Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 234
Filter
1.
Protein Expr Purif ; 224: 106563, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39122061

ABSTRACT

ß-1,3-glucanases can degrade ß-1,3-glucoside bonds in ß-glucan which is the main cell-wall component of most of fungi, and have the crucial application potential in plant protection and food processing. Herein, a ß-1,3-glucanase FlGluA from Flavobacterium sp. NAU1659 composed of 333 amino acids with a predicted molecular mass of 36.6 kDa was expressed in Escherichia coli BL21, purified and characterized. The deduced amino acid sequence of FlGluA showed the high identity with the ß-1,3-glucanase belonging to glycoside hydrolase (GH) family 16. Enzymological characterization indicated FlGluA had the highest activity on zymosan A, with a specific activity of 3.87 U/mg, followed by curdlan (1.16 U/mg) and pachymaran (0.88 U/mg). It exhibited optimal catalytic activity at the pH 5.0 and 40 °C, and was stable when placed at 4 °C for 12 h in the range of pH 3.0-8.0 or at a temperature below 50 °C for 3 h. Its catalytic activity was enhanced by approximately 36 % in the presence of 1 mM Cr3+. The detection of thin-layer chromatography and mass spectrometry showed FlGluA hydrolyzed zymosan A mainly to glucose and disaccharide, and trace amounts of tetrasaccharide and pentasaccharide, however, it had no action on laminaribiose, indicating its endo-ß-1,3-glucanase activity. The mycelium growth of F. oxysporum treated by FlGluA was inhibited, with approximately 37 % of inhibition rate, revealing the potential antifungal activity of the enzyme. These results revealed the hydrolytic properties and biocontrol activity of FlGluA, laying a crucial foundation for its potential application in agriculture and industry.


Subject(s)
Antifungal Agents , Flavobacterium , Glucan 1,3-beta-Glucosidase , Recombinant Proteins , Flavobacterium/genetics , Flavobacterium/enzymology , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Recombinant Proteins/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Glucan 1,3-beta-Glucosidase/genetics , Glucan 1,3-beta-Glucosidase/chemistry , Glucan 1,3-beta-Glucosidase/metabolism , Fusarium/drug effects , Fusarium/enzymology , Fusarium/genetics , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/isolation & purification , Escherichia coli/genetics , Substrate Specificity , Cloning, Molecular
2.
Acta Pharmacol Sin ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187678

ABSTRACT

Chromosome instability (CIN) and subsequent aneuploidy are prevalent in various human malignancies, influencing tumor progression such as metastases and relapses. Extensive studies demonstrate the development of chemoresistance in high-CIN tumors, which poses significant therapeutic challenges. Given the association of CIN with poorer prognosis and suppressed immune microenvironment observed in colorectal carcinoma (CRC), here we aimed to discover chemotherapeutic drugs exhibiting increased inhibition against high-CIN CRC cells. By using machine learning methods, we screened out two BCL-XL inhibitors Navitoclax and WEHI-539 as CIN-sensitive reagents in CRC. Subsequent analyses using a CIN-aneuploidy cell model confirmed the vulnerability of high-CIN CRC cells to these drugs. We further revealed the critical role of BCL-XL in the viability of high-CIN CRC cells. In addition, to ease the evaluation of CIN levels in clinic, we developed a three-gene signature as a CIN surrogate to predict prognosis, chemotherapeutic and immune responses in CRC samples. Our results demonstrate the potential value of CIN as a therapeutic target in CRC treatment and the importance of BCL-XL in regulating survival of high-CIN CRC cells, therefore representing a valuable attempt to translate a common trait of heterogeneous tumor cells into an effective therapeutic target.

3.
J Health Psychol ; : 13591053241270491, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148324

ABSTRACT

Despite the health benefits of physical activity, many older adults living in long-term care facilities lead sedentary lifestyles and do not meet minimum physical activity recommendations. Determining the behavior change techniques (BCTs) used in physical activity interventions can help us understand the underlying mechanisms by which behavioral change is achieved. The purpose of this systematic review was to identify and evaluate BCTs in physical activity interventions for the elderly residents. Six electronic databases were searched and 15 eligible studies were retained. Nine promising BCTs associated with physical activity promotion among elderly residents were identified: credible source, social support (unspecified), goal setting (outcome), goal setting (behavior), demonstration of the behavior, instruction on how to perform a behavior, self-monitoring of behavior, self-monitoring of outcome(s) of behavior, and adding objects to the environment. Future research is encouraged to select and tailor these BCTs to the specific needs and preferences of the target population.

4.
Appl Microbiol Biotechnol ; 108(1): 437, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133429

ABSTRACT

ß-1,6-Glucan plays a crucial role in fungal cell walls by linking the outer layer of mannoproteins and the inner layer of ß-1,3-glucan, contributing significantly to the maintenance of cell wall rigidity. Therefore, the hydrolysis of ß-1,6-glucan by ß-1,6-glucanase directly leads to the disintegration of the fungal cell wall. Here, a novel ß-1,6-glucanase FlGlu30 was identified from the endophytic Flavobacterium sp. NAU1659 and heterologously expressed in Escherichia coli BL21 (DE3). The optimal reaction conditions of purified FlGlu30 were 50℃ and pH 6.0, resulting in a specific activity of 173.1 U/mg using pustulan as the substrate. The hydrolyzed products of FlGlu30 to pustulan were mainly gentianose within 1 h of reaction. With the extension of reaction time, gentianose was gradually hydrolyzed to glucose, indicating that FlGlu30 is an endo-ß-1,6-glucanase. The germination of Magnaporthe oryzae Guy11 spores could not be inhibited by FlGlu30, but the appressorium formation of spores was completely inhibited under the concentration of 250.0 U/mL FlGlu30. The disruptions of cell wall and accumulation of intracellular reactive oxide species (ROS) were observed in FlGlu30-treated M. oryzae Guy11 cells, suggesting the significant importance of ß-1,6-glucan as a potential antifungal target and the potential application of FlGlu30. KEY POINTS: • ß-1,6-Glucan is a key component maintaining the rigid structure of fungal cell wall. • ß-1,6-Glucanase is an antifungal protein with significant potential applications. • FlGlu30 is the first reported ß-1, 6-glucanase derived from Flavobacterium.


Subject(s)
Antifungal Agents , Cell Wall , Escherichia coli , Flavobacterium , Glycoside Hydrolases , Flavobacterium/enzymology , Flavobacterium/genetics , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Hydrolysis , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Cell Wall/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Glucans/metabolism , Hydrogen-Ion Concentration , beta-Glucans/metabolism , Cloning, Molecular , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Temperature , Substrate Specificity , Polysaccharides
5.
J Agric Food Chem ; 72(28): 15530-15540, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38963795

ABSTRACT

The skeletal muscle is the major muscle tissue in animals, and its production is subject to a complex and strict regulation. The proliferation and differentiation of myoblasts are important factors determining chicken muscle development. Circular RNAs (circRNAs) are endogenous RNAs that are widely present in various tissues of organisms. Recent studies have shown that circRNA plays key roles in the development of skeletal muscles. The solute carrier (SLC) family functions in the transport of metabolites such as amino acids, glucose, nucleotides, and essential nutrients and is widely involved in various basic physiological metabolic processes within the body. In this study, we have cloned a novel chicken circular RNA circSLC2A13 generated from the solute carrier family 2 member 13 gene (SLC2A13). Also, circSLC2A1 was confirmed by sequencing verification, RNase R treatment, and reverse transcription analysis. Currently, our results show that circSLC2A13 promoted the proliferation and differentiation of chicken myoblasts. The double luciferase reporter system revealed that circSLC2A13 regulated the proliferation and differentiation of myoblasts by competitive binding with miR-34a-3p. In addition, results indicated that circSLC2A13 acts as a miR-34a-3p sponge to relieve its inhibitory effect on the target SMAD3 gene. In summary, this study found that chicken circSLC2A13 can bind to miR-34a-3p and weaken its inhibitory effect on the SMAD family member 3 gene (SMAD3), thereby promoting the proliferation and differentiation of myoblasts. This study laid foundations for broiler industry and muscle development research.


Subject(s)
Cell Differentiation , Cell Proliferation , Chickens , MicroRNAs , Muscle Development , Muscle, Skeletal , Myoblasts , RNA, Circular , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Chickens/genetics , Chickens/growth & development , Chickens/metabolism , Muscle Development/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Myoblasts/metabolism , Myoblasts/cytology
6.
Article in English | MEDLINE | ID: mdl-39030705

ABSTRACT

In this study we investigate the role of Zipper-interacting protein kinase (ZIPK) in high glucose-induced vascular injury, focusing on its interaction with STAT5A and its effects on p53 and inducible nitric oxide synthase (NOS2) expression. Human umbilical vein endothelial cells (HUVECs) are cultured under normal (5 mM) and high (25 mM) glucose conditions. Protein and gene expression levels are assessed by western blot analysis and qPCR respectively, while ROS levels are measured via flow cytometry. ZIPK expression is manipulated using overexpression plasmids, siRNAs, and shRNAs. The effects of the ZIPK inhibitor TC-DAPK6 are evaluated in a diabetic rat model. Our results show that high glucose significantly upregulates ZIPK, STAT5A, p53, and NOS2 expressions in HUVECs, thus increasing oxidative stress. Silencing of STAT5A reduces p53 and NOS2 expressions and reactive oxygen species (ROS) accumulation. ZIPK is essential for high glucose-induced p53 expression and ROS accumulation, while silencing of ZIPK reverses these effects. Overexpression of ZIPK combined with STAT5A silencing attenuates glucose-induced alterations in p53 and NOS2 expression, thereby preventing cell damage. Coimmunoprecipitation reveals a direct interaction between ZIPK and STAT5A in the nucleus under high-glucose condition. In diabetic rats, TC-DAPK6 treatment significantly decreases ZIPK, p53, and NOS2 expressions. Our findings suggest that ZIPK plays a critical role in high glucose-induced vascular injury via STAT5A-mediated pathways, proposing that ZIPK is a potential therapeutic target for diabetic vascular complications.

7.
Int J Biol Sci ; 20(9): 3638-3655, 2024.
Article in English | MEDLINE | ID: mdl-38993562

ABSTRACT

Castration-resistant prostate cancer (CRPC) is the leading cause of prostate cancer (PCa)-related death in males, which occurs after the failure of androgen deprivation therapy (ADT). PIWI-interacting RNAs (piRNAs) are crucial regulators in many human cancers, but their expression patterns and roles in CRPC remain unknown. In this study, we performed small RNA sequencing to explore CRPC-associated piRNAs using 10 benign prostate tissues, and 9 paired hormone-sensitive PCa (HSPCa) and CRPC tissues from the same patients. PiRNA-4447944 (piR-4447944) was discovered to be highly expressed in CRPC group compared with HSPCa and benign groups. Functional analyses revealed that piR-4447944 overexpression endowed PCa cells with castration resistance ability in vitro and in vivo, whereas knockdown of piR-4447944 using anti-sense RNA suppressed the proliferation, migration and invasion of CRPC cells. Additionally, enforced piR-4447944 expression promoted in vitro migration and invasion of PCa cells, and reduced cell apoptosis. Mechanistically, piR-4447944 bound to PIWIL2 to form a piR-4447944/PIWIL2 complex and inhibited tumor suppressor NEFH through direct interaction at the post-transcriptional level. Collectively, our study indicates that piR-4447944 is essential for prostate tumor-propagating cells and mediates androgen-independent growth of PCa, which extends current understanding of piRNAs in cancer biology and provides a potential approach for CRPC treatment.


Subject(s)
Argonaute Proteins , Cell Proliferation , Prostatic Neoplasms, Castration-Resistant , RNA, Small Interfering , Male , Humans , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , RNA, Small Interfering/metabolism , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Mice , Apoptosis , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Piwi-Interacting RNA
8.
Insights Imaging ; 15(1): 164, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935177

ABSTRACT

OBJECTIVES: To develop and validate a deep learning (DL) model for automated segmentation of hepatic and portal veins, and apply the model in blood-free future liver remnant (FLR) assessments via CT before major hepatectomy. METHODS: 3-dimensional 3D U-Net models were developed for the automatic segmentation of hepatic veins and portal veins on contrast-enhanced CT images. A total of 170 patients treated from January 2018 to March 2019 were included. 3D U-Net models were trained and tested under various liver conditions. The Dice similarity coefficient (DSC) and volumetric similarity (VS) were used to evaluate the segmentation accuracy. The use of quantitative volumetry for evaluating resection was compared between blood-filled and blood-free settings and between manual and automated segmentation. RESULTS: The DSC values in the test dataset for hepatic veins and portal veins were 0.66 ± 0.08 (95% CI: (0.65, 0.68)) and 0.67 ± 0.07 (95% CI: (0.66, 0.69)), the VS values were 0.80 ± 0.10 (95% CI: (0.79, 0.84)) and 0.74 ± 0.08 (95% CI: (0.73, 0.76)), respectively No significant differences in FLR, FLR% assessments, or the percentage of major hepatectomy patients were noted between the blood-filled and blood-free settings (p = 0.67, 0.59 and 0.99 for manual methods, p = 0.66, 0.99 and 0.99 for automated methods, respectively) according to the use of manual and automated segmentation methods. CONCLUSION: Fully automated segmentation of hepatic veins and portal veins and FLR assessment via blood-free CT before major hepatectomy are accurate and applicable in clinical cases involving the use of DL. CRITICAL RELEVANCE STATEMENT: Our fully automatic models could segment hepatic veins, portal veins, and future liver remnant in blood-free setting on CT images before major hepatectomy with reliable outcomes. KEY POINTS: Fully automatic segmentation of hepatic veins and portal veins was feasible in clinical practice. Fully automatic volumetry of future liver remnant (FLR)% in a blood-free setting was robust. No significant differences in FLR% assessments were noted between the blood-filled and blood-free settings.

9.
Eur J Pharmacol ; 977: 176703, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38839028

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multi-organ involvement and autoantibody production. Patients with SLE face a substantial risk of developing lupus nephritis (LN), which imposes a substantial burden on both patients and their families. Protein phosphatase 2A (PP2A) is a widely distributed serine/threonine phosphatase that participates in regulating multiple signaling pathways. Inhibition of PP2A has been implicated in the treatment of various diseases. LB-100, a small molecule inhibitor of PP2A, has demonstrated anti-tumor therapeutic effects and high safety profile in preclinical experiments. However, the role of PP2A and its inhibitor has been insufficiently studied in LN. In this study, we assessed the potential effects of LB-100 in both MRL/lpr mice and R848-induced BALB/c mice. Our findings indicated that LB-100 administration led to reduced spleen enlargement, decreased deposition of immune complexes, ameliorated renal damage, and improved kidney function in both spontaneous and R848-induced lupus mouse models. Importantly, we observed the formation of tertiary lymphoid structures (TLSs) in the kidneys of two distinct lupus mouse models. The levels of signature genes of TLS were elevated in the kidneys of lupus mice, whereas LB-100 mitigated chemokine production and inhibited TLS formation. In addition, we confirmed that inhibition or knockdown of PP2A reduced the production of T cell-related chemokines by renal tubular epithelial cells (RTEC). In summary, our study highlighted the renal protective potential of the PP2A inhibitor LB-100 in two distinct lupus mouse models, suggesting its potential as a novel strategy for treating LN and other autoimmune diseases.


Subject(s)
Lupus Nephritis , Mice, Inbred BALB C , Protein Phosphatase 2 , Tertiary Lymphoid Structures , Animals , Protein Phosphatase 2/antagonists & inhibitors , Protein Phosphatase 2/metabolism , Lupus Nephritis/drug therapy , Lupus Nephritis/pathology , Mice , Tertiary Lymphoid Structures/pathology , Female , Mice, Inbred MRL lpr , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Disease Models, Animal , Spleen/drug effects , Spleen/pathology , Spleen/immunology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Piperazines
10.
Food Chem ; 455: 139808, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38897071

ABSTRACT

The study investigated the lipid oxidation of pumpkin seed kernels (PSK) under different storage conditions (room temperature, vacuum-room temperature, refrigeration, and vacuum-refrigeration) using HPLC-MS and GC-MS. Experimental results found the vacuum-refrigeration group showed the lowest PV (0.24 g/100 g), diene (8.68), hexanal (356.64 ± 16.06 ng/g), and nonanal (132.05 ± 8.38 ng/g) after a 9-month storage. A total of 586 lipids, including 6 classes and 27 subclasses, were detected, 46 of which showed significant differences. Refrigeration samples had the highest diacylglycerol content, while room temperature samples demonstrated the highest triacylglycerol and phosphatidylcholine content. Differential lipid metabolite analyses indicated that storage conditions mainly affected glycerolipid metabolism, glycerophospholipid metabolism, and sphingolipid metabolism pathways in PSK, while glycerolipid and glycerophospholipid metabolism were still dominant. It revealed that refrigeration was more effective than vacuum in inhibiting the oxidation of PSK. These findings could offer valuable references for the storage, transportation, preservation, and the development and utilization of PSK.


Subject(s)
Cucurbita , Food Storage , Lipidomics , Oxidation-Reduction , Seeds , Cucurbita/chemistry , Cucurbita/metabolism , Seeds/chemistry , Seeds/metabolism , Lipids/chemistry , Lipids/analysis , Gas Chromatography-Mass Spectrometry , Lipid Metabolism , Chromatography, High Pressure Liquid
11.
Biol Reprod ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874314

ABSTRACT

The morbidity of polycystic ovary syndrome (PCOS) is in highly increasing rate nowadays. PCOS not only affects the fertility in women, but also threatens the health of whole life. Hence, to find the prognostic risk factors is of great value. However, the effective predictors in clinical practice of PCOS are still in blackness. In this study, we found Klotho was increased in FF (Follicular Fluid) and primary luteinized granulosa cells (GCs) from PCOS patients with hyperandrogenism. Furthermore, we found follicular Klotho was negatively correlated with numbers of mature oocytes, and positively correlated with serum testosterone, LH, and LH/FSH levels menstrual cycle and number of total antral follicles in PCOS patients. In primary luteinized GCs, the increased Klotho was accompanied with upregulation of cell apoptosis and inflammation-related genes. In ovaries of PCOS mice and cultured human KGN cell line, Klotho was up-regulated and accompanied by apoptosis, inflammation and mitochondrial dysfunction. Therefore, our findings suggest new mechanisms for granulosa cell injury and revealed to target inhibit Klotho maybe a new therapeutic strategy for treatment of PCOS.

12.
Insects ; 15(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38667360

ABSTRACT

Mountain ecosystems harbor evolutionarily unique and exceptionally rich biodiversity, particularly in insects. In this study, we characterized the diversity, community stability, and assembly mechanisms of butterflies on a subtropical mountain in the Chebaling National Nature Reserve, Guangdong Province, China, using grid-based monitoring across the entire region for two years. The results showed that species richness, abundance, and Faith's phylogenetic diversity decreased with increasing elevation; taxonomic diversity played a considerable role in mediating the effects of environmental changes on stability. Moreover, our results showed that stochastic processes are dominant in governing the assembly of butterfly communities across all elevational gradients, with habitats at an elevation of 416-580 m subjected to the strongest stochastic processes, whereas heterogeneous selection processes displayed stronger effects on the assembly of butterfly communities at 744-908 m, 580-744 m, and 908-1072 m, with abiotic factors inferred as the main driving forces. In addition, significant differences were detected between the barcode tree and the placement tree for the calculated ß-NTI values at 416-580 m. Overall, this study provides new insights into the effects of environmental change on the stability and assembly of butterflies in Chebaling, which will be beneficial for biodiversity conservation and policy development.

13.
Food Chem ; 450: 139257, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38640526

ABSTRACT

Unclear labeling of spiciness degrees on leisure sauced meat products is prone to resulting in customer complaints and commercial disputes. The content of capsaicinoids is the basis for evaluating the spiciness of food. In this work, an electrochemical sensor based on nickel nanoparticles modified carbon nanotubes (Ni-CNTs) and sulfonated reduced graphene oxide (S-rGO) was developed for the rapid detection of capsaicinoids content in leisure sauced meat products. The linear ranges of capsaicins are 0.01-100 µmol/L with ultra-low detection limits of 1 nmol/L. The outstanding performances are primarily due to the synergistic effect between Ni-CNTs and S-rGO. This effect not only created a three-dimensional stacked structure that improved the electrochemically active surface area, but also generated an internal electric field that improved the charge transfer rate. This work provides a basis for standardized evaluation of spiciness.


Subject(s)
Capsaicin , Electrochemical Techniques , Graphite , Meat Products , Nanotubes, Carbon , Nickel , Graphite/chemistry , Nanotubes, Carbon/chemistry , Capsaicin/analysis , Capsaicin/chemistry , Electrochemical Techniques/instrumentation , Nickel/chemistry , Nickel/analysis , Meat Products/analysis , Metal Nanoparticles/chemistry , Food Contamination/analysis , Limit of Detection
14.
Ren Fail ; 46(1): 2327498, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38666363

ABSTRACT

Iguratimod is a novel synthetic, small-molecule immunosuppressive agent used to treat rheumatoid arthritis. Through ongoing exploration of its role and mechanisms of action, iguratimod has been observed to have antifibrotic effects in the lung and skin; however, its effect on renal fibrosis remains unknown. This study aimed to investigate whether iguratimod could affect renal fibrosis progression. Three different concentrations of iguratimod (30 mg/kg/day, 10 mg/kg/day, and 3 mg/kg/day) were used to intervene in unilateral ureteral obstruction (UUO) model mice. Iguratimod at 10 mg/kg/day was observed to be effective in slowing UUO-mediated renal fibrosis. In addition, stimulating bone marrow-derived macrophages with IL-4 and/or iguratimod, or with TGF-ß and iguratimod or SRC inhibitors in vitro, suggested that iguratimod mitigates the progression of renal fibrosis in UUO mice, at least in part, by inhibiting the IL-4/STAT6 signaling pathway to attenuate renal M2 macrophage infiltration, as well as by impeding SRC activation to reduce macrophage-myofibroblast transition. These findings reveal the potential of iguratimod as a treatment for renal disease.


Subject(s)
Disease Models, Animal , Fibrosis , Interleukin-4 , Macrophages , STAT6 Transcription Factor , Sulfonamides , Ureteral Obstruction , Animals , Ureteral Obstruction/complications , Mice , Macrophages/drug effects , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Interleukin-4/metabolism , STAT6 Transcription Factor/metabolism , Male , Myofibroblasts/drug effects , Chromones/pharmacology , Chromones/therapeutic use , Kidney/pathology , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Kidney Diseases/etiology , Kidney Diseases/prevention & control , Kidney Diseases/pathology , Kidney Diseases/drug therapy , Mice, Inbred C57BL , Immunosuppressive Agents/pharmacology
15.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 337-342, 2024 Apr 15.
Article in Chinese | MEDLINE | ID: mdl-38660896

ABSTRACT

OBJECTIVES: To investigate the effects of different angles of pulmonary surfactant (PS) administration on the incidence of bronchopulmonary dysplasia and intracranial hemorrhage in preterm infants. METHODS: A prospective study was conducted on 146 preterm infants (gestational age <32 weeks) admitted to the Department of Neonatology, Provincial Hospital Affiliated to Anhui Medical University from January 2019 to May 2023. The infants were randomly assigned to different angles for injection of pulmonary surfactant groups: 0° group (34 cases), 30° group (36 cases), 45° group (38 cases), and 60° group (38 cases). Clinical indicators and outcomes were compared among the groups. RESULTS: The oxygenation index was lower in the 60° group compared with the other three groups, with shorter invasive ventilation time and oxygen use time, and a lower incidence of bronchopulmonary dysplasia than the other three groups (P<0.05). The incidence of intracranial hemorrhage was lower in the 60° group compared to the 0° group (P<0.05). The cure rate in the 60° group was higher than that in the 0° group and the 30° group (P<0.05). CONCLUSIONS: The clinical efficacy of injection of pulmonary surfactant at a 60° angle is higher than other angles, reducing the incidence of intracranial hemorrhage and bronchopulmonary dysplasia in preterm infants.


Subject(s)
Bronchopulmonary Dysplasia , Infant, Premature , Intracranial Hemorrhages , Pulmonary Surfactants , Humans , Pulmonary Surfactants/administration & dosage , Infant, Newborn , Prospective Studies , Bronchopulmonary Dysplasia/prevention & control , Bronchopulmonary Dysplasia/drug therapy , Bronchopulmonary Dysplasia/etiology , Male , Female , Intracranial Hemorrhages/prevention & control , Intracranial Hemorrhages/chemically induced
16.
Cell Signal ; 119: 111185, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38643947

ABSTRACT

Colorectal cancer, the third most prevalent malignant cancer, is associated with poor prognosis. Recent studies have investigated the mechanisms underlying cuproptosis and disulfidptosis in colorectal cancer. However, whether genes linked to these processes impact the prognosis of colorectal cancer patients through analogous mechanisms remains unclear. In this study, we developed a model of cuproptosis and disulfidptosis in colorectal cancer and concurrently explored the role of the pivotal model gene HSPA8 in colorectal cancer cell lines. Our results revealed a positive correlation between cuproptosis and disulfidptosis, both of which are emerging as protective factors for the prognosis of CRC patients. Consequently, a prognostic model encompassing HSPA8, PDCL3, CBX3, ATP6V1G1, TAF1D, RPL4, and RPL14 was constructed. Notably, the key gene in our model, HSPA8, exhibited heightened expression and was validated as a protective prognostic factor in colorectal cancer, exerting inhibitory effects on colorectal cancer cell proliferation. This study offers novel insights into the interplay between cuproptosis and disulfidptosis. The application of the prognostic model holds promise for more effectively predicting the overall survival of colorectal cancer patients.


Subject(s)
Colorectal Neoplasms , HSC70 Heat-Shock Proteins , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , HSC70 Heat-Shock Proteins/metabolism , HSC70 Heat-Shock Proteins/genetics , Cell Line, Tumor , Prognosis , Cell Proliferation , Gene Expression Regulation, Neoplastic , Apoptosis/genetics
17.
Ecol Evol ; 14(4): e11218, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38606343

ABSTRACT

Insects harbor a remarkable diversity of gut microbiomes critical for host survival, health, and fitness, but the mechanism of this structured symbiotic community remains poorly known, especially for the insect group consisting of many closely related species that inhabit the Qinghai-Tibet Plateau. Here, we firstly analyzed population-level 16S rRNA microbial dataset, comprising 11 Parnassius species covering 5 subgenera, from 14 populations mostly sampled in mountainous regions across northwestern-to-southeastern China, and meanwhile clarified the relative importance of multiple factors on gut microbial community structure and evolution. Our findings indicated that both host genetics and larval host plant modulated gut microbial diversity and community structure. Moreover, the effect analysis of host genetics and larval diet on gut microbiomes showed that host genetics played a critical role in governing the gut microbial beta diversity and the symbiotic community structure, while larval host plant remarkably influenced the functional evolution of gut microbiomes. These findings of the intimate insect-microbe-plant interactions jointly provide some new insights into the correlation among the host genetic background, larval host plant, the structure and evolution of gut microbiome, as well as the mechanisms of high-altitude adaptation in closely related species of this alpine butterfly group.

18.
Biochem Genet ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609669

ABSTRACT

This study aimed to determine the role of the long noncoding RNA (lncRNA) gall bladder cancer-associated suppressor of pyruvate carboxylase (SOD2-1) in the progression of colorectal cancer (CRC). A total of 23 pairs of specimens, including CRC tissues and adjacent normal tissues, were collected, and the expression of lncRNA SOD2-1 (lnc-SOD2-1) was measured. lnc-SOD2-1 function was examined using HCT15 and HCT116 cells. A lnc-SOD2-1 overexpression vector was designed and transfected into both cell lines. MTS and colony formation assays were used to determine cell viability. Flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assays were performed to measure apoptosis. Cell migration and invasion were evaluated using the Transwell assay. Migration and invasion markers were validated using quantitative reverse transcription-polymerase chain reaction and western blot analysis. The results indicated that the expression of lnc-SOD2-1 was downregulated in CRC tissues. lnc-SOD2-1 overexpression evidently decreased cell viability and led to the formation of fewer cell colonies. lnc-SOD2-1 overexpression induced ~ twofold higher apoptosis than the control group. lnc-SOD2-1 overexpression reduced the proportion of migratory and invasive cells to 50% and 75% of the control group, respectively. lnc-SOD2-1 overexpression significantly decreased the expression of matrix metalloproteinase-2 and -9. In conclusion, lnc-SOD2-1 may act as a tumor suppressor that inhibits the proliferation, migration, and invasion of CRC cells and induces their apoptosis.

19.
Polymers (Basel) ; 16(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38543339

ABSTRACT

The escalating thermal power density in electronic devices necessitates advanced thermal management technologies. Polymer-based materials, prized for their electrical insulation, flexibility, light weight, and strength, are extensively used in this field. However, the inherent low thermal conductivity of polymers requires enhancement for effective heat dissipation. This work proposes a novel paradigm, emphasizing ordered structures with functional units, to create triple-level, ordered, low-filler loading of multi-walled carbon nanotube (MWCNT)/poly(vinyl alcohol)(PVA) nanofibrous films. By addressing interfacial thermal resistance through -OH groups, the coupling between polymer and MWCNT is strengthened. The triple-level ordered structure comprises aligned PVA chains, aligned MWCNTs, and aligned MWCNT/PVA composite fibers. Focusing on the filler's impact on thermal conductivity and chain orientation, the thermal transport mechanisms have been elucidated level by level. Our MWCNT/PVA composite, with lower filler loadings (10 wt.%), achieves a remarkable TC exceeding 35.4 W/(m·K), surpassing other PVA composites with filler loading below 50 wt.%.

20.
Food Res Int ; 182: 114141, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519173

ABSTRACT

Walnut kernels are prone to oxidation and rancidity due to their rich lipid composition, but the existing evaluation indicators are not sensitive enough to promote their industrial development. This study aims to investigate the potential markers in oxidative rancidity walnut kernels using lipidomics and volatolomics. The results showed that the antioxidant capacity of walnut kernels significantly decreased after oxidation, with the decreasing of total phenolic content from 36276.34 mg GAE/kg to 31281.53 mg GAE/kg, the DPPH and ABTS free radical scavenging activity from 89.25% to 73.54%, and 61.69% to 43.73%, respectively. The activities of lipoxygenase (LOX) and lipase (LPS) increased by 6.08-fold and 0.33-fold, respectively. By combining volatolomics and chemometrics methods, it was found that significant differences existed in the content of hexanal, caproic acid, 1-pentanol, (E)-2-octenal, and 2-heptanenal before and after walnut kernel oxidation (VIP > 1). Based on the results of lipidomics, it can be concluded that the above five compounds can serve as characteristic markers for walnut kernel oxidative rancidity, mainly produced through glycerol phospholipid (GPL), glyceride, linoleic acid (LA), and α-linolenic acid (ALA) metabolism pathways. Possible mechanisms of lipid degradation in oxidized walnut kernels were also proposed, providing technical support for the storage, preservation, and high-value utilization of walnut kernels.


Subject(s)
Juglans , Juglans/chemistry , Lipidomics , Nuts/chemistry , Antioxidants/analysis , alpha-Linolenic Acid
SELECTION OF CITATIONS
SEARCH DETAIL