Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Mol Cancer Res ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787319

ABSTRACT

HBV-associated hepatocellular carcinoma (HCC) represents the prevalent form of HCC, with HBx protein being a crucial oncoprotein. Numerous members of the protein tyrosine phosphatase non-receptor (PTPN) family have been confirmed to be significantly associated with the occurrence and progression of malignant tumors. Our group has previously identified the involvement of PTPN13 in HCC. However, the roles of other PTPNs in HCC still requires further investigation. In this study, we found PTPN18 expression was significantly downregulated within HCC tissues compared to that in adjacent non-tumor tissues and normal liver tissues. Functionally, PTPN18 exerted inhibitory effects on the proliferation, migration, invasion, and sphere-forming capability of HCC cells, while concurrently promoting apoptotic processes. Through phospho-protein microarray screening followed by subsequent validation experiments, we identified that PTPN18 could activate the p53 signaling pathway and suppress the AKT/FOXO1 signaling cascade in HCC cells. Moreover, we found that the HBx protein mediated the repression of PTPN18 expression by upregulating miR-128-3p. Collectively, our study unveiled the role of PTPN18 as a tumor suppressor in HBV-related HCC. Implications: Our findings revealed PTPN18 might serve as a potential diagnostic and therapeutic target for HBV-related HCC.

2.
Cancer Sci ; 115(5): 1587-1601, 2024 May.
Article in English | MEDLINE | ID: mdl-38438251

ABSTRACT

Both lysine and arginine methyltransferases are thought to be promising therapeutic targets for malignant tumors, yet how these methyltransferases function in malignant tumors, especially hepatocellular carcinoma (HCC), has not been fully elucidated. Here, we reported that SMYD4, a lysine methyltransferase, acts as an oncogene in HCC. SMYD4 was highly upregulated in HCC and promoted HCC cell proliferation and metastasis. Mechanistically, PRMT5, a well-known arginine methyltransferase, was identified as a SMYD4-binding protein. SMYD4 monomethylated PRMT5 and enhanced the interaction between PRMT5 and MEP50, thereby promoting the symmetrical dimethylation of H3R2 and H4R3 on the PRMT5 target gene promoter and subsequently activating DVL3 expression and inhibiting expression of E-cadherin, RBL2, and miR-29b-1-5p. Moreover, miR-29b-1-5p was found to inversely regulate SMYD4 expression in HCC cells, thus forming a positive feedback loop. Furthermore, we found that the oncogenic effect of SMYD4 could be effectively suppressed by PRMT5 inhibitor in vitro and in vivo. Clinically, high coexpression of SMYD4 and PRMT5 was associated with poor prognosis of HCC patients. In summary, our study provides a model of crosstalk between lysine and arginine methyltransferases in HCC and highlights the SMYD4-PRMT5 axis as a potential therapeutic target for the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Liver Neoplasms , MicroRNAs , Protein-Arginine N-Methyltransferases , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Animals , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Mice , Methylation , Male , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Feedback, Physiological , Female , Mice, Nude
3.
Clin Transl Oncol ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472558

ABSTRACT

BACKGROUND: Deregulating cellular metabolism is one of the prominent hallmarks of malignancy, with a critical role in tumor survival and growth. However, the role of reprogramming aspartate metabolism in hepatocellular carcinoma (HCC) are largely unknown. METHODS: The multi-omics data of HCC patients were downloaded from public databases. Univariate and multivariate stepwise Cox regression were used to establish an aspartate metabolism-related gene signature (AMGS) in HCC. The Kaplan-Meier and receiver operating characteristic curve analyses were performed to evaluate the predictive ability for overall survival (OS) in HCC patients. Gene set enrichment analysis and immune infiltration analysis were operated to determine the potential mechanisms underlying the AMGS. Single-cell RNA sequencing (scRNA-seq) data of liver cancer stem cells were visualized by t-SNE algorithm. In vivo and in vitro experiments were implemented to investigate the biological function of CAD in HCC. In addition, a nomogram based on the AMGS and clinicopathologic characteristics was constructed by univariate and multivariate Cox regression analyses. RESULTS: Patients in the high-AMGS subgroup exerted advanced tumor status and poor prognosis. Mechanistically, the high-AMGS subgroup patients had significantly enhanced proliferation and stemness-related pathways, increased infiltration of regulatory T cells and upregulated expression levels of suppressive immune checkpoints in the tumor immune microenvironment. Notably, scRNA-seq data revealed CAD, one of the aspartate metabolism-related gene, is significantly upregulated in liver cancer stem cells. Silencing CAD inhibited proliferative capacity and stemness properties of HCC cells in vitro and in vivo. Finally, a novel nomogram based on the AMGS showed an accurate prediction in HCC patients. CONCLUSIONS: The AMGS represents a promising prognostic value for HCC patients, providing a perspective for finding novel biomarkers and therapeutic targets for HCC.

4.
Int J Surg ; 110(5): 2910-2921, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38353702

ABSTRACT

OBJECTIVE: The objective of this study is to evaluate and compare the survival benefit and safety of surgery following conversion therapy versus surgery alone in patients diagnosed with surgically resectable hepatocellular carcinoma (HCC) at China Liver Cancer Staging (CNLC) IIb/IIIa stage. METHODS: A total of 95 patients diagnosed with surgically resectable CNLC IIb/IIIa HCC were retrospectively enrolled in our study from November 2018 to December 2022. Among them, 30 patients underwent conversion therapy followed by hepatectomy, while the remaining 65 received surgery alone. The primary endpoint was recurrence-free survival (RFS). Propensity score matching was employed to minimize bias in the retrospective analysis. RESULTS: Compared to the surgery alone group, the conversion therapy group demonstrated a significantly prolonged median RFS (17.1 vs. 7.0 months; P =0.014), a reduced incidence of microvascular invasion (MVI, 23.3 vs. 81.5%; P <0.001), and a comparable rate of achieving Textbook Outcome in Liver Surgery (TOLS, 83.3 vs. 76.9%; P =0.476). Multivariate analysis indicated that conversion therapy was independently associated with improved RFS after hepatectomy (HR=0.511, P =0.027). The same conclusions were obtained after propensity score matching. CONCLUSIONS: The findings of our study offer preliminary evidence that preoperative conversion therapy significantly prolongs RFS in patients with surgically resectable HCC at CNLC IIb/IIIa stage. Furthermore, combining conversion therapy and hepatectomy represents a relatively safe treatment strategy.


Subject(s)
Carcinoma, Hepatocellular , Hepatectomy , Liver Neoplasms , Neoplasm Staging , Propensity Score , Humans , Carcinoma, Hepatocellular/surgery , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/surgery , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Male , Female , Middle Aged , Hepatectomy/adverse effects , Hepatectomy/methods , Retrospective Studies , Aged , China/epidemiology , Adult
6.
J Chem Theory Comput ; 19(19): 6782-6795, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37661928

ABSTRACT

We present an approach to interface branching random walks with Markov chain Monte Carlo sampling and to switch seamlessly between the two. The approach is discussed in the context of auxiliary-field quantum Monte Carlo (AFQMC) but can be applied to other Monte Carlo calculations or simulations. In AFQMC, the formulation of branching random walks along imaginary-time is needed to realize a constraint to control the sign or phase problem. The constraint is derived from an exact gauge condition and is in practice implemented approximately with a trial wave function or trial density matrix, which can break exactness in the algorithm. We use the generalized Metropolis algorithm to sample a selected portion of the imaginary-time path after it has been produced by the branching random walk. This interfacing allows a constraint release to follow seamlessly from constrained-path sampling, which can reduce the systematic error from the latter. It also provides a way to improve the computation of correlation functions and observables that do not commute with the Hamiltonian. We illustrate the method in atoms and molecules, where improvements in accuracy can be clearly quantified and near-exact results are obtained. We also discuss the computation of the variance of the Hamiltonian and propose a convenient way to evaluate it stochastically without changing the scaling of AFQMC.

7.
J Hepatocell Carcinoma ; 10: 1069-1083, 2023.
Article in English | MEDLINE | ID: mdl-37457652

ABSTRACT

Lenvatinib, a multitargeted tyrosine kinase inhibitor (TKI), is one of the preferred targeted drugs for the treatment of advanced hepatocellular carcinoma (aHCC). Since the REFLECT study showed that lenvatinib was noninferior to sorafenib in overall survival (OS), lenvatinib monotherapy has been widely used for aHCC. Moreover, lenvatinib combination therapy, especially lenvatinib combined with immune checkpoint inhibitors (ICIs), has shown more encouraging clinical results. However, drug development and comprehensive treatment have not significantly improved the prognosis, and lenvatinib resistance is often encountered in treatment. The underlying molecular mechanism of lenvatinib resistance is still unclear, and studies to solve drug resistance are ongoing. The molecular mechanisms of lenvatinib resistance in patients with aHCC include the regulation of signaling pathways, the regulation of noncoding RNAs, the impact of the immune microenvironment, tumor stem cell activation and other mechanisms. This review aims to (1) summarize the progress of lenvatinib in treating aHCC, (2) delineate the known lenvatinib resistance mechanisms of current therapy, and (3) describe the development of therapeutic methods intended to overcome these resistance mechanisms.

9.
Mol Ther Nucleic Acids ; 29: 788-802, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36159591

ABSTRACT

Hepatitis B virus X protein (HBx) is considered as an oncogene in tumorigenesis and progression of hepatocellular carcinoma (HCC). In recent years, the important role of circular RNAs (circRNAs) in HCC has been increasingly demonstrated. However, the regulatory mechanisms of HBx on circRNAs remains largely unknown. In this study, we identified that a novel circRNA, circSFMBT2, was markedly downregulated by HBx. Low expression of circSFMBT2 was correlated with poor prognosis and vascular invasion. Functionally, overexpression of circSFMBT2 significantly inhibited HCC metastasis both in vitro and in vivo. The mechanism of circSFMBT2 was to as a sponge of miR-665, which is a negative regulator of tissue inhibitor of metalloproteinases 3 (TIMP3). However, HBx downregulated circSFMBT2 via the interaction with DExH-box helicase 9 (DHX9), which binds to flanking circRNA-forming introns. In conclusion, circSFMBT2, which is downregulated by HBx, acts as a tumor suppressor to inhibit tumor metastasis through the miR-665/TIMP3 axis. Our study suggests that circSFMBT2 could be a potential prognostic biomarker and therapeutic target for HCC.

10.
PLoS One ; 17(6): e0270708, 2022.
Article in English | MEDLINE | ID: mdl-35763505

ABSTRACT

In order to develop an appropriate method for high-throughput detection of avian metapneumovirus, a quadruple real-time reverse-transcription polymerase chain reaction assay was established with four pairs of specific primers and four specific probes based on the G or M gene of aMPV-A, aMPV-B, aMPV-C and aMPV-D. Its specificity and sensitivity were evaluated, and clinical samples were tested by the method. The results showed that all the four subgroups of avian metapneumovirus can be detected in the quadruple real-time RT-PCR assay simultaneously, with a detection limit of 100-1000 cRNA copies/reaction. The other common poultry viruses were negative. In the avian clinical sample detection, 39 out of 1920 clinical samples collected from 8 provinces were positive. Compared with published RT-PCR assays, the κ value of the quadruple real-time RT-PCR assay in 1920 avian clinical samples was 1.000 (P < 0.001). The established method could be used for the rapid detection of the four subgroups of avian metapneumovirus with high specificity and high sensitivity.


Subject(s)
Metapneumovirus , Poultry Diseases , Animals , Birds/genetics , Metapneumovirus/genetics , Poultry Diseases/diagnosis , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity
11.
J Gastrointest Oncol ; 13(2): 833-846, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35557567

ABSTRACT

Background: The aim of the study was to establish and validate a novel prognostic nomogram of cancer-specific survival (CSS) in resected hilar cholangiocarcinoma (HCCA) patients. Methods: A training cohort of 536 patients and an internal validation cohort of 270 patients were included in this study. The demographic and clinicopathological variables were extracted from the Surveillance, Epidemiology and End Results (SEER) database. Univariate and multivariate Cox regression analysis were performed in the training cohort, followed by the construction of nomogram for CSS. The performance of the nomogram was assessed by concordance index (C-index) and calibration plots and compared with the American Joint Committee on Cancer (AJCC) staging systems. Decision curve analysis (DCA) was applied to measure the predictive power and clinical value of the nomogram. Results: The nomogram incorporating age, tumor size, tumor grade, lymph node ratio (LNR) and T stage parameters was with a C-index of 0.655 in the training cohort, 0.626 in the validation cohort, compared with corresponding 0.631, 0.626 for the AJCC 8th staging system. The calibration curves exhibited excellent agreement between CSS probabilities predicted by nomogram and actual observation in the training cohort and validation cohort. DCA indicated that this nomogram generated substantial clinical value. Conclusions: The proposed nomogram provided a more accurate prognostic prediction of CSS for individual patients with resected HCCA than the AJCC 8th staging system, which might be served as an effective tool to stratify resected HCCA patients with high risk and facilitate optimizing therapeutic benefit.

12.
J Exp Clin Cancer Res ; 41(1): 13, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34996491

ABSTRACT

BACKGROUND: Increasing evidence has suggested inositol polyphosphate 5-phosphatase family contributes to tumorigenesis and tumor progression. However, the role of INPP5F in hepatocellular carcinoma (HCC) and its underlying mechanisms is unclear. METHODS: The expression of INPP5F in HCC was analyzed in public databases and our clinical specimens. The biological functions of INPP5F were investigated in vitro and vivo. The molecular mechanism of INPP5F in regulating tumor growth were studied by transcriptome-sequencing analysis, mass spectrometry analysis, immunoprecipitation assay and immunofluorescence assay. RESULTS: High expression of INPP5F was found in HCC tissues and was associated with poor prognosis in HCC patients. Overexpression of INPP5F promoted HCC cell proliferation, and vice versa. Knockdown of INPP5F suppressed tumor growth in vivo. Results from transcriptome-sequencing analysis showed INPP5F not only regulated a series of cell cycle related genes expression (c-MYC and cyclin E1), but also promoted many aerobic glycolysis related genes expression. Further studies confirmed that INPP5F could enhance lactate production and glucose consumption in HCC cell. Mechanistically, INPP5F activated Notch signaling pathway and upregulated c-MYC and cyclin E1 in HCC via interacting with ASPH. Interestingly, INPP5F was commonly nuclear-located in cells of adjacent non-tumor tissues, while in HCC, cytoplasm-located was more common. LMB (nuclear export inhibitor) treatment restricted INPP5F in nucleus and was associated with inhibition of Notch signaling and cell proliferation. Sequence of nuclear localization signals (NLSs) and nuclear export signals (NESs) in INPP5F aminoacidic sequence were then identified. Alteration of the NLSs or NESs influenced the localization of INPP5F and the expression of its downstream molecules. Furthermore, we found INPP5F interacted with both exportin and importin through NESs and NLSs, respectively, but the interaction with exportin was stronger, leading to cytoplasmic localization of INPP5F in HCC. CONCLUSION: These findings indicate that INPP5F functions as an oncogene in HCC via a translocation mechanism and activating ASPH-mediated Notch signaling pathway. INPP5F may serve as a potential therapeutic target for HCC patients.


Subject(s)
Calcium-Binding Proteins/metabolism , Carcinoma, Hepatocellular/genetics , Inositol Polyphosphate 5-Phosphatases/metabolism , Liver Neoplasms/genetics , Membrane Proteins/metabolism , Mixed Function Oxygenases/metabolism , Muscle Proteins/metabolism , Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/pathology , Male , Mice , Signal Transduction
13.
Front Oncol ; 12: 1031156, 2022.
Article in English | MEDLINE | ID: mdl-36776357

ABSTRACT

Background: The development of targeted therapy and immunotherapy has enriched the treatment of hepatocellular carcinoma (HCC), however, have had poor or no reponse, or even no response. Previous research suggested that ferroptosis and tumor immune microenvironment (TIME) may have a fundamental impact on efficacy during HCC immunotherapy and targeted therapy. Therefore, there is a clinical need to develop a signature that categorizes HCC patients in order to make more accurate clinical decisions. Methods: Clinical data and gene expression data of HCC patients were obtained from The Cancer Genome Atlas (TCGA) portal and International Cancer Genome Consortium (ICGC) portal. To identify ferroptosis-related immune-related genes (ferroptosis-related IRGs), Pearson correlation analysis was conducted. The ferroptosis-related IRGs prognostic signature (FIPS) was constructed using Univariate Cox and LASSO Cox algorithms. The predictive effectiveness of FIPS was evaluated using Receiver Operating Characteristic (ROC) curves and survivorship curve. The correlation ship between FIPS and TIME was evaluated using single-sample Gene Set Enrichment Analysis (ssGSEA) and CIBERSORT. The relationship between FIPS and immunotherapy responsiveness was evaluated using immunophenoscore. The expression level of 10 ferroptosis-related IRGs in normal liver tissues and HCC tissues was compared using immunohistochemistry. Finally, we established a nomogram (based on FIPS, TNM stage, and age) for clinical application. Results: The FIPS was established with ten ferroptosis-related IRGs. The high-FIPS subgroup showed a poor clinical prognosis and an obviously higher proportion of HCC patients with advanced TNM stage, high WHO grade and high alpha fetoprotein(AFP) value. Analysis of TIME indicated that patients in the high-FIPS subgroup may be in immunosuppressed state. Meanwhile, we found that ferroptosis may be inhibited in the high-FIPS subgroup and this subgroup may be impervious to immunotherapy and sorafenib. Conclusion: We constructed a novel potential prognostic signature for HCC patients that predicts overall survival, ferroptosis and immune status, sorafenib sensitivity, and immunotherapy responsiveness.

14.
J Hepatocell Carcinoma ; 8: 985-996, 2021.
Article in English | MEDLINE | ID: mdl-34466409

ABSTRACT

Ferroptosis is a special form of regulatory cell death caused by the accumulation of intracellular iron and lipid peroxidation. Here, we summarize the research progress on ferroptosis in hepatocellular carcinoma (HCC), trace the development of the concept of ferroptosis and its key regulatory factors, and discuss the application value of ferroptosis in the treatment of HCC from different perspectives. We believe that exploring the relationship between ferroptosis and HCC and clarifying the metabolism and expression of ferroptosis-specific genes and molecules will accelerate the development of novel ferroptosis-related molecules as HCC markers and therapeutic targets. We hope to provide a theoretical basis for better diagnosis and treatment to effectively improve the prognosis of patients with HCC.

15.
Front Mol Biosci ; 8: 809672, 2021.
Article in English | MEDLINE | ID: mdl-34977159

ABSTRACT

Background: Ferroptosis, as a unique programmed cell death modality, has been found to be closely related to the occurrence and development of hepatocellular carcinoma (HCC). Hypoxia signaling pathway has been found to be extensively involved in the transformation and growth of HCC and to inhibit anti-tumor therapy through various approaches. However, there is no high-throughput study to explore the potential link between ferroptosis and hypoxia, as well as their combined effect on the prognosis of HCC. Methods: We included 370 patients in The Cancer Genome Atlas (TCGA) database and 231 patients in the International Cancer Genome Consortium (ICGC) database. Univariate COX regression and Least Absolute Shrinkage and Selection Operator approach were used to construct ferroptosis-related genes (FRGs) and hypoxia-related genes (HRGs) prognostic signature (FHPS). Kaplan-Meier method and Receiver Operating Characteristic curves were analyzed to evaluate the predictive capability of FHPS. CIBERSOR and single-sample Gene Set Enrichment Analysis were used to explore the connection between FHPS and tumor immune microenvironment. Immunohistochemical staining was used to compare the protein expression of prognostic FRGs and HRGs between normal liver tissue and HCC tissue. In addition, the nomogram was established to facilitate the clinical application of FHPS. Results: Ten FRGs and HRGs were used to establish the FHPS. We found consistent results in the TCGA training cohort, as well as in the independent ICGC validation cohort, that patients in the high-FHPS subgroup had advanced tumor staging, shorter survival time, and higher mortality. Moreover, patients in the high-FHPS subgroup showed ferroptosis suppressive, high hypoxia, and immunosuppression status. Finally, the nomogram showed a strong prognostic capability to predict overall survival (OS) for HCC patients. Conclusion: We developed a novel prognostic signature combining ferroptosis and hypoxia to predict OS, ferroptosis, hypoxia, and immune status, which provides a new idea for individualized treatment of HCC patients.

16.
Oncogene ; 40(1): 28-45, 2021 01.
Article in English | MEDLINE | ID: mdl-33051595

ABSTRACT

Hepatitis B x protein (HBx) affects cellular protein expression and participates in the tumorigenesis and progression of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Metabolic reprogramming contributed to the HCC development, but its role in HBV-related HCC remains largely unclear. Tyrosine-protein phosphatase nonreceptor type 13 (PTPN13) is a significant regulator in tumor development, however, its specific role in hepatocarcinogenesis remains to be explored. Here, we found that decreased PTPN13 expression was associated with HBV/HBx. Patients with low PTPN13 expression showed a poor prognosis. Functional assays revealed that PTPN13 inhibited proliferation and tumorigenesis in vitro and in vivo. Further mechanistic studies indicated that HBx inhibited PTPN13 expression by upregulating the expression of DNMT3A and interacting with DNMT3A. Furthermore, we found that DNMT3A bound to the PTPN13 promoter (-343 to -313 bp) in an epigenetically controlled manner associated with elevated DNA methylation and then inhibited PTPN13 transcription. In addition, we identified IGF2BP1 as a novel PTPN13-interacting gene and demonstrated that PTPN13 influences c-Myc expression by directly and competitively binding to IGF2BP1 to decrease the intracellular concentration of functional IGF2BP1. Overexpressing PTPN13 promoted c-Myc mRNA degradation independent of the protein tyrosine phosphatase (PTP) activity of PTPN13. Importantly, we discovered that the PTPN13-IGF2BP1-c-Myc axis was important for cancer cell growth through promoting metabolic reprogramming. We verified the significant negative correlations between PTPN13 expression and c-Myc, PSPH, and SLC7A1 expression in clinical HCC tissue samples. In summary, our findings demonstrate that PTPN13 is a novel regulator of HBV-related hepatocarcinogenesis and may play an important role in HCC. PTPN13 may serve as a prognostic marker and therapeutic target in HBV-related HCC patients.


Subject(s)
Carcinoma, Hepatocellular/pathology , Hepatitis B/complications , Liver Neoplasms/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 13/genetics , RNA-Binding Proteins/genetics , Trans-Activators/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Animals , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/virology , Cell Proliferation , Cohort Studies , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , DNA Methyltransferase 3A , Disease Progression , Down-Regulation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Hepatitis B/genetics , Hepatitis B/metabolism , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/virology , Mice , Neoplasm Transplantation , Prognosis , Promoter Regions, Genetic , Proto-Oncogene Proteins c-myc/genetics , RNA Stability
17.
Theranostics ; 10(22): 10345-10359, 2020.
Article in English | MEDLINE | ID: mdl-32929353

ABSTRACT

Background: In addition to protein tyrosine kinases, accumulating evidence has shown that protein tyrosine phosphatases (PTPs) are suitable therapeutic targets in cancer. PRL-3 is a PTP member that has been well studied in many malignant tumours. The goal of the present study was to elucidate the role of PRL-3 in hepatocellular carcinoma (HCC), which remains largely unknown. Methods: Bioinformatic and immunohistochemical analyses were performed to analyse PRL-3 expression in HCC tissue samples and determine its clinical relevance. PRL-3 gene copy number variations were evaluated by bioinformatic analysis and quantitative-genomic polymerase chain reaction. The biological functions of PRL-3 were investigated in vivo and vitro. Gene microarray assays, RT-qPCR, western blotting and luciferase experiments were performed to identify the downstream effectors of PRL-3 that mediate its functions in HCC. Results: PRL-3 expression was upregulated in HCC samples from public databases and in cohort samples from our centre. High PRL-3 expression was associated with poor prognosis. Copy number gains and amplification of chromosome 8q24.3 in HCC were determined to be positively correlated with the PRL-3 overexpression. PRL-3 overexpression promoted HCC cell proliferation, migration and adhesion, while its loss had the opposite effects. Further study showed that focal adhesion kinase (FAK) was co-amplified and co-expressed with PRL-3 in HCC. Interestingly, PRL-3 also promoted the phosphorylation of FAK, which subsequently mediated the oncogenic functions of PRL-3 in HCC cells. Moreover, TGFB1 was identified as a downstream molecule of PRL-3. TGF-ß signalling was shown to mediate the PRL-3-induced activation of FAK. Furthermore, the p38 and PI3K/AKT pathways were observed to mediate the PRL-3-induced expression of TGFB1 and the subsequent activation of FAK, while the activation of FAK in turn stimulated activation of the p38 and PI3K/AKT pathways, forming a PRL-3-triggered AKT/p38/TGFB1/FAK positive feedback loop. Conclusion: Collectively, our findings indicate that the PTP PRL-3 plays a crucial role in the progression of HCC and provides an example of how co-amplified genes work together in HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Focal Adhesion Kinase 1/genetics , Liver Neoplasms/genetics , Neoplasm Proteins/genetics , Protein Tyrosine Phosphatases/genetics , Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , DNA Copy Number Variations/genetics , Disease Progression , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Liver Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Oncogenes/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphorylation/genetics , Prognosis , Signal Transduction/genetics , Up-Regulation/genetics
18.
Front Oncol ; 10: 1281, 2020.
Article in English | MEDLINE | ID: mdl-32850391

ABSTRACT

Objective: Gallbladder cancer (GBC) is one of the most aggressive malignant tumors, and there is no effective and convenient method for predicting cancer-specific survival (CSS). We aim to develop a novel nomogram staging system based on the positive lymph node ratio (pLNR) for GBC patients. Methods:A total of 1,356 patients enrolled in the study. We evaluated the prognostic value of the pLNR and built a prognostic nomogram staging system based on the pLNR in the training cohort. The concordance index and calibration plots were used to evaluate model discrimination. The predictive accuracy and clinical value of the nomograms were measured by decision curve analysis (DCA). The CSS nomogram was further validated in an internal validation cohort. Results:The pLNR was an independent prognostic factor for CSS based on Cox regression analyses. A prognostic nomogram that combined T classification, pLNR, M classification, histologic grade, live metastasis, and tumor size was formulated with a c-index of 0.763 (95% CI, 0.728-0.798), while the c-indexes for the staging system of AJCC 8th, 7th, and 6th for CSS prediction were 0.718, 0.718, and 0.717, respectively. The calibration curves showed perfect agreement. The DCA showed that the nomogram provided substantial clinical value. The nomogram (the AUCs for 1, 3, and 5 years were 0.693, 0.716, and 0.726, respectively,) showed high prognostic accuracy. Conclusion:We have developed a formulated nomogram staging system based on the pLNR that allows more accurate individualized predictions of CSS for resected GBC patients than the AJCC staging systems.

19.
Cancer Cell Int ; 20: 140, 2020.
Article in English | MEDLINE | ID: mdl-32368186

ABSTRACT

BACKGROUND: The primary tumor, regional lymph nodes and distant metastasis (TNM) stage is an independent risk factor for 1-year hepatocellular carcinoma (HCC) recurrence but has insufficient predictive efficiency. We attempt to develop and validate a nomogram to predict 1-year recurrence in HCC and improve the predictive efficiency of the TNM stage. METHODS: A total of 541 HCC patients were enrolled in the study. The risk score (RS) model was established with the logistic least absolute shrinkage and selector operation algorithm. The predictive nomogram was further validated in the internal testing cohort and external validation cohort. The area under the receiver operating characteristic curves (AUCs), decision curves and clinical impact curves were used to evaluate the predictive accuracy and clinical value of the nomogram. RESULTS: In the training cohort, we identified a RS model consisting of five stage-related genes (NUP62, EHMT2, RANBP1, MSH6 and FHL2) for recurrence at 1 year. The 1-year disease-free survival of patients was worse in the high-risk group than in the low-risk group (P < 0.0001), and 1-year recurrence was more likely in the high-risk group (Hazard ratio: 3.199, P < 0.001). The AUC of the nomogram was 0.739, 0.718 and 0.693 in the training, testing and external validation cohort, respectively, and these values were larger than the corresponding AUC of the TNM stage (0.681, 0.688 and 0.616, respectively). CONCLUSIONS: A RS model consisting of five stage-related genes was successfully identified for predicting 1-year HCC recurrence. Then, a novel nomogram based on the RS model and TNM stage to predict 1-year HCC recurrence was also developed and validated.

20.
Oncogene ; 39(18): 3774-3789, 2020 04.
Article in English | MEDLINE | ID: mdl-32157216

ABSTRACT

Hepatitis B virus (HBV) infection plays an important role in hepatocarcinogenesis, especially in hepatocellular carcinoma (HCC). Long non-coding RNAs (lncRNAs) have emerged as crucial biomarkers and regulators in many cancers. Novel lncRNAs involved in the initiation and progression of HBV-related hepatocellular carcinoma (HCC) need to be investigated. Here, we report that the long non-coding RNA LINC01352 is markedly downregulated by HBV/HBx (HBV X protein) in HCC cells and clinical samples. The LINC01352 expression level in HCC is an independent prognostic factor for survival. We found that HBx suppresses LINC01352 promoter activity by forming a complex with the estrogen receptor (ERα). Furthermore, using a combination of in vitro and in vivo studies, we confirmed that HBx promotes HCC cell growth and metastasis by inhibiting LINC01352 expression. Further investigation revealed that the downregulation of LINC01352, which acts as an endogenous sponge, increases the expression of miR-135b, leading to the reduced production of adenomatous polyposis coli (APC), consequently activating Wnt/ß-catenin signalling to facilitate tumour progression. These findings strongly suggest that the LINC01352-miR-135b-APC axis regulated by the HBx/ERα complex acts as an important pathogenic factor for tumour progression, which may help provide a theoretical basis for the identification of new therapeutic targets for HBV-related HCC.


Subject(s)
Adenomatous Polyposis Coli Protein/genetics , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Aged , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/virology , Cell Line, Tumor , Estrogen Receptor alpha/genetics , Female , Hepatitis B/complications , Hepatitis B/genetics , Hepatitis B/pathology , Hepatitis B/virology , Hepatitis B virus/genetics , Hepatitis B virus/pathogenicity , Humans , Liver Neoplasms/pathology , Liver Neoplasms/virology , Male , Middle Aged , Promoter Regions, Genetic/genetics , Signal Transduction/genetics , Trans-Activators/genetics , Viral Regulatory and Accessory Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL