Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 421
Filter
1.
Article in English | MEDLINE | ID: mdl-39265077

ABSTRACT

Currently, culturing Caco-2 cells in a Gut-on-a-chip (GOC) is well-accepted for developing intestinal disease models and drug screening. However, Caco-2 cells were found to overexpress surface proteins (e.g., P-gp) compared with the normal intestinal epithelial cells in vivo. To critically evaluate the challenge and suitability of Caco-2 cells, a GOC integrated with a carcinoembryonic antigen (CEA) biosensor was developed. This three-electrode system electrochemical sensor detects CEA by antigen-antibody specific binding, and it exhibits high selectivity, excellent stability, and good reproducibility. Under dynamic culturing in the GOC, Caco-2 cells exhibited an intestinal villus-like structure and maintained tissue barrier integrity. Meanwhile, CEA was discovered to be secreted from 0 to 0.22 ng/mL during the 10-day culturing of Caco-2 cells. Especially, CEA secretion increased significantly with the differentiation of Caco-2 cells after 6 days of culturing. The sustained high-level CEA secretion may induce cells to avoid apoptotic stimuli, which faithfully reflects the efficacy of a new drug and the mechanism of intestinal disease. Different kinds of cell types (e.g., intestinal primary cells, stem cell-induced differentiation) in the GOC should be attempted for drug screening in the future.

2.
Adv Healthc Mater ; : e2400645, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240050

ABSTRACT

Dendritic cells (DCs) are critical regulators of T cell immunity, with immense therapeutic potential against tumors and autoimmune diseases. Efficient gene editing in DCs is crucial for understanding their regulatory mechanisms and maximizing their therapeutic efficacy. However, DCs are notoriously difficult to transfect, posing a major bottleneck for conventional DNA and RNA-based editing approaches. Microneedle-mediated injection of Cas9/sgRNA ribonucleoprotein (RNP) directly into the nucleus, akin to gene editing in reproductive cells, offers promise but suffers from limitations in scalability. Here, an intranuclear delivery system using a hollow nanoneedle array (HNA) combined with nano-electroporation is developed. The 2 µm-high HNA physically reaches the nucleus, positioning the nuclear envelope and plasma membrane in close proximity at the tip. Transient electronic pulses then induce simultaneous perforations across all 3 membranes, enabling direct RNP delivery into the nucleus. This HNA-based system achieves efficient knockout of genes like PD-L1 in primary DCs, demonstrating its potential as a powerful tool for gene editing in DCs and other hard-to-transfect cells.

3.
Transl Neurodegener ; 13(1): 39, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095921

ABSTRACT

BACKGROUND: Deoxyribonuclease 2 (DNase II) plays a key role in clearing cytoplasmic double-stranded DNA (dsDNA). Deficiency of DNase II leads to DNA accumulation in the cytoplasm. Persistent dsDNA in neurons is an early pathological hallmark of senescence and neurodegenerative diseases including Alzheimer's disease (AD). However, it is not clear how DNase II and neuronal cytoplasmic dsDNA influence neuropathogenesis. Tau hyperphosphorylation is a key factor for the pathogenesis of AD. The effect of DNase II and neuronal cytoplasmic dsDNA on neuronal tau hyperphosphorylation remains unclarified. METHODS: The levels of neuronal DNase II and dsDNA in WT and Tau-P301S mice of different ages were measured by immunohistochemistry and immunolabeling, and the levels of DNase II in the plasma of AD patients were measured by ELISA. To investigate the impact of DNase II on tauopathy, the levels of phosphorylated tau, phosphokinase, phosphatase, synaptic proteins, gliosis and proinflammatory cytokines in the brains of neuronal DNase II-deficient WT mice, neuronal DNase II-deficient Tau-P301S mice and neuronal DNase II-overexpressing Tau-P301S mice were evaluated by immunolabeling, immunoblotting or ELISA. Cognitive performance was determined using the Morris water maze test, Y-maze test, novel object recognition test and open field test. RESULTS: The levels of DNase II were significantly decreased in the brains and the plasma of AD patients. DNase II also decreased age-dependently in the neurons of WT and Tau-P301S mice, along with increased dsDNA accumulation in the cytoplasm. The DNA accumulation induced by neuronal DNase II deficiency drove tau phosphorylation by upregulating cyclin-dependent-like kinase-5 (CDK5) and calcium/calmodulin activated protein kinase II (CaMKII) and downregulating phosphatase protein phosphatase 2A (PP2A). Moreover, DNase II knockdown induced and significantly exacerbated neuron loss, neuroinflammation and cognitive deficits in WT and Tau-P301S mice, respectively, while overexpression of neuronal DNase II exhibited therapeutic benefits. CONCLUSIONS: DNase II deficiency and cytoplasmic dsDNA accumulation can initiate tau phosphorylation, suggesting DNase II as a potential therapeutic target for tau-associated disorders.


Subject(s)
Alzheimer Disease , Endodeoxyribonucleases , Neurons , tau Proteins , Animals , tau Proteins/metabolism , tau Proteins/genetics , Phosphorylation , Mice , Neurons/metabolism , Neurons/pathology , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/psychology , Alzheimer Disease/pathology , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/deficiency , Endodeoxyribonucleases/metabolism , Mice, Transgenic , DNA/genetics , Male , Female , Brain/metabolism , Brain/pathology , Mice, Inbred C57BL
4.
Biology (Basel) ; 13(8)2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39194568

ABSTRACT

The neuropeptide corazonin (Crz) exerts diverse physiological effects in insects, yet its role in crustaceans remains elusive. The abundant expression of Crz receptor (CrzR) in the Y-organs of several crustaceans suggests a potential involvement of Crz in regulating ecdysteroid synthesis. In this study, we examined the effects of PtCrz on ecdysteroid synthesis during the molting period of Portunus trituberculatus through PtCrz treatments and PtCrzR silencing. Our results showed that PtCrz peptide stimulates ecdysteroid levels and the gene expression involved in ecdysteroidogenesis both in vitro and in vivo, whereas dsPtCrzR treatments had opposite effects on ecdysteroid levels and associated gene expression. Thus, our study suggests that PtCrz may modulate ecdysteroid synthesis via Y-organ-expressed PtCrzR. Furthermore, we also discovered the involvement of PtCrz/PtCrzR signaling in regulating PtETH expression. Notably, the inhibitory effect of dsPtCrzR on ecdysteroid synthesis or PtETH expression can be reversed by PtCrz treatment, suggesting the potential existence of multiple receptors for PtCrz. This study provides new insights into the function of crustacean Crz and, for the first time, elucidates the presence of a neuropeptide that can stimulate ecdysteroid synthesis in crustaceans.

5.
Heliyon ; 10(15): e35609, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170211

ABSTRACT

Purpose: Sleep disorders are common globally. Probiotics may improve human microbial diversity, offering potential benefits for sleep disturbances by enhancing sleep quality and reducing disorders. We aimed to use a population-based study to investigate the association between yogurt (a probiotic food) and probiotic consumption with sleep disturbances in US adults. Methods: A total of 49,693 adults from the 2009-2018 National Health and Nutrition Examination Survey (NHANES) were included in the analyses. Sleep disorders and sleep duration were assessed according to the Sleep Disorders Questionnaire. The Dietary Questionnaire evaluated yogurt and dietary supplements containing probiotic consumption. After adjusting for confounding factors, weighted multivariable logistic regression and subgroup analyses were used to assess the association between yogurt and probiotic consumption and sleep status. Results: Of the study cohort, 3535 (14.24 %) participants consumed yogurt and/or dietary supplements containing probiotics. The prevalence of sleep disorders was 16.22 %. Only 53.51 % of the participants achieved the recommended amount of sleep (7-9 h), with 6.10 % and 33.48 % having excessive and insufficient sleep duration, respectively. Weighted Logistic regression models indicated a significant association of probiotic intake with a decreased risk of sleep disturbances compared with those without yogurt or probiotic consumption after adjustments. (For sleep disorders: OR: 0.96, 95 % CI 0.94-0.98, P < 0.001; for sleep duration: OR: 0.98, 95 % CI 0.96-1.00, P = 0.081) Moreover, the effect size of the probiotic intake on sleep was especially significant in sex, race, and BMI subgroups. Conclusion: The present study first indicated that yogurt and probiotic consumption were associated with a reduced risk of sleep disturbances in US adults, particularly among males, whites, and those with a normal BMI. Incorporating yogurt or probiotics into the diet could serve as a public health strategy for improving sleep disturbances, though further investigation into the underlying mechanisms is needed.

6.
Biosensors (Basel) ; 14(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39056604

ABSTRACT

Dopamine (DA), ascorbic acid (AA), and uric acid (UA) are crucial neurochemicals, and their abnormal levels are involved in various neurological disorders. While electrodes for their detection have been developed, achieving the sensitivity required for in vivo applications remains a challenge. In this study, we proposed a synthetic Au24Cd nanoenzyme (ACNE) that significantly enhanced the electrochemical performance of metal electrodes. ACNE-modified electrodes demonstrated a remarkable 10-fold reduction in impedance compared to silver microelectrodes. Furthermore, we validated their excellent electrocatalytic activity and sensitivity using five electrochemical detection methods, including cyclic voltammetry, differential pulse voltammetry, square-wave pulse voltammetry, normal pulse voltammetry, and linear scanning voltammetry. Importantly, the stability of gold microelectrodes (Au MEs) modified with ACNEs was significantly improved, exhibiting a 30-fold enhancement compared to Au MEs. This improved performance suggests that ACNE functionalization holds great promise for developing micro-biosensors with enhanced sensitivity and stability for detecting small molecules.


Subject(s)
Ascorbic Acid , Biosensing Techniques , Dopamine , Electrochemical Techniques , Gold , Microelectrodes , Uric Acid , Dopamine/analysis , Gold/chemistry , Ascorbic Acid/analysis , Uric Acid/analysis , Silver/chemistry , Cadmium/analysis
7.
Int J Biol Macromol ; 275(Pt 1): 133624, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964685

ABSTRACT

Golgi membrane protein 1 (Golm1), a transmembrane protein with diverse subcellular localizations, has garnered significant attention in recent years due to its strong association with the development and progression of liver diseases and numerous cancers. Interestingly, although Golm1 is a membrane protein, the C-terminal of Golm1, which contains a coiled coil domain and a flexible acid region, can also be detected in the plasma of patients with various liver diseases. Notably, the coiled coil domain of serum Golm1 is postulated to play a pivotal role in physiological and pathological functions. However, little is currently known about the structure of this coiled coil domain and the full-length protein, which may limit our understanding of Golm1. Therefore, this study aims to address this gap in knowledge and reports the first crystal structure of the coiled coil domain of Golm1 at a resolution of 2.28 Å. Meanwhile, we have also confirmed that the Golm1 coiled coil domain in solution can form tetramer. Our results reveal that Golm1 can form a novel tetrameric structure that differs from the previous reported dimeric structure Golm1 could assemble, which may provide novel insights into the diversity of physiological functions and pathological roles.


Subject(s)
Membrane Proteins , Protein Domains , Protein Multimerization , Humans , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Models, Molecular , Amino Acid Sequence , Crystallography, X-Ray
8.
ACS Nano ; 18(28): 18129-18150, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38954632

ABSTRACT

The advent of catheter-based minimally invasive surgical instruments has provided an effective means of diagnosing and treating human disease. However, conventional medical catheter devices are limited in functionalities, hindering their ability to gather tissue information or perform precise treatment during surgery. Recently, electronic catheters have integrated various sensing and therapeutic technologies through micro/nanoelectronics, expanding their capabilities. As micro/nanoelectronic devices become more miniaturized, flexible, and stable, electronic surgical catheters are evolving from simple tools to multiplexed sensing and theranostics for surgical applications. The review on multifunctional electronic surgical catheters is lacking and thus is not conducive to the reader's comprehensive understanding of the development trend in this field. This review covers the advances in multifunctional electronic catheters for precise and intelligent diagnosis and therapy in minimally invasive surgery. It starts with the summary of clinical minimally invasive surgical instruments, followed by the background of current clinical catheter devices for sensing and therapeutic applications. Next, intelligent electronic catheters with integrated electronic components are reviewed in terms of electronic catheters for diagnosis, therapy, and multifunctional applications. It highlights the present status and development potential of catheter-based minimally invasive surgical devices, while also illustrating several significant challenges that remain to be overcome.


Subject(s)
Catheters , Minimally Invasive Surgical Procedures , Humans , Minimally Invasive Surgical Procedures/instrumentation
9.
Int Immunopharmacol ; 137: 112451, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38870881

ABSTRACT

OBJECTIVE: To evaluate the efficacy and safety of Janus kinases inhibitors (JAKi) for adult-onset Still's disease (AOSD) patients. METHODS: We searched the Embase, PubMed, the Cochrane Central Register of Controlled Trials (CENTRAL), and the China National Knowledge Infrastructure (CNKI) from inception up to 22 October 2023. The results were supplemented by a backward search of relevant publications. Two authors independently selected trials. The available studies were comprehensively reviewed and analysed. RESULTS: A total of 9 studies with a total of 35 patients were included in the review. Of these patients, 17 (48.6%) patients were treated with tofacitinib, 14 (40%) with baricitinib, 4 (11.4%) with ruxolitinib and 1 (2.9%) with upadacitinib. After treatment with JAKi, 17 (48.6%) patients showed complete remission, 12 (34.3%) patients showed partial remission, and 7 (20%) patients showed loss of efficacy or relapse. The use of ruxolitinib showed a remission rate of 100% in AOSD patients with macrophage activation syndrome (MAS). The incidence of adverse events (AEs) reported were mild and rare overall. Most AEs were abnormal lipid parameters (9.7%), bacterial pneumonia (3.2%), organised pneumonia (3.2%), diarrhoea (3.2%), increased heart rate (3.2%), menometrorrhagia (3.2%) and leukopenia (3.2%). One patient died from bacterial pneumonia. CONCLUSION: JAKi therapy may be an option for patients with AOSD, especially for refractory AOSD. For patients with AOSD complicated by MAS, ruxolitinib seems to be a better choice than other JAKi agents. Although our study shows that JAKi are well tolerated in AOSD patients, we still need to be on the lookout for fatal infections.


Subject(s)
Janus Kinase Inhibitors , Still's Disease, Adult-Onset , Humans , Still's Disease, Adult-Onset/drug therapy , Janus Kinase Inhibitors/therapeutic use , Janus Kinase Inhibitors/adverse effects , Treatment Outcome , Adult
10.
J Clin Nurs ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38867609

ABSTRACT

AIMS: To investigate the prevalence of physical inactivity in older adults living in nursing homes and explore the determinants of physical inactivity by using the Capability, Opportunity, Motivation-Behaviour model. DESIGN: A multisite, cross-sectional study was performed by convenience sampling and questionnaire survey. METHODS: A total of 390 nursing home residents were recruited from three nursing homes in Southern China from May 2022 to April 2023. The participants completed a self-designed general information questionnaire, Physical Activity Scale for the Elderly, Self-Efficacy for Exercise Scale, Exercise Benefits Scale, Patient Health Questionnaire-9 and the Short Physical Performance Battery test. Descriptive statistics, univariate analysis, Spearman correlation analysis, and ordinal logistic regression were applied for data analysis. RESULTS: The prevalence of physical inactivity among the nursing home residents reached 88.46%. Ordinal logistic regression results showed that exercise self-efficacy, perceived exercise benefits, physical function, availability of physical activity instruction, having depression, number of chronic diseases and living with spouse were the main influencing determinants of physical inactivity and explained 63.7% of the variance. CONCLUSIONS: Physical inactivity was considerable in nursing home residents in China and influenced by complex factors. Tailored measures should be designed and implemented based on these factors to enhance physical activity while considering the uniqueness of Chinese culture. IMPLICATIONS FOR THE PROFESSION AND PATIENT CARE: Healthcare professionals should enhance physical activity of residents by increasing benefits understanding, boosting self-efficacy, improving physical function, alleviating depression and integrating personalized physical activity guidance into routine care services. And more attention should be paid to the residents who had more chronic diseases or did not live with spouse. IMPACT: Physical inactivity is a significant problem in nursing home residents. Understanding physical inactivity and its determinants enables the development of tailored interventions to enhance their physical activity level. REPORTING METHOD: This study was reported conforming to the STROBE statement. PATIENTS OR PUBLIC CONTRIBUTION: Nursing home residents who met the inclusion criteria were recruited.

11.
Microsyst Nanoeng ; 10: 72, 2024.
Article in English | MEDLINE | ID: mdl-38828404

ABSTRACT

The collection of multiple-channel electrophysiological signals enables a comprehensive understanding of the spatial distribution and temporal features of electrophysiological activities. This approach can help to distinguish the traits and patterns of different ailments to enhance diagnostic accuracy. Microneedle array electrodes, which can penetrate skin without pain, can lessen the impedance between the electrodes and skin; however, current microneedle methods are limited to single channels and cannot achieve multichannel collection in small areas. Here, a multichannel (32 channels) microneedle dry electrode patch device was developed via a dimensionality reduction fabrication and integration approach and supported by a self-developed circuit system to record weak electrophysiological signals, including electroencephalography (EEG), electrocardiogram (ECG), and electromyography (EMG) signals. The microneedles reduced the electrode-skin contact impedance by penetrating the nonconducting stratum corneum in a painless way. The multichannel microneedle array (MMA) enabled painless transdermal recording of multichannel electrophysiological signals from the subcutaneous space, with high temporal and spatial resolution, reaching the level of a single microneedle in terms of signal precision. The MMA demonstrated the detection of the spatial distribution of ECG, EMG and EEG signals in live rabbit models, and the microneedle electrode (MNE) achieved better signal quality in the transcutaneous detection of EEG signals than did the conventional flat dry electrode array. This work offers a promising opportunity to develop advanced tools for neural interface technology and electrophysiological recording.

12.
Arthritis Res Ther ; 26(1): 115, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835033

ABSTRACT

OBJECTIVE: Immune checkpoints have emerged as promising therapeutic targets for autoimmune diseases. However, the specific roles of immune checkpoints in the pathophysiology of ankylosing spondylitis (AS) remain unclear. METHODS: Hip ligament samples were obtained from two patient groups: those with AS and femoral head deformity, and those with femoral head necrosis but without AS, undergoing hip arthroplasty. Label-Free Quantification (LFQ) Protein Park Analysis was used to identify the protein composition of the ligaments. Peripheral blood samples of 104 AS patients from public database were used to validate the expression of key proteins. KEGG, GO, and GSVA were employed to explore potential pathways regulated by immune checkpoints in AS progression. xCell was used to calculate cell infiltration levels, LASSO regression was applied to select key cells, and the correlation between immune checkpoints and immune cells was analyzed. Drug sensitivity analysis was conducted to identify potential therapeutic drugs targeting immune checkpoints in AS. The expression of key genes was validated through immunohistochemistry (IHC). RESULTS: HLA-DMB and HLA-DPA1 were downregulated in the ligaments of AS and this has been validated through peripheral blood datasets and IHC. Significant differences in expression were observed in CD8 + Tcm, CD8 + T cells, CD8 + Tem, osteoblasts, Th1 cells, and CD8 + naive T cells in AS. The infiltration levels of CD8 + Tcm and CD8 + naive T cells were significantly positively correlated with the expression levels of HLA-DMB and HLA-DPA1. Immune cell selection using LASSO regression showed good predictive ability for AS, with AUC values of 0.98, 0.81, and 0.75 for the three prediction models, respectively. Furthermore, this study found that HLA-DMB and HLA-DPA1 are involved in Th17 cell differentiation, and both Th17 cell differentiation and the NF-kappa B signaling pathway are activated in the AS group. Drug sensitivity analysis showed that AS patients are more sensitive to drugs such as doramapimod and GSK269962A. CONCLUSION: Immune checkpoints and immune cells could serve as avenues for exploring diagnostic and therapeutic strategies for AS.


Subject(s)
Spondylitis, Ankylosing , Humans , Spondylitis, Ankylosing/immunology , Spondylitis, Ankylosing/drug therapy , Spondylitis, Ankylosing/diagnosis , Male , Female , Adult , Middle Aged , Immune Checkpoint Proteins/metabolism , Immune Checkpoint Proteins/genetics
13.
Open Med (Wars) ; 19(1): 20240967, 2024.
Article in English | MEDLINE | ID: mdl-38841174

ABSTRACT

Background: Rheumatoid arthritis (RA) is a chronic inflammatory and disabling disease that imposes significant economic and social costs. Tripterygium wilfordii Hook F (TwHF) has a long history of use in traditional Chinese medicine for treating joint disorders, and it has been shown to be cost-effective in treating RA, but its exact mechanism is unknown. Objective: The goal of the network pharmacology analysis and molecular docking was to investigate the potential active compounds and associated anti-RA mechanisms of TwHF. Methods: TCMSP and UniProt databases were searched for active compounds and related targets of TwHF. PharmGKB, DrugBank, OMIM, TTD, and the Human Gene Databases were used to identify RA-related targets. The intersected RA and TwHF targets were entered into the STRING database to create a protein-protein interaction network. R software was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Molecular docking technology was used to analyze the optimal effective components from TwHF for docking with the selected target gene. Results: Following screening and duplicate removal, a total of 51 active compounds and 96 potential targets were chosen. The PPI network revealed that the target proteins are CXCL8, CXCL6, STAT3, STAT1, JUN, PPARG, TP53, IL14, MMP9, VEGFA, RELA, CASP3, PTGS2, IFNG, AKT1, FOS, ICAM1, and MAPK14. The results of the GO enrichment analysis focused primarily on the response to lipopolysaccharide, the response to molecules of bacterial origin, and the response to drugs. The KEGG results indicated that the mechanisms were closely related to lipid and atherosclerosis, chemical carcinogenesis-receptor activation, Kaposi sarcoma-associated, herpesvirus infection, hepatitis B, fluid shear stress and atherosclerosis, IL-17 signaling pathways, Th17-cell differentiation, and so on, all of which are involved in angiogenesis, immune cell chemotaxis, and inflammatory responses. Molecular docking results suggested that triptolide was the appropriate PTGS1, PTGS2, and TNF inhibitors. Conclusion: Our findings provide an essential role and basis for further immune inflammatory studies into the molecular mechanisms of TwHF and PTGS1, PTGS2, and TNF inhibitor development in RA.

14.
ACS Chem Neurosci ; 15(11): 2121-2131, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38775291

ABSTRACT

Mapping brain activities is necessary for understanding brain physiology and discovering new treatments for neurological disorders. Such efforts have greatly benefited from the advancement in technologies for analyzing neural activity with improving temporal or spatial resolution. Here, we constructed a multielectrode array based brain activity mapping (BAM) system capable of stabilizing and orienting zebrafish larvae for recording electroencephalogram (EEG) like local field potential (LFP) signals and brain-wide calcium dynamics in awake zebrafish. Particularly, we designed a zebrafish trap chip that integrates with an eight-by-eight surface electrode array, so that brain electrophysiology can be noninvasively recorded in an agarose-free and anesthetic-free format with a high temporal resolution of 40 µs, matching the capability typically achieved by invasive LFP recording. Benefiting from the specially designed hybrid system, we can also conduct calcium imaging directly on immobilized awake larval zebrafish, which further supplies us with high spatial resolution brain-wide activity data. All of these innovations reconcile the limitations of sole LFP recording or calcium imaging, emphasizing a synergy of combining electrical and optical modalities within one unified device for activity mapping across a whole vertebrate brain with both improved spatial and temporal resolutions. The compatibility with in vivo drug treatment further makes it suitable for pharmacology studies based on multimodal measurement of brain-wide physiology.


Subject(s)
Brain , Electroencephalography , Zebrafish , Animals , Brain/drug effects , Brain/physiology , Electroencephalography/methods , Brain Mapping/methods , Calcium/metabolism , Larva , Optical Imaging/methods
15.
Eur J Obstet Gynecol Reprod Biol ; 297: 214-220, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691973

ABSTRACT

OBJECTIVE: To analyze the factors that might influence the pregnancy rate in patients with infertility related to endometriosis (EMs) after undergoing laparoscopic surgery, providing guidance for our clinical diagnostic and therapeutic decision-making. METHODS: A retrospective analysis was conducted on clinical records and 1-year postoperative pregnancy outcomes of 335 patients diagnosed with endometriosis-related infertility via laparoscopic surgery, admitted to our department from January 2018 to December 2020. RESULTS: The overall pregnancy rate for patients with endometriosis (EMs) related infertility 1-year post-surgery was 57.3 %, with the highest pregnancy rate observed between 3 to 6 months after surgery. Factors such as Body Mass Index (BMI) (P = 0.515), presence of dysmenorrhea (P = 0.515), previous pelvic surgery (P = 0.247), type of EMs pathology (P = 0.893), and preoperative result of serum carbohydrate antigen 125 (CA125)(P = 0.615)had no statistically significant effect on postoperative pregnancy rates. The duration of infertility (P = 0.029), coexistence of adenomyosis (P = 0.042), surgery duration (P = 0.015), intraoperative blood loss (P = 0.050), preoperative result of serum anti-Müllerian hormone (AMH) (P = 0.002) and age greater than 35 (P = 0.000) significantly impacted postoperative pregnancy rates. The post-surgery pregnancy rate in patients with mild (Stage I-II) EMs was notably higher than those with moderate to severe (Stage III-IV) EMs (P = 0.009). Age (P = 0.002), EMs stage (P = 0.018), intraoperative blood loss (P = 0.010) and adenomyosis (P = 0.022) were the factors that affected the postoperative live birth rate. CONCLUSION: For patients with EMs-related infertility undergoing laparoscopic surgery, factors such as age > 35 years, infertility duration > 3 years, concurrent adenomyosis, severe EMs, surgery duration ≥ 2 h, intraoperative blood loss ≥ 50 ml, and low AMH before surgery are detrimental for the pregnancy rate within the first postoperative year. However, BMI, dysmenorrhea, past history of pelvic surgery, EMs pathology types (ovarian, peritoneal, deep infiltrating),and preoperative result of serum CA125 barely show any statistical difference in their effect on postoperative pregnancy rates. In terms of postoperative live birth rate, age > 35 years, severe EMs, intraoperative blood loss ≥ 50 ml, and adenomyosis were adverse factors.


Subject(s)
Endometriosis , Infertility, Female , Laparoscopy , Pregnancy Rate , Humans , Female , Endometriosis/surgery , Endometriosis/complications , Endometriosis/blood , Pregnancy , Adult , Retrospective Studies , Infertility, Female/surgery , Infertility, Female/etiology , Infertility, Female/blood
16.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 256-265, 2024 Feb 28.
Article in English, Chinese | MEDLINE | ID: mdl-38755721

ABSTRACT

OBJECTIVES: Given the high incidence and mortality rate of sepsis, early identification of high-risk patients and timely intervention are crucial. However, existing mortality risk prediction models still have shortcomings in terms of operation, applicability, and evaluation on long-term prognosis. This study aims to investigate the risk factors for death in patients with sepsis, and to construct the prediction model of short-term and long-term mortality risk. METHODS: Patients meeting sepsis 3.0 diagnostic criteria were selected from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database and randomly divided into a modeling group and a validation group at a ratio of 7꞉3. Baseline data of patients were analyzed. Univariate Cox regression analysis and full subset regression were used to determine the risk factors of death in patients with sepsis and to screen out the variables to construct the prediction model. The time-dependent area under the curve (AUC), calibration curve, and decision curve were used to evaluate the differentiation, calibration, and clinical practicability of the model. RESULTS: A total of 14 240 patients with sepsis were included in our study. The 28-day and 1-year mortality were 21.45% (3 054 cases) and 36.50% (5 198 cases), respectively. Advanced age, female, high sepsis-related organ failure assessment (SOFA) score, high simplified acute physiology score II (SAPS II), rapid heart rate, rapid respiratory rate, septic shock, congestive heart failure, chronic obstructive pulmonary disease, liver disease, kidney disease, diabetes, malignant tumor, high white blood cell count (WBC), long prothrombin time (PT), and high serum creatinine (SCr) levels were all risk factors for sepsis death (all P<0.05). Eight variables, including PT, respiratory rate, body temperature, malignant tumor, liver disease, septic shock, SAPS II, and age were used to construct the model. The AUCs for 28-day and 1-year survival were 0.717 (95% CI 0.710 to 0.724) and 0.716 (95% CI 0.707 to 0.725), respectively. The calibration curve and decision curve showed that the model had good calibration degree and clinical application value. CONCLUSIONS: The short-term and long-term mortality risk prediction models of patients with sepsis based on the MIMIC-IV database have good recognition ability and certain clinical reference significance for prognostic risk assessment and intervention treatment of patients.


Subject(s)
Sepsis , Humans , Sepsis/mortality , Sepsis/diagnosis , Female , Male , Risk Factors , Prognosis , Databases, Factual , Risk Assessment/methods , Intensive Care Units/statistics & numerical data , Middle Aged , Area Under Curve , Aged , Organ Dysfunction Scores , Proportional Hazards Models
17.
Arthritis Res Ther ; 26(1): 92, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725078

ABSTRACT

OBJECTIVE: The macrophage activation syndrome (MAS) secondary to systemic lupus erythematosus (SLE) is a severe and life-threatening complication. Early diagnosis of MAS is particularly challenging. In this study, machine learning models and diagnostic scoring card were developed to aid in clinical decision-making using clinical characteristics. METHODS: We retrospectively collected clinical data from 188 patients with either SLE or the MAS secondary to SLE. 13 significant clinical predictor variables were filtered out using the Least Absolute Shrinkage and Selection Operator (LASSO). These variables were subsequently utilized as inputs in five machine learning models. The performance of the models was evaluated using the area under the receiver operating characteristic curve (ROC-AUC), F1 score, and F2 score. To enhance clinical usability, we developed a diagnostic scoring card based on logistic regression (LR) analysis and Chi-Square binning, establishing probability thresholds and stratification for the card. Additionally, this study collected data from four other domestic hospitals for external validation. RESULTS: Among all the machine learning models, the LR model demonstrates the highest level of performance in internal validation, achieving a ROC-AUC of 0.998, an F1 score of 0.96, and an F2 score of 0.952. The score card we constructed identifies the probability threshold at a score of 49, achieving a ROC-AUC of 0.994 and an F2 score of 0.936. The score results were categorized into five groups based on diagnostic probability: extremely low (below 5%), low (5-25%), normal (25-75%), high (75-95%), and extremely high (above 95%). During external validation, the performance evaluation revealed that the Support Vector Machine (SVM) model outperformed other models with an AUC value of 0.947, and the scorecard model has an AUC of 0.915. Additionally, we have established an online assessment system for early identification of MAS secondary to SLE. CONCLUSION: Machine learning models can significantly improve the diagnostic accuracy of MAS secondary to SLE, and the diagnostic scorecard model can facilitate personalized probabilistic predictions of disease occurrence in clinical environments.


Subject(s)
Lupus Erythematosus, Systemic , Machine Learning , Macrophage Activation Syndrome , Humans , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/diagnosis , Female , Macrophage Activation Syndrome/diagnosis , Macrophage Activation Syndrome/etiology , Retrospective Studies , Male , Adult , Middle Aged , Early Diagnosis , ROC Curve
18.
Biosensors (Basel) ; 14(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38785717

ABSTRACT

Real-time monitoring of physiological indicators inside the body is pivotal for contemporary diagnostics and treatments. Implantable electrodes can not only track specific biomarkers but also facilitate therapeutic interventions. By modifying biometric components, implantable electrodes enable in situ metabolite detection in living tissues, notably beneficial in invasive glucose monitoring, which effectively alleviates the self-blood-glucose-managing burden for patients. However, the development of implantable electrochemical electrodes, especially multi-channel sensing devices, still faces challenges: (1) The complexity of direct preparation hinders functionalized or multi-parameter sensing on a small scale. (2) The fine structure of individual electrodes results in low spatial resolution for sensor functionalization. (3) There is limited conductivity due to simple device structures and weakly conductive electrode materials (such as silicon or polymers). To address these challenges, we developed multiple-channel electrochemical microneedle electrode arrays (MCEMEAs) via a separated functionalization and assembly process. Two-dimensional microneedle (2dMN)-based and one-dimensional microneedle (1dMN)-based electrodes were prepared by laser patterning, which were then modified as sensing electrodes by electrochemical deposition and glucose oxidase decoration to achieve separated functionalization and reduce mutual interference. The electrodes were then assembled into 2dMN- and 1dMN-based multi-channel electrochemical arrays (MCEAs), respectively, to avoid damaging functionalized coatings. In vitro and in vivo results demonstrated that the as-prepared MCEAs exhibit excellent transdermal capability, detection sensitivity, selectivity, and reproducibility, which was capable of real-time, in situ glucose concentration monitoring.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Electrodes , Animals , Glucose Oxidase , Rats , Humans , Blood Glucose/analysis , Needles
19.
Article in English | MEDLINE | ID: mdl-38733463

ABSTRACT

Neuroinflammation is considered an important factor that leads to cognitive impairment. Microglia play a crucial role in neuroinflammation, which leads to cognitive impairment. This study aimed at determining whether temporin-GHaR peptide (GHaR) could improve cognitive function and at uncovering the underlying mechanisms. We found that GHaR treatment alleviated LPS-induced cognitive impairment and inhibited activation of microglia in LPS-induced mice. Furthermore, GHaR inhibited activation of endoplasmic reticulum stress (ERS) and the NF-κB signaling pathway in LPS-induced mice. In vitro, GHaR inhibited M1 polarization of BV2 cells and suppressed TNF-α and IL-6 secretion. Additionally, GHaR neuronal cell viability and apoptosis were induced by LPS-activated microglia-conditioned medium. Moreover, in LPS-induced BV2 cells, GHaR inhibited activation of ERS and the NF-κB signaling pathway. In summary, GHaR improved LPS-induced cognitive and attenuated inflammatory responses via microglial activation reversal. In conclusion, the neuroprotective effects of GHaR were mediated via the ERS signaling pathway.

20.
Cell Death Discov ; 10(1): 167, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589400

ABSTRACT

The neurotoxic α-synuclein (α-syn) oligomers play an important role in the occurrence and development of Parkinson's disease (PD), but the factors affecting α-syn generation and neurotoxicity remain unclear. We here first found that thrombomodulin (TM) significantly decreased in the plasma of PD patients and brains of A53T α-syn mice, and the increased TM in primary neurons reduced α-syn generation by inhibiting transcription factor p-c-jun production through Erk1/2 signaling pathway. Moreover, TM decreased α-syn neurotoxicity by reducing the levels of oxidative stress and inhibiting PAR1-p53-Bax signaling pathway. In contrast, TM downregulation increased the expression and neurotoxicity of α-syn in primary neurons. When TM plasmids were specifically delivered to neurons in the brains of A53T α-syn mice by adeno-associated virus (AAV), TM significantly reduced α-syn expression and deposition, and ameliorated the neuronal apoptosis, oxidative stress, gliosis and motor deficits in the mouse models, whereas TM knockdown exacerbated these neuropathology and motor dysfunction. Our present findings demonstrate that TM plays a neuroprotective role in PD pathology and symptoms, and it could be a novel therapeutic target in efforts to combat PD. Schematic representation of signaling pathways of TM involved in the expression and neurotoxicity of α-syn. A TM decreased RAGE, and resulting in the lowered production of p-Erk1/2 and p-c-Jun, and finally reduce α-syn generation. α-syn oligomers which formed from monomers increase the expression of p-p38, p53, C-caspase9, C-caspase3 and Bax, decrease the level of Bcl-2, cause mitochondrial damage and lead to oxidative stress, thus inducing neuronal apoptosis. TM can reduce intracellular oxidative stress and inhibit p53-Bax signaling by activating APC and PAR-1. B The binding of α-syn oligomers to TLR4 may induce the expression of IL-1ß, which is subsequently secreted into the extracellular space. This secreted IL-1ß then binds to its receptor, prompting p65 to translocate from the cytoplasm into the nucleus. This translocation downregulates the expression of KLF2, ultimately leading to the suppression of TM expression. By Figdraw.

SELECTION OF CITATIONS
SEARCH DETAIL