Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.584
Filter
1.
Environ Pollut ; 360: 124645, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39095001

ABSTRACT

Microplastics (MPs) have emerged as a pervasive environmental pollutant of global concern. Their detection within the human placenta and fetal organs has prompted apprehension regarding the potential hazards of MPs during early organogenesis. The kidney, a vital multifunctional organ, is susceptible to damage from MPs in adulthood. However, the precise adverse effects of MP exposure on human nephrogenesis remain ambiguous due to the absence of a suitable model. Here, we explore the potential impact of MPs on early kidney development utilizing human kidney organoids in vitro. Human kidney organoids were subjected to polystyrene-MPs (PS-MPs, 1 µm) during the nephron progenitor cell (NPC) stage, a critical phase in early kidney development and patterning. We delineate the effects of PS-MPs on various stages of nephrogenesis, including NPC, renal vesicle, and comma-shaped body, through sequential examination of kidney organoids. PS-MPs were observed to adhere to the surface of cells during the NPC stage and accumulate within glomerulus-like structures within kidney organoids. Moreover, both short- and long-term exposure to PS-MPs resulted in diminished organoid size and aberrant nephron structure. PS-MP exposure heightened reactive oxygen species (ROS) production, leading to NPC apoptosis during early kidney development. Increased apoptosis, diminished cell viability, and NPC reduction likely contribute to the observed organoid size reduction under PS-MP treatment. Transcriptomic analysis at both NPC and endpoint stages revealed downregulation of Notch signaling, resulting in compromised proximal and distal tubular structures, thereby disrupting normal nephron patterning following PS-MP exposure. Our findings highlight the significant disruptive impact of PS-MPs on human kidney development, offering new insights into the mechanisms underlying PS-MP-induced nephron toxicity.

2.
Phytomedicine ; 133: 155885, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39096544

ABSTRACT

BACKGROUND: Endothelial dysfunction (ED), characterized by markedly reduced nitric oxide (NO) bioavailability, vasoconstriction, and a shift toward a proinflammatory and prothrombotic state, is an important contributor to hypertension, atherosclerosis, and other cardiovascular diseases. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is widely involved in cardiovascular development. Przewaquinone A (PA), a lipophilic diterpene quinone extracted from Salvia przewalskii Maxim, inhibits vascular contraction. PURPOSE: Herein, the goal was to explore the protective effect of PA on ED in vivo and in vitro, as well as the underlying mechanisms. METHODS: A human umbilical vein endothelial cell (HUVEC) model of ED induced by angiotensin II (AngII) was used for in vitro observations. Levels of AMPK, endothelial nitric oxide synthase (eNOS), vascular cell adhesion molecule-1 (VCAM-1), nitric oxide (NO), and endothelin-1 (ET-1) were detected by western blotting and ELISA. A mouse model of hypertension was established by continuous infusion of AngII (1000 ng/kg/min) for 4 weeks using osmotic pumps. Following PA and/or valsartan administration, NO and ET-1 levels were measured. The levels of AMPK signaling-related proteins in the thoracic aorta were evaluated by immunohistochemistry. Systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) were measured using the tail cuff method. Isolated aortic vascular tone measurements were used to evaluate the vasodilatory function in mice. Molecular docking, molecular dynamics, and surface plasmon resonance imaging (SPRi) were used to confirm AMPK and PA interactions. RESULTS: PA inhibited AngII-induced vasoconstriction and vascular adhesion as well as activated AMPK signaling in a dose-dependent manner. Moreover, PA markedly suppressed blood pressure, activated vasodilation in mice following AngII stimulation, and promoted the activation of AMPK signaling. Furthermore, molecular simulations and SPRi revealed that PA directly targeted AMPK. AMPK inhibition partly abolished the protective effects of PA against endothelial dysfunction. CONCLUSION: PA activates AMPK and ameliorates endothelial dysfunction during hypertension.

3.
Cancer Nurs ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39106446

ABSTRACT

BACKGROUND: The low levels of physical activity in childhood cancer survivors have increasingly garnered attention from nursing scholars. Exercise-related worry is a prominent barrier, yet the understanding of such experiences among childhood cancer survivors and their primary caregivers remains scarce. OBJECTIVE: The aim of this study was to further understand the factors contributing to exercise-related worry from the perspective of childhood cancer survivors and their primary caregivers. METHODS: In this qualitative study, we conducted face-to-face semistructured interviews with childhood cancer survivors (n = 20) and carers (n = 20) in 2 hospitals in China. The interviews were analyzed according to thematic analysis. RESULTS: Two main themes and 8 subthemes emerged: (1) internal factors: changes in the perception of physical activity (threat perception from the disease, active avoidance of stressful events, lack of safety due to past experiences), and (2) external factors: weak support system (limited peer support, family strength, feeling abandoned by the tumor team, reintegration into school, external environmental constraints). In summary, exercise-related worry is from internal factors and can be influenced by external factors. CONCLUSION: There are various factors contributing to the concerns of exercise in childhood cancer survivors, which may be a key factor for their significantly lower levels of physical activity compared to guideline recommendations. IMPLICATIONS FOR PRACTICE: The findings of this study call for healthcare professionals to provide additional assistance for childhood cancer survivors with exercise-related worry and establish personalized mechanisms for supporting physical activity in pediatric cancer survivors within the Chinese healthcare system.

4.
Immunopharmacol Immunotoxicol ; : 1-13, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39155607

ABSTRACT

BACKGROUND: Hepatic ischemia reperfusion injury (IRI) is a common liver surgery complication. This study aims to explore the effect and potential mechanism of Sunitinib - a multi-target tyrosine kinase inhibitor - on hepatic IRI. METHODS: We established a hepatic IRI model using C57BL/6 mice, and integrated 40 mg/kg of Sunitinib, solely or combined with 100 µg/kg of coumermycin A1 (C-A1), in the treatment strategy. H&E staining, TUNEL assay, and detection of serum ALT and AST activities were used to assess liver damage. Further, ELISA kits and Western Blots were utilized to determine IL-1ß, TNF-α, IL-6, CXCL10, and CXCL2 levels. Primary macrophages, once isolated, were cultured in vitro with either 2 nM of Sunitinib, or Sunitinib in conjunction with 1 µM of C-A1, to gauge their influence on macrophage polarization. qPCR and Western blot were conducted to examine the level of p-STAT1/STAT1, p-STAT3/STAT3, p-JAK2/JAK2, and M1/M2 polarization markers. To quantify immune cell infiltration, we applied Immunofluorescence. RESULTS: Sunitinib pretreatment significantly alleviated liver injury and reduced p-STAT1/STAT1, p-STAT3/STAT3, p-JAK2/JAK2 levels. In vitro, Sunitinib treatment curbed M1 polarization induced by LPS + IFN-γ and bolstered M2 polarization triggered by IL-4. C-A1 application upregulated JAK2/STAT pathway phosphorylation and promoted LPS + IFN-γ-induced M1 polarization, which was reversed by Sunitinib treatment. In IL-4-stimulated macrophages, application of C-A1 activated the JAK2/STAT pathway and decreased M2-type macrophages, which was reversed by Sunitinib treatment either. CONCLUSION: Sunitinib is capable of guiding the polarization of macrophages toward an M2-type phenotype via the inhibition of the JAK2/STAT pathway, thereby exerting a protective effect on hepatic IRI.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124998, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39178690

ABSTRACT

Soil potassium is a crucial nutrient element necessary for crop growth, and its efficient measurement has become essential for developing rational fertilization plans and optimizing crop growth benefits. At present, data mining technology based on near-infrared (NIR) spectroscopy analysis has proven to be a powerful tool for real-time monitoring of soil potassium content. However, as technology and instruments improve, the curse of the dimensionality problem also increases accordingly. Therefore, it is urgent to develop efficient variable selection methods suitable for NIR spectroscopy analysis techniques. In this study, we proposed a three-step progressive hybrid variable selection strategy, which fully leveraged the respective strengths of several high-performance variable selection methods. By sequentially equipping synergy interval partial least squares (SiPLS), the random forest variable importance measurement (RF(VIM)), and the improved mean impact value algorithm (IMIV) into a fusion framework, a soil important potassium variable selection method was proposed, termed as SiPLS-RF(VIM)-IMIV. Finally, the optimized variables were fitted into a partial least squares (PLS) model. Experimental results demonstrated that the PLS model embedded with the hybrid strategy effectively improved the prediction performance while reducing the model complexity. The RMSET and RT on the test set were 0.01181% and 0.88246, respectively, better than the RMSET and RT of the full spectrum PLS, SiPLS, and SiPLS-RF(VIM) methods. This study demonstrated that the hybrid strategy established based on the combination of NIR spectroscopy data and the SiPLS-RF(VIM)-IMIV method could quantitatively analyze soil potassium content levels and potentially solve other issues of data-driven soil dynamic monitoring.

6.
Article in English | MEDLINE | ID: mdl-39175431

ABSTRACT

The activation of hepatic stellate cells (HSCs) is central to the occurrence and development of liver fibrosis. Our previous studies showed that autophagy promotes HSC activation and ultimately accelerates liver fibrosis. Unc-51-like autophagy activating kinase 1 (ULK1) is an autophagic initiator in mammals, and N 6-methyladenosine (m 6A) modification is closely related to autophagy. In this study, we find that the m 6A demethylase fat mass and obesity-associated protein (FTO), which is the m 6A methylase with the most significant difference in expression, is upregulated during HSC activation and bile duct ligation (BDL)-induced hepatic fibrosis. Importantly, we identify that FTO overexpression aggravates HSC activation and hepatic fibrosis via autophagy. Mechanistically, compared with other autophagy-related genes, ULK1 is a target of FTO because FTO mainly mediates the m 6A demethylation of ULK1 and upregulates its expression, thereby enhancing autophagy and the activation of HSCs. Notably, the m 6A reader YTH domain-containing protein 2 (YTHDC2) decreases ULK1 mRNA level by recognizing the m 6A binding site and ultimately inhibiting autophagy and HSC activation. Taken together, our findings highlight m6A-dependent ULK1 as an essential regulator of HSC autophagy and reveal that ULK1 is a novel potential therapeutic target for hepatic fibrosis treatment.

7.
Natl Sci Rev ; 11(8): nwae238, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39131923

ABSTRACT

Rechargeable magnesium batteries (RMBs) have received increased attention due to their high volumetric capacity and safety. Nevertheless, the sluggish diffusion kinetics of highly polarized Mg2+ in host lattices severely hinders the development of RMBs. Herein, we report an electron injection strategy for modulating the Mo 4d-orbital splitting manner and first fabricate a dual-phase MoO2.8F0.2/MoO2.4F0.6 heterostructure to accelerate Mg2+ diffusion. The electron injection strategy triggers weak Jahn-Teller distortion in MoO6 octahedra and reorganization of the Mo 4d-orbital, leading to a partial phase transition from orthorhombic phase MoO2.8F0.2 to cubic phase MoO2.4F0.6. As a result, the designed heterostructure generates a built-in electric field, simultaneously improving its electronic conductivity and ionic diffusivity by at least one order of magnitude compared to MoO2.8F0.2 and MoO2.4F0.6. Importantly, the assembled MoO2.8F0.2/MoO2.4F0.6//Mg full cell exhibits a remarkable reversible capacity of 172.5 mAh g-1 at 0.1 A g-1, pushing forward the orbital-scale manipulation for high-performance RMBs.

8.
Quant Imaging Med Surg ; 14(8): 5721-5736, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39144013

ABSTRACT

Background: The contrasted-enhanced ultrasound thyroid imaging reporting and data system (CEUS TI-RADS) is the first international risk stratification system for thyroid nodules based on conventional ultrasound (US) and CEUS. This study aimed to evaluate the diagnostic efficacy of CEUS TI-RADS for benign and malignant thyroid nodules and to assess the related interobserver agreement. Methods: The study recruited 433 patients who underwent thyroid US and CEUS between January 2019 and June 2023 at the Affiliated Hospital of Guangdong Medical University. A retrospective analysis of 467 thyroid nodules confirmed by fine-needle aspiration (FNA) and/or surgery was performed. Further, a CEUS TI-RADS classification was assigned to each thyroid nodule based on the CEUS TI-RADS scoring criteria for the US and CEUS features of the nodule. The nodules were grouped based on their sizes as follows: size ≤1 cm, group A; size >1 and ≤4 cm, group B; and size >4 cm, group C. Multivariate logistic regression was used to analyze independent risk factors for malignant thyroid nodules. Pathological assessment was the reference standard for establishing the sensitivity (SEN), specificity (SPE), accuracy (ACC), positive predictive value (PPV), and negative predictive value (NPV) of CEUS TI-RADS in diagnosing malignant thyroid nodules. The area under the curve (AUC) in the receiver operating characteristic (ROC) curve analysis was used to compare the diagnostic efficacy of the scoring system in predicting malignancy in three groups of nodules. The intragroup correlation coefficient (ICC) was adopted to assess the interobserver agreement of the CEUS TI-RADS score. Results: Out of the 467 thyroid nodules, 262 were malignant and 205 were benign. Logistic regression analysis revealed that the independent risk factors for malignant thyroid nodules included punctate echogenic foci (P<0.001), taller-than-wide shape (P=0.015), extrathyroidal invasion (P=0.020), irregular margins/lobulation (P=0.036), hypoechoicity on US (P=0.038), and hypoenhancement on CEUS (P<0.001). The AUC for the CEUS TI-RADS in diagnosing malignant thyroid nodules was 0.898 for all nodules, 0.795 for group A, 0.949 for group B, and 0.801 for group C, with the optimal cutoff values of the CEUS TI-RADS being 5 points, 6 points, 5 points, and 5 points, respectively. Among these groups of nodules, group B had the highest AUC, with the SEN, SPE, ACC, PPV, and NPV for diagnosing malignant nodules being 95.9%, 88.1%, 92.8%, 92.6%, and 93.2%, respectively. The ICC of the CEUS TI-RADS classification between senior and junior physicians was 0.862 (P<0.001). Conclusions: In summary, CEUS TI-RADS demonstrated significant efficacy in distinguishing thyroid nodules. Nonetheless, there were variations in its capacity to detect malignant nodules across diverse sizes, and it demonstrate optimal performance in 1- to 4-cm nodules. These findings may serve as important insights for clinical diagnoses.

9.
J Thorac Dis ; 16(7): 4607-4618, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39144353

ABSTRACT

Background: Andrographolide sulfonate (Andro-S), a traditional Chinese medicine, is commonly used to treat pediatric respiratory tract infections in China. However, its therapeutic effects in infections caused by respiratory syncytial virus (RSV) have not been reported. We thus aimed to investigate the therapeutic effects of Andro-S using a mouse model of RSV infection-induced airway inflammation. Methods: Immunocompromised (cyclophosphamide-treated) BALB/c mice were intranasally infected with RSV and treated with intranasal or intraperitoneal Andro-S once daily for five consecutive days, starting on the day of infection. Histopathological changes in the lung were evaluated using hematoxylin and eosin staining. Total inflammatory cell counts and macrophage, lymphocyte, neutrophil, and eosinophil counts in the bronchoalveolar lavage fluid (BALF) were microscopically determined. Interferon-γ (IFN-γ) levels in the BALF were detected using enzyme-linked immunosorbent assay (ELISA). The messenger RNA levels of RSV nucleoprotein (N) and Toll-like receptors (TLRs) 1-9 in lung tissues were determined with quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of RSV N, RSV fusion protein (F), TLR2, TLR3, and TIR domain-containing adapter-inducing interferon-ß (TRIF) were detected via Western blot analysis. Results: RSV infection caused lung inflammation, manifesting as bronchiolitis, alveolitis, and perivascular inflammation; increased the number of inflammatory cells; and elevated IFN-γ levels in the BALF. Lung inflammation was positively correlated with pulmonary RSV N levels in infected mice. Intranasal Andro-S significantly downregulated RSV N, RSV F, TLR3, and TRIF protein expression in the lung and ameliorated lung inflammation in infected animals. However, intraperitoneal Andro-S showed no effects on lung inflammation caused by RSV infection. Conclusions: Intranasal Andro-S inhibits RSV replication and ameliorates RSV infection-induced lung inflammation by downregulating TLR3 and TRIF. Therefore, intranasal administration may be a suitable drug delivery method for treating RSV infection.

10.
Heliyon ; 10(15): e34321, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39144947

ABSTRACT

Ultraviolet B (UVB) light exposure accelerates skin photoaging. Human adipose-derived stem cell exosomes (hADSC-Exos) and some antioxidants may have anti-photoaging effects. However, it is unknown whether the combination of hADSC-Exos and antioxidants plays a synergistic role in anti-photoaging. In cellular and 3D skin models, we showed that vitamin E (VE) and hADSC-Exos were optimal anti-photoaging combinations. In vivo, VE and hADSC-Exos increased skin tightening and elasticity in UVB-induced photoaging mice Combined treatment with VE and hADSC-Exos inhibited SIRT1/NF-κB pathway. These findings contribute to the understanding of hADSC-Exos in conjunction with other antioxidants, thereby providing valuable insights for the future pharmaceutical and cosmetic industries.

11.
Front Public Health ; 12: 1368876, 2024.
Article in English | MEDLINE | ID: mdl-39185114

ABSTRACT

Introduction: Amidst an emerging infectious disease outbreak, the rational allocation of vaccines and medical resources is crucial for controlling the epidemic's progression. Method: Analysing COVID-19 data in Taiyuan City from December 2022 to January 2023, this study constructed a S V 1 V 2 V 3 E I Q H R dynamics model to assess the impact of COVID-19 vaccination and resource allocation on epidemic trends. Results: Vaccination significantly reduces infection rates, hospitalisations, and severe cases, while also curtailing strain on medical resources by reducing congestion periods. An early and sufficient reserve of medical resources can delay the onset of medical congestion, and with increased maximum capacity of medical resources, the congestion's end can be accelerated. Stronger resource allocation capabilities lead to earlier congestion resolution within a fixed total resource pool. Discussion: Integrating vaccination and medical resource allocation can effectively reduce medical congestion duration and alleviate the epidemic's strain on medical resource capacity (CCMR).


Subject(s)
COVID-19 Vaccines , COVID-19 , Disease Outbreaks , Resource Allocation , Vaccination , Humans , COVID-19/prevention & control , COVID-19/epidemiology , China/epidemiology , Disease Outbreaks/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/supply & distribution , Vaccination/statistics & numerical data , SARS-CoV-2 , Health Care Rationing
12.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955379

ABSTRACT

This study evaluated the treatment efficiency of two selected fillers and their combination for improving the water quality of aquaculture wastewater using a packed bed biofilm reactor (PBBR) under various process conditions. The fillers used were nanosheet (NS), activated carbon (AC), and a combination of both. The results indicated that the use of combined fillers and the hydraulic retention time (HRT) of 4 h significantly enhanced water quality in the PBBR. The removal rates of chemical oxygen demand, NO2-─N, total suspended solids(TSS), and chlorophyll a were 63.55%, 74.25%, 62.75%, and 92.85%, respectively. The microbiota analysis revealed that the presence of NS increased the abundance of microbial phyla associated with nitrogen removal, such as Nitrospirae and Proteobacteria. The difference between the M1 and M2 communities was minimal. Additionally, the microbiota in different PBBR samples displayed similar preferences for carbon sources, and carbohydrates and amino acids were the most commonly utilized carbon sources by microbiota. These results indicated that the combination of NS and AC fillers in a PBBR effectively enhanced the treatment efficiency of aquaculture wastewater when operated at an HRT of 4 h. The findings provide valuable insights into optimizing the design of aquaculture wastewater treatment systems.


Subject(s)
Aquaculture , Biofilms , Bioreactors , Wastewater , Water Purification , Biofilms/growth & development , Bioreactors/microbiology , Water Purification/methods , Wastewater/microbiology , Wastewater/chemistry , Nitrogen/metabolism , Charcoal/chemistry , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/growth & development , Biological Oxygen Demand Analysis , Microbiota , Waste Disposal, Fluid/methods , Water Quality
13.
J Hepatocell Carcinoma ; 11: 1403-1414, 2024.
Article in English | MEDLINE | ID: mdl-39005968

ABSTRACT

Objective: To develop a simple and effective prognostic scoring system to predict the efficacy of drug-eluting bead-transcatheter arterial chemoembolization (DEB-TACE) in the treatment of hepatocellular carcinoma (HCC). Methods: Data were retrospectively collected from 230 patients with HCC who received DEB-TACE treatment at six medical centers between January 2019 and December 2022. We developed a predictive score based on independent risk factors for overall survival (OS), validated the model using a validation cohort, and compared its prognostic accuracy with commonly used HCC staging systems. Results: The number of tumors, albumin-bilirubin levels, alpha-fetoprotein levels, and portal vein thrombus grade were identified as independent factors influencing OS. Based on these factors, we established the DEB-TACE treatment of HCC (DTH) scoring system. The DTH score correlated well with OS, which decreased as the DTH score increased. According to the DTH score, patients were categorized into three risk groups: low-risk (DTH-A, 0-4 points), medium-risk (DTH-B, 5-6 points), and high-risk (DTH-A, 7 points). The OS of each risk group was 18.73±0.62 months, 12.73±0.10 months, and 6.93±0.19 months, respectively (p<0.001). The external cohort validation confirmed the accuracy of the DTH score, demonstrating superior predictive performance compared to other commonly used HCC scoring systems. Conclusion: The DTH-HCC scoring system effectively predicts the outcomes of HCC patients undergoing DEB-TACE as initial treatment. This model can aid in the initial planning and decision-making process for DEB-TACE treatment in HCC patients.

14.
Bioeng Transl Med ; 9(4): e10648, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39036079

ABSTRACT

Vasculogenic mimicry (VM) describes a process by which tumor cells formed a novel microcirculation pattern in an endothelial cell-free manner. Clinically, VM is associated with aggressive phenotype and poor patient survival. However, the current models for investigating VM include 2D monolayer cultures, Matrigel-based cultures, and animal models, each of which has limitations. Matrigel-based models often exhibit batch-to-batch variations, while in vivo tumor models currently produce insufficient amounts of VM. There is currently no suitable tumor model to discover new therapeutic targets against VM. Herein, we establish an extracellular matrix (ECM)-based engineered tumor model in vivo and in vitro. In this study, we demonstrate that matrix proteins enhanced the VM formation in the engineered xenograft model. Furthermore, we also investigated the role of collagen/fibronectin (FN) in melanoma progression and VM formation. Compared with cells cultured on TCPS plates, the B16F10 cells cultured on collagen/FN coated plates showed increased proliferation and stemness, and significantly enhanced invasion and formation of VM networks. Molecular mechanism analysis showed that Integrin/VE-cadherin/EphA2/PI3K/MMP-2 signaling pathways are responsible for VM formation. Our results indicate that collagen/FN matrix plays an important role in VM formation in melanoma, suggesting that ECM protein is a potential therapeutic target for anti-VM therapy for melanoma.

15.
BMC Musculoskelet Disord ; 25(1): 553, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020313

ABSTRACT

BACKGROUND: Tranexamic acid (TXA) is a widely employed intervention in orthopedic surgeries to minimize blood loss and the need for postoperative transfusions. This study focuses on assessing the efficacy and safety of TXA specifically in undernourished older adults undergoing hip fracture procedures. METHODS: A total of 216 patients were classified into two groups based on the Geriatric Nutritional Risk Index: undernourished and normal. In total, 82 patients received intravenous TXA at a dosage of 15 mg/kg before incision, with an additional 1 g administered intravenously over a 3-hour period postoperatively. Postoperative hemoglobin (Hb) drop, blood transfusion rate, and the incidence of deep venous thrombosis (DVT) were assessed in each group according to the presence or absence of TXA. Additionally, demographic factors including age, sex, body mass index, and serum albumin were investigated. RESULTS: 51.9% patients were identified as undernourished, experiencing progressive anemia (Hb: 10.9 ± 1.5 g/dL) and hypoalbuminemia (serum albumin: 31.9 ± 8 g/L). In comparison with the normal group, undernourished individuals were more likely to sustain femoral neck fractures (undernutrition vs. normal: 56.2 vs. 42.3%) and less likely to incur trochanteric fractures (undernutrition vs. normal: 43.8 vs. 57.7%) (P = 0.043). TXA administration significantly reduced the transfusion rate (P = 0.014) and Hb drop (P = 0.001) in the normal nutritional group, while its impact on the undernourished group remained less pronounced. There was no significant association between TXA administration and the rate of DVT complications, irrespective of the nutritional status. CONCLUSIONS: Undernutrition not only diminishes muscle strength and gait function, leading to various types of hip fractures, but it may also hinder the efficacy of TXA in reducing blood transfusion rates and blood loss.


Subject(s)
Antifibrinolytic Agents , Blood Loss, Surgical , Blood Transfusion , Hip Fractures , Nutritional Status , Tranexamic Acid , Humans , Tranexamic Acid/administration & dosage , Tranexamic Acid/adverse effects , Female , Male , Aged , Aged, 80 and over , Hip Fractures/surgery , Antifibrinolytic Agents/administration & dosage , Antifibrinolytic Agents/therapeutic use , Antifibrinolytic Agents/adverse effects , Blood Transfusion/statistics & numerical data , Blood Loss, Surgical/prevention & control , Treatment Outcome , Venous Thrombosis/epidemiology , Venous Thrombosis/prevention & control , Malnutrition/epidemiology , Hemoglobins/analysis , Hemoglobins/metabolism , Retrospective Studies , Postoperative Hemorrhage/epidemiology , Postoperative Hemorrhage/prevention & control , Postoperative Hemorrhage/etiology
16.
Protein Pept Lett ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39076089

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is the leading cancer-associated mortality in childhood and adolescence. Increasing evidence has demonstrated the key function of microRNAs (miRNAs) in OS development and chemoresistance. Among them, miRNA-605-3p acted as an important tumor suppressor and was frequently down-regulated in multiple cancers. However, the function of miR-650-3p in OS has not been reported. OBJECTIVE: The aim of this work is to explore the novel role of miR-605-3p in osteosarcoma and its possible involvement in OS chemotherapy resistance. METHOD: The expression levels of miR-605-3p in OS tissues and cells were assessed by reverse transcription quantitative PCR (RT-qPCR). The relevance of miR-605-3p with the prognosis of OS patients was determined by the Kaplan-Meier analysis. Additionally, the influence of miR-605-3p on OS cell growth was analyzed using the cell counting kit-8, colony formation assay, and flow cytometry. The mRNA and protein expression of RAF1 were detected by RT-qPCR and western blot. The binding of miR-605-3p with the 3'-UTR of RAF1 was confirmed by dual-luciferase reporter assay. RESULTS: Our results showed that miR-605-3p was markedly decreased in OS tissues and cells. A lower level of miR-605-3p was strongly correlated with lymph node metastasis and poor 5-year overall survival rate of OS patients. In vitro assay found that miR-605-3p suppressed OS cell proliferation and promoted cell apoptosis. Mechanistically, the proto-oncogene RAF1 was seen as a target of miR-605-3p and strongly suppressed by miR-605-3p in OS cells. Restoration of RAF1 markedly eliminated the inhibitory effect of miR-605-3p on OS progression, suggesting RAF1 as a key mediator of miR-605-3p. Consistent with the decreased level of RAF1, miR-605-3p suppressed the activation of both MEK and ERK in OS cells, which are the targets of RAF1. Moreover, lower levels of miR-605-3p were found in chemoresistant OS patients, and downregulated miR-605-3p increased the resistance of OS cells to therapeutic agents. CONCLUSION: Our data revealed that miR-605-3p serves as a tumor suppressor gene by regulating RAF1 and increasing the chemosensitivity of OS cells, which provided the novel working mechanism of miR-605-3p in OS. Engineering stable nanovesicles that could efficiently deliver miR-605-3p with therapeutic activity into tumors could be a promising therapeutic approach for the treatment of OS.

17.
Colloids Surf B Biointerfaces ; 241: 114070, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38968858

ABSTRACT

Reactive oxygen species (ROS)-mediated therapeutic strategies, including chemodynamic therapy (CDT), photodynamic therapy (PDT), and their combination, are effective for treating cancer. Developing a nanoreactor with combined functions of catalase (CAT) and peroxidase (POD) that can simultaneously convert excess H2O2 in tumors into O2 required for type II PDT and hydroxyl radicals (•OH) for CDT can help achieve combined therapy. Here, we reported on a safe Fe2O3/CNx nanoreactor with dual enzyme simulated activity, in which CNx sheet was the carrier and reducing agent to convert Fe2O3 to Fe2+. After modified by MgO2 and photosensitizer Ce6, MgO2-Fe2O3/CNx-Ce6 (MFCC) platform integrated multiple functions, including photosensitizer delivery, compensated H2O2 continuous supply, relieve of hypoxia, generation of •OH and consumption of GSH into a single formulation. Under 660 nm irradiation for 4 min, MFCC actives more ROS to conduct PDT/CDT, leading to the remarkable reduced survival rate of breast cancer cells to 14 %. Due to the enhanced permeability and retention (EPR) effect, MFCC can retain and accumulate at the tumor site of mice for a longer period that inhibit the expression of tumor angiogenic factors, suppress tumor neovascularization, and suppress the proliferation and growth of tumor cells.


Subject(s)
Ferric Compounds , Photochemotherapy , Photosensitizing Agents , Tumor Hypoxia , Animals , Humans , Mice , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Tumor Hypoxia/drug effects , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Female , Reactive Oxygen Species/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Mice, Inbred BALB C , Cell Line, Tumor , Hydrogen Peroxide/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Particle Size
18.
Open Life Sci ; 19(1): 20220918, 2024.
Article in English | MEDLINE | ID: mdl-39071491

ABSTRACT

Pseudohypoparathyroidism (PHP) type 1a (PHP 1a) is a rare hereditary disorder characterized by target organ resistance to hormonal signaling and the Albright hereditary osteodystrophy (AHO) phenotype, which features round facial features, short fingers, subcutaneous calcifications, short stature, obesity, and intellectual disability. Progressive osseous heteroplasia (POH) is another rare disorder characterized by heterotopic ossification (HO) that progressively affects skin, subcutaneous tissues, and deep skeletal muscle. PHP 1a is inherited maternally due to a GNAS mutation, while pure POH is inherited paternally. This case study presented a Chinese boy with congenital hypothyroidism, tonic-clonic seizures, hypoparathyroidism, AHO, POH, and joint fixation deformity. Sequencing analysis of GNAS-Gsα revealed a heterozygous C.432+2T>C(P.?) variant (NM_000516.7) affecting the canonical splice donor site of intron 5 in the boy and his mother, indicating maternal inheritance of a GNAS mutation. The patient was diagnosed with POH overlap syndrome (POH/PHP 1a). Following calcium and calcitriol supplementation, he experienced a reduction in seizures, and surgery was performed to correct the joint fixation deformity caused by HO. This case report provided valuable insights into the genotype-phenotype correlations of POH overlap syndrome and underscored the significance of genetic testing in diagnosing rare diseases.

19.
Transl Pediatr ; 13(6): 946-962, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38984024

ABSTRACT

Background and Objective: Sleep influences the interaction between infants and their environment, as well as the achievement of crucial milestones in motor and language development. This is particularly significant for preterm infants in vulnerable positions. However, prematurely born infants in the neonatal intensive care unit (NICU) are exposed to various stimuli such as noise and light, which disrupt their normal sleep patterns. This study assesses and consolidates the existing evidence on non-pharmacological strategies for protecting and promoting sleep in preterm infants. By providing an evidence-based data repository, it offers a valuable reference for clinical interventions. Methods: We conducted computer-based searches using various databases and resources, including UpToDate, BMJ Best Practice, Guidelines International Network (GIN), National Institute for Health and Clinical Excellence (NICE), Scottish Intercollegiate Guidelines Network (SIGN), National Guideline Clearinghouse (NGC), Registered Nurses Association of Ontario (RNAO), Joanna Briggs Institute (JBI), World Health Organization (WHO), Cochrane Library, Web of Science, PubMed, China National Knowledge Infrastructure (CNKI), Wanfang Data, and China Biology Medicine disc (CBM). The search period spanned from January 2014 to May 2024. Key Content and Findings: We have included a total of 22 articles in our review, comprising two guidelines, 11 systematic reviews, 1 evidence summary, 1 technical report, 2 practice recommendations, and 5 randomized controlled trials. The evidence was synthesized from eight domains: sleep team construction, risk factor assessment, sleep assessment tools, positional management, noise control, light management, sensory stimulation, and hospital-home transition sleep management, resulting in 27 pieces of evidence. Conclusions: This study summarizes the optimal evidence for the management of sleep in premature infants, providing empirical support for standardizing the management of sleep in premature infants. It is recommended that healthcare professionals judiciously apply the best evidence while considering the clinical context, thus promoting safe sleep for premature infants.

20.
Gene ; 928: 148764, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39013484

ABSTRACT

BACKGROUND: Cancers, particularly lung adenocarcinoma (LUAD), represent a major global health concern. However, the role of FAM72D in various cancers, including LUAD, remains poorly understood. METHODS: We utilized databases such as The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression Project (GTEx) and online tools to investigate the correlation between FAM72D expression and its prognostic, diagnostic, and mutational significance, as well as its impact on immune cell infiltration across multiple cancers. Additionally, we developed LUAD cell lines overexpressing FAM72D to confirm its oncogenic role. RESULTS: FAM72D expression was elevated in cancerous tissues compared to noncancerous tissues, with diagnostic and prognostic implications in many cancers, including LUAD. Moreover, associations were identified between FAM72D expression and diverse immune subtypes, alongside factors such as microsatellite instability, neoantigens, and tumour mutational burden across pan-cancers. Additionally, FAM72D was associated with immune infiltration and various immune checkpoint-related genes in LUAD. In vitro experiments demonstrated that FAM72D promoted cell proliferation, colony formation, and migration, while inhibiting apoptosis in LUAD cells. CONCLUSIONS: Our study establishes associations between FAM72D expression and diagnosis, prognosis, and tumour immunity across multiple cancers, as well as its oncogenic effects in LUAD. FAM72D shows promise as a biomarker and therapeutic target in LUAD.


Subject(s)
Adenocarcinoma of Lung , Biomarkers, Tumor , Lung Neoplasms , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Prognosis , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , Apoptosis/genetics , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL