Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Bioact Mater ; 42: 613-627, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39314862

ABSTRACT

Clusterzymes are synthetic enzymes exhibiting substantial catalytic activity and selectivity, which are uniquely driven by single-atom constructs. A dramatic increase in antioxidant capacity, 158 times more than natural trolox, is noted when single-atom copper is incorporated into gold-based clusterzymes to form Au24Cu1. Considering the inflammatory and mildly acidic microenvironment characteristic of osteoarthritis (OA), pH-dependent dendritic mesoporous silica nanoparticles (DMSNs) coupled with PEG have been employed as a delivery system for the spatial-temporal release of clusterzymes within active articular regions, thereby enhancing the duration of effectiveness. Nonetheless, achieving high therapeutic efficacy remains a significant challenge. Herein, we describe the construction of a Clusterzymes-DMSNs-PEG complex (CDP) which remarkably diminishes reactive oxygen species (ROS) and stabilizes the chondroprotective protein YAP by inhibiting the Hippo pathway. In the rabbit ACLT (anterior cruciate ligament transection) model, the CDP complex demonstrated inhibition of matrix metalloproteinase activity, preservation of type II collagen and aggregation protein secretion, thus prolonging the clusterzymes' protective influence on joint cartilage structure. Our research underscores the efficacy of the CDP complex in ROS-scavenging, enabled by the release of clusterzymes in response to an inflammatory and slightly acidic environment, leading to the obstruction of the Hippo pathway and downstream NF-κB signaling pathway. This study illuminates the design, composition, and use of DMSNs and clusterzymes in biomedicine, thus charting a promising course for the development of novel therapeutic strategies in alleviating OA.

3.
J Nanobiotechnology ; 22(1): 445, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39069607

ABSTRACT

BACKGROUND: The incidence of osteochondral defects caused by trauma, arthritis or tumours is increasing annually, but progress has not been made in terms of treatment methods. Due to the heterogeneous structure and biological characteristics of cartilage and subchondral bone, the integration of osteochondral repair is still a challenge. RESULTS: In the present study, a novel bilayer hydrogel scaffold was designed based on anatomical characteristics to imitate superficial cartilage and subchondral bone. The scaffold showed favourable biocompatibility, and the addition of an antioxidant nanozyme (LiMn2O4) promoted reactive oxygen species (ROS) scavenging by upregulating antioxidant proteins. The cartilage layer effectively protects against chondrocyte degradation in the inflammatory microenvironment. Subchondral bionic hydrogel scaffolds promote osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) by regulating the AMPK pathway in vitro. Finally, an in vivo rat preclinical osteochondral defect model confirmed that the bilayer hydrogel scaffold efficiently promoted cartilage and subchondral bone regeneration. CONCLUSIONS: In general, our biomimetic hydrogel scaffold with the ability to regulate the inflammatory microenvironment can effectively repair osteochondral defects. This strategy provides a promising method for regenerating tissues with heterogeneous structures and biological characteristics.


Subject(s)
Bone Regeneration , Hydrogels , Mesenchymal Stem Cells , Osteogenesis , Rats, Sprague-Dawley , Tissue Scaffolds , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Tissue Scaffolds/chemistry , Rats , Mesenchymal Stem Cells/drug effects , Bone Regeneration/drug effects , Osteogenesis/drug effects , Chondrocytes/drug effects , Male , Cell Differentiation/drug effects , Inflammation , Tissue Engineering/methods , Reactive Oxygen Species/metabolism , Chondrogenesis/drug effects , Cartilage/drug effects , Cartilage, Articular/drug effects , Cells, Cultured
4.
J Control Release ; 372: 265-280, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38906418

ABSTRACT

To build a smart system in response to the variable microenvironment in infected diabetic wounds, a multifunctional wound dressing was constructed by co-incorporating glucose oxidase (GOx) and a pH-responsive self-assembly Cu2-xSe-BSA nanozyme into a dual-dynamic bond cross-linked hydrogel (OBG). This composite hydrogel (OBG@CG) can adhere to the wound site and respond to the acidic inflammatory environment, initiating the GOx-catalyzed generation of H2O2 and the self-assembly activated peroxidase-like property of Cu2-xSe-BSA nanozymes, resulting in significant hydroxyl radical production to attack the biofilm during the acute infection period and alleviate the high-glucose microenvironment for better wound healing. During the wound recovery phase, Cu2-xSe-BSA aggregates disassembled owing to the elevated pH, terminating catalytic reactive oxygen species generation. Simultaneously, Cu2+ released from the Cu2-xSe-BSA not only promotes the production of mature collagen but also enhances the migration and proliferation of endothelial cells. RNA-seq analysis demonstrated that OBG@CG exerted its antibacterial property by damaging the integrity of the biofilm by inducing radicals and interfering with the energy supply, along with destroying the defense system by disturbing thiol metabolism and reducing transporter activities. This work proposes an innovative glucose consumption strategy for infected diabetic wound management, which may inspire new ideas in the exploration of smart wound dressing.


Subject(s)
Anti-Bacterial Agents , Glucose Oxidase , Hydrogels , Wound Healing , Wound Healing/drug effects , Animals , Glucose Oxidase/administration & dosage , Hydrogels/chemistry , Hydrogels/administration & dosage , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Biofilms/drug effects , Male , Copper/chemistry , Copper/administration & dosage , Diabetes Mellitus, Experimental/drug therapy , Human Umbilical Vein Endothelial Cells , Bandages , Hydrogen Peroxide , Rats, Sprague-Dawley , Mice , Reactive Oxygen Species/metabolism , Nanostructures/chemistry , Nanostructures/administration & dosage
5.
Mater Today Bio ; 25: 100996, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38420143

ABSTRACT

Reactive Oxygen Species (ROS) refers to a highly reactive class of oxidizing species that have the potential to induce cellular apoptosis and necrosis. Cuproptosis, a type of cell death, is primarily associated with the effects of copper ions. However, the specific relationship between ROS, cuproptosis, and osteosarcoma (OS) remains relatively unexplored. Additionally, there is limited research on the use of cuproptosis in conjunction with oxidative stress for treating OS and inhibiting tumor-induced bone destruction. To address these gaps, a novel treatment approach has been developed for OS and neoplastic bone destruction. This approach involves the utilization of glutathione (GSH) and pH-responsive organic-inorganic mesoporous silica nanoparticles@Cu2S@oxidized Dextran (short for MCD). The MCD material demonstrates excellent cytocompatibility, osteogenesis, tumor suppression, and the ability to inhibit osteoclast formation. The specific mechanism of action involves the mitochondria of the MCD material inhibiting key proteins in the tricarboxylic acid (TCA) cycle. Simultaneously, the generation of ROS promotes this inhibition and leads to alterations in cellular energy metabolism. Moreover, the MCD biomaterial exhibits promising mild-temperature photothermal therapy in the second near-infrared (NIR-II) range, effectively mitigating tumor growth and OS-induced bone destruction in vivo.

6.
Int J Biol Sci ; 20(2): 701-717, 2024.
Article in English | MEDLINE | ID: mdl-38169523

ABSTRACT

Intervertebral disc degeneration (IDD) is a prevalent degenerative disorder that closely linked to aging. Numerous studies have indicated the crucial involvement of autophagy in the development of IDD. However, the non-selective nature of autophagy substrates poses great limitations on the application of autophagy-related medications. This study aims to enhance our comprehension of autophagy in the development of IDD and investigate a novel therapeutic approach from the perspective of selective autophagy receptor NBR1. Proteomics and immunoprecipitation and mass spectrometry analysis, combined with in vivo and in vitro experimental verification were performed. NBR1 is found to be reduced in IDD, and NBR1 retards cellular senescence and senescence-associated secretory phenotype (SASP) of nucleus pulposus cells (NPCs), primarily through its autophagy-dependent function. Mechanistically, NBR1 knockdown leads to the accumulation of S1 RNA-binding domain-containing protein 1 (SRBD1), which triggers cellular senescence via AKT1/p53 and RB/p16 pathways, and promotes SASP via NF-κß pathway in NPCs. Our findings reveal the function and mechanism of selective autophagy receptor NBR1 in regulating NPCs senescence and degeneration. Targeting NBR1 to facilitate the clearance of detrimental substances holds the potential to provide novel insights for IDD treatment.


Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Humans , Nucleus Pulposus/metabolism , Cellular Senescence/genetics , Aging , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Autophagy/genetics , Intracellular Signaling Peptides and Proteins/metabolism , RNA-Binding Proteins/metabolism
7.
ACS Nano ; 17(21): 21134-21152, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37902237

ABSTRACT

Catalytic tumor therapy based on two-dimensional (2D) nanomaterials is a burgeoning and promising tumor therapeutic modality. However, the inefficient utilization and conversion of exogenous stimulation, single catalytic modality, and unsatisfactory therapeutic efficiency in the tumor microenvironment (TME) have seriously restricted their further application in tumor therapy. Herein, the heterogeneous carbon nitride-based nanoagent named T-HCN@CuMS was successfully developed, which dramatically improved the efficiency of the tumor therapeutic modality. Benefiting from the donor-acceptor (triazine-heptazine) structure within the heterogeneous carbon nitride nanosheets (HCN) and the construction of interplanar heterostructure with copper loaded metallic molybdenum bisulfide nanosheets (CuMS), T-HCN@CuMS presented a favorable photo-induced catalytic property to generate abundant reactive oxygen species (ROS) under near-infrared (NIR) light irradiation. Besides, the choice of CuMS simultaneously enabled this nanoagent to efficiently catalyze the Fenton-like reaction and trigger cell cuproptosis, a recently recognized regulated cell death mode characterized by imbalanced intracellular copper homeostasis and aggregation of lipoylated mitochondrial proteins. Moreover, upon surface modification with cRGDfk-PEG2k-DSPE, T-HCN@CuMS was prepared and endowed with improved dispersibility and αvß3 integrins targeting ability. In general, through the rational design, T-HCN@CuMS was facilely prepared and had achieved satisfactory antitumor and antimetastasis outcomes both in vitro and in a high-metastatic orthotopic osteosarcoma model. This strategy could offer an idea to treat malignant diseases based on 2D nanomaterials.


Subject(s)
Bone Neoplasms , Neoplasms , Nitriles , Osteosarcoma , Humans , Copper/chemistry , Oxidative Stress , Neoplasms/drug therapy , Osteosarcoma/drug therapy , Tumor Microenvironment , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL