exhibited a NIR emission at 680 nm, with a substantial Stokes shift of 100 nm and remarkably sensitive responses toward viscosity changes in solution. Importantly, QL-VB provided an evidently enhanced signal-to-noise ratio (SNR: 6.2) for the discrimination of cancer cells/normal cells, as compared with the control probe without biotin conjugation (SNR: 1.8). Moreover, we validated the capability of QL-VB for dynamic monitoring of stimulated viscosity changes within cancer cells and employed QL-VB for distinguishing breast cancer tissues from normal tissues in live mice with improved accuracy (SNR: 2.5) in comparison with the control probe (SNR: 1.8). All these findings indicated that the cancer-targeting and viscosity-activatable NIR fluorescent probe not only enables the mechanistic investigations of mitochondrial viscosity alterations within cancer cells but also holds the potential as a robust tool for cancer cell imaging-based applications.


Subject(s)
Fluorescent Dyes , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Viscosity , Animals , Mice , Optical Imaging , Female , Infrared Rays , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Cell Line, Tumor , Biotin/chemistry
14.
ACS Macro Lett ; 13(8): 1099-1104, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39132974

ABSTRACT

Chemical recycling of polymers to the corresponding monomers offers a valuable solution to address the current plastics crisis for creating an ideal and circular polymer economy. Here, we present a bimetallic synergistic depolymerization of the widely studied CO2-based polycarbonates, poly(cyclohexene carbonate)s, to epoxide monomers efficiently. The bimetallic CrIII-complex-mediated highly selective depolymerization and repolymerization was achieved via the regulation of reaction temperature, thus closing the circular loop of poly(cyclohexene carbonate)s in situ. Mechanistic investigation has revealed that the formation of epoxides undergoes a direct chain-end unzipping process. A bimetallic catalysis involving a nucleophilic attack of the metal-alkoxide species toward the methine carbon atom bound with an adjacent carbonyl that is activated by the other metal center features a lower energy barrier in DFT calculations, which promotes the epoxide extrusion.

15.
J Control Release ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39216598

ABSTRACT

In the realm of combined cancer immunotherapy, the strategic combination of therapeutics targeting both cancer cells and macrophages holds immense potential. However, the major challenges remain on how to achieve facile spatiotemporal delivery of these therapies, allowing ease of manipulation and ensuring differential drug release for enhanced synergistic therapeutic effects. In the present study, we introduced a tumor microenvironment (TME)-adapted hydrogel with the phenylboronic acid-modified dipyridamole prodrug (DIPP) as a crosslinker. This prodrug hydrogel scaffold, 3BP@DIPPGel, could be formed in situ by a simple mixture of DIPP and poly(vinyl alcohol) (PVA), and loaded with a high ratio of 3-bromopyruvic acid (3BP). The 3BP@DIPPGel enables spatiotemporal localized delivery of dipyridamole (DIP) and 3BP with distinct release kinetics that effectively reshape the immunosuppressive TME. Upon reactive oxygen species (ROS) stimulation, 3BP@DIPPGel preferentially released 3BP, inducing tumor-specific pyroptosis via the ROS/BAX/caspase-3/GSDME signaling pathway and decreasing the secretion of chemokines such as CCL8 to counteract macrophage recruitment. Subsequently, the crosslinked DIP is released, triggering the tumor-associated macrophages (TAMs) polarization towards the immunostimulatory M1 phenotype via the CCR2/JAK2/STAT3 cascade signaling pathway. This dual action from 3BP@DIPPGel leads to the restoration of tumor cell immunogenicity with high efficacy and activation of immune cells. Furthermore, the 3BP@DIPPGel-based chemoimmunotherapy upregulates the expression of sialic-acid-binding Ig-like lectin 10 and hence sensitizing tumors to anti-CD24 therapy in the tumor-bearing mice. Therefore, this strategy can have significant potential in the prevention of tumor metastases and recurrence. To the best of our understanding, this study represents a pioneering showcase of tumor pyroptosis, induced by glycolytic inhibitors, which can be effectively coordinated with DIP-mediated TAM polarization for immune activation, offering a new paradigm for differentially sustained drug delivery to foster cancer immunotherapy.

16.
Zhonghua Nan Ke Xue ; 30(4): 315-320, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-39210417

ABSTRACT

OBJECTIVE: To retrospectively analyze the causes of missed diagnosis of clinically significant PCa (csPCa) by targeted biopsy (TB). METHODS: This retrospective study included 652 males aged (71.32 ± 16.53) years with elevated PSA and abnormal MRI signals detected in our hospital from June 2018 to December 2020. We further examined the patients by transperineal prostatic TB and systematic biopsy (SB), analyzed the detection rates of PCa and csPCa by TB and SB, and investigated the causes of missed diagnosis of csPCa in TB using the fishbone diagram. RESULTS: The total detection rate of PCa and csPCa by TB combined with SB was 45.7% (298/652), and that of csPCa was 37.4% (244/652), with 38 cases of csPCa missed in TB, including 23 cases of negative TB and 15 cases of low ISUP grade. The causes of missed diagnosis of csPCa by TB included low MRI image quality, PSA density ≤0.15 ng/ml/cm3, target area <10 mm, and PI-RADS 2 score ≤3. The detection rate of csPCa by TB alone was 31.6%, which was increased by 5.8% (P = 0.027) when TB combined with SB. CONCLUSION: TB combined with SB yields a higher detection rate of csPCa than either used alone. Missed diagnosis of csPCa by TB is closely related to the characteristics of tumor and MR image of the target area.


Subject(s)
Magnetic Resonance Imaging , Missed Diagnosis , Prostatic Neoplasms , Humans , Male , Aged , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/pathology , Retrospective Studies , Middle Aged , Prostate/pathology , Prostate/diagnostic imaging , Prostate-Specific Antigen/blood , Image-Guided Biopsy/methods , Aged, 80 and over
17.
Proc Natl Acad Sci U S A ; 121(33): e2403740121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39102540

ABSTRACT

The formation of macrophage-derived foam cells has been recognized as the pathological hallmark of atherosclerotic diseases. However, the pathological evolution dynamics and underlying regulatory mechanisms remain largely unknown. Herein, we introduce a single-particle rotational microrheology method for pathological staging of macrophage foaming and antiatherosclerotic explorations by probing the dynamic changes of lysosomal viscous feature over the pathological evolution progression. The principle of this method involves continuous monitoring of out-of-plane rotation-caused scattering brightness fluctuations of the gold nanorod (AuNR) probe-based microrheometer and subsequent determination of rotational relaxation time to analyze the viscous feature in macrophage lysosomes. With this method, we demonstrated the lysosomal viscous feature as a robust pathological reporter and uncovered three distinct pathological stages underlying the evolution dynamics, which are highly correlated with a pathological stage-dependent activation of the NLRP3 inflammasome-involved positive feedback loop. We also validated the potential of this positive feedback loop as a promising therapeutic target and revealed the time window-dependent efficacy of NLRP3 inflammasome-targeted drugs against atherosclerotic diseases. To our knowledge, the pathological staging of macrophage foaming and the pathological stage-dependent activation of the NLRP3 inflammasome-involved positive feedback mechanism have not yet been reported. These findings provide insights into in-depth understanding of evolutionary features and regulatory mechanisms of macrophage foaming, which can benefit the analysis of effective therapeutical drugs as well as the time window of drug treatment against atherosclerotic diseases in preclinical studies.


Subject(s)
Atherosclerosis , Foam Cells , Gold , NLR Family, Pyrin Domain-Containing 3 Protein , Atherosclerosis/pathology , Animals , Gold/chemistry , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Foam Cells/pathology , Foam Cells/metabolism , Macrophages/pathology , Macrophages/metabolism , Humans , Lysosomes/metabolism , Inflammasomes/metabolism , Nanotubes/chemistry , Rheology
18.
ACS Nano ; 18(34): 23289-23300, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39151414

ABSTRACT

mRNA vaccines have been revolutionizing disease prevention and treatment. However, their further application is hindered by inflammatory side effects, primarily caused by delivery systems such as lipid nanoparticles (LNPs). In response to this issue, we prepared cationic lipids (mLPs) derived from mildronate, a small-molecule drug, and subsequently developed the LNP (mLNP-69) comprising a low dose of mLP. Compared with the LNP (sLNP) based on SM-102, a commercially available ionizable lipid, mLNP-69 ensures effective mRNA delivery while significantly reducing local inflammation. In preclinical prophylactic and therapeutic B16-OVA melanoma models, mLNP-69 demonstrated successful mRNA cancer vaccine delivery in vivo, effectively preventing tumor occurrence or impeding tumor progression. The results suggest that the cationic lipids derived from mildronate, which exhibit efficient delivery capabilities and minimal inflammatory side effects, hold great promise for clinical application.


Subject(s)
Inflammation , Lipids , Animals , Mice , Lipids/chemistry , Inflammation/prevention & control , Nanoparticles/chemistry , Mice, Inbred C57BL , Cancer Vaccines/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/chemistry , mRNA Vaccines , RNA, Messenger/genetics , Female , Melanoma, Experimental/pathology
19.
Science ; 385(6707): 409-416, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39052814

ABSTRACT

Understanding the neural basis of infant social behaviors is crucial for elucidating the mechanisms of early social and emotional development. In this work, we report a specific population of somatostatin-expressing neurons in the zona incerta (ZISST) of preweaning mice that responds dynamically to social interactions, particularly those with their mother. Bidirectional neural activity manipulations in pups revealed that widespread connectivity of preweaning ZISST neurons to sensory, emotional, and cognitive brain centers mediates two key adaptive functions associated with maternal presence: the reduction of behavior distress and the facilitation of learning. These findings reveal a population of neurons in the infant mouse brain that coordinate the positive effects of the relationship with the mother on an infant's behavior and physiology.


Subject(s)
Neurons , Social Behavior , Social Interaction , Somatostatin , Zona Incerta , Animals , Female , Male , Mice , Emotions , Learning , Maternal Behavior , Neurons/metabolism , Neurons/physiology , Somatostatin/metabolism , Zona Incerta/metabolism , Zona Incerta/physiology
20.
BMC Plant Biol ; 24(1): 684, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020284

ABSTRACT

Malus sieversii, commonly known as wild apples, represents a Tertiary relict plant species and serves as the progenitor of globally cultivated apple varieties. Unfortunately, wild apple populations are facing significant degradation in localized areas due to a myriad of factors. To gain a comprehensive understanding of the nutrient status and spatiotemporal variations of M. sieversii, green leaves were collected in May and July, and the fallen leaves were collected in October. The concentrations of leaf nitrogen (N), phosphorus (P), and potassium (K) were measured, and the stoichiometric ratios as well as nutrient resorption efficiencies were calculated. The study also explored the relative contributions of soil, topographic, and biotic factors to the variation in nutrient traits. The results indicate that as the growing period progressed, the concentrations of N and P in the leaves significantly decreased (P < 0.05), and the concentration of K in October was significantly lower than in May and July. Throughout plant growth, leaf N-P and N-K exhibited hyperallometric relationships, while P-K showed an isometric relationship. Resorption efficiency followed the order of N < P < K (P < 0.05), with all three ratios being less than 1; this indicates that the order of nutrient limitation is K > P > N. The resorption efficiencies were mainly regulated by nutrient concentrations in fallen leaves. A robust spatial dependence was observed in leaf nutrient concentrations during all periods (70.1-97.9% for structural variation), highlighting that structural variation, rather than random factors, dominated the spatial variation. Nutrient resorption efficiencies (NRE, PRE, and KRE) displayed moderate structural variation (30.2-66.8%). The spatial patterns of nutrient traits varied across growth periods, indicating they are influenced by multifactorial elements (in which, soil property showed the highest influence). In conclusion, wild apples manifested differentiated spatiotemporal variability and influencing factors across various leaf nutrient traits. These results provide crucial insights into the spatiotemporal patterns and influencing factors of leaf nutrient traits of M. sieversii at the permanent plot scale for the first time. This work is of great significance for the ecosystem restoration and sustainable management of degrading wild fruit forests.


Subject(s)
Malus , Nitrogen , Phosphorus , Plant Leaves , Potassium , Plant Leaves/metabolism , Malus/metabolism , Malus/growth & development , Malus/physiology , China , Phosphorus/metabolism , Phosphorus/analysis , Nitrogen/metabolism , Potassium/metabolism , Potassium/analysis , Forests , Nutrients/metabolism , Nutrients/analysis , Soil/chemistry , Fruit/growth & development , Fruit/metabolism , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL