Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5297, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906900

ABSTRACT

Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Metal-organic frameworks (MOFs) are ideal candidate materials for such integration, thanks to their unique merits, such as large specific surface area, tunable pore size, and species diversity. However, achieving scalable fabrication of MOFs-textiles with high mechanical durability remains challenging. Here, we report a facile and scalable strategy for direct MOF growth on cotton fibers grafted via the diazonium chemistry. The as-prepared ZIF-67-Cotton textile (ZIF-67-CT) exhibits excellent ultraviolet (UV) resistance and organic contamination degradation via the peroxymonosulfate activation. The ZIF-67-CT is also used to encapsulate essential oils such as carvacrol to enable antibacterial activity against E. coli and S. aureus. Additionally, by directly tethering a hydrophobic molecular layer onto the MOF-coated surface, superhydrophobic ZIF-67-CT is achieved with excellent self-cleaning, antifouling, and oil-water separation performances. More importantly, the reported strategy is generic and applicable to other MOFs and cellulose fiber-based materials, and various large-scale multi-functional MOFs-textiles can be successfully manufactured, resulting in vast applications in wastewater purification, fragrance industry, and outdoor gears.

2.
ACS Appl Mater Interfaces ; 16(24): 31363-31371, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38856161

ABSTRACT

Being a major obstacle, Ag2Te has always been restricted in p-type AgSbTe2-based materials to improve their thermoelectric performance. This work reveals a stabilized AgSbTe2 through Sn/Ge alloying as synthesized by melting, annealing, and hot press. Interestingly, addition of Sn/Ge in AgSbTe2 extended the solubility limit up to ∼30% and hence suppressed Ag2Te in Ag(1-x)SnxSb(1-y)GeyTe2 compounds and led to enhanced electrical transport. Moreover, electrical and thermal transport properties of AgSbTe2 have been greatly affected by the phase transition of Ag2Te near 425 K. However, high-entropy Ag0.85Sn0.15Sb0.85Ge0.15Te2 compound results in a stabilized rock-salt structure and presents a high power factor of ∼10.8 µW cm-1 K-2 at 757 K. Besides, density functional theory reveals that available multivalence bands in Sn/Ge-doped AgSbTe2 lead to reduction in energy offsets. Meanwhile, a variety of defects appear in the Ag0.85Sn0.15Sb0.85Ge0.15Te2 sample due to entropy change, and thus lattice thermal conductivity decreases. Ultimately, a high figure of merit of ∼1.5 is attained at 757 K. This work demonstrates a roadmap for other group IV-VI materials so that the high-entropy approach may inhibit the impurity phases with extended solubility limit and result in high thermoelectric performance.

3.
Nat Commun ; 13(1): 4564, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35931719

ABSTRACT

Recent advances in MXene (Ti3C2Tx) fibers, prepared from electrically conductive and mechanically strong MXene nanosheets, address the increasing demand of emerging yet promising electrode materials for the development of textile-based devices and beyond. However, to reveal the full potential of MXene fibers, reaching a balance between electrical conductivity and mechanical property is still the fundamental challenge, mainly due to the difficulties to further compact the loose MXene nanosheets. In this work, we demonstrate a continuous and controllable route to fabricate ultra-compact MXene fibers with an in-situ generated protective layer via the synergy of interfacial interactions and thermal drawing-induced stresses. The resulting ultra-compact MXene fibers with high orientation and low porosity exhibit not only excellent tensile strength and ultra-high toughness, but also high electrical conductivity. Then, we construct meter-scale MXene textiles using these ultra-compact fibers to achieve high-performance electromagnetic interference shielding and personal thermal management, accompanied by the high mechanical durability and stability even after multiple washing cycles. The demonstrated generic strategy can be applied to a broad range of nanostructured materials to construct functional fibers for large-scale applications in both space and daily lives.

4.
Front Optoelectron ; 15(1): 2, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-36637572

ABSTRACT

Wearable electronics on fibers or fabrics assembled with electronic functions provide a platform for sensors, displays, circuitry, and computation. These new conceptual devices are human-friendly and programmable, which makes them indispensable for modern electronics. Their unique properties such as being adaptable in daily life, as well as being lightweight and flexible, have enabled many promising applications in robotics, healthcare, and the Internet of Things (IoT). Transistors, one of the fundamental blocks in electronic systems, allow for signal processing and computing. Therefore, study leading to integration of transistors with fabrics has become intensive. Here, several aspects of fiber-based transistors are addressed, including materials, system structures, and their functional devices such as sensory, logical circuitry, memory devices as well as neuromorphic computation. Recently reported advances in development and challenges to realizing fully integrated electronic textile (e-textile) systems are also discussed.

5.
Sensors (Basel) ; 21(10)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069287

ABSTRACT

Thermoelectric technology can directly harvest the waste heat into electricity, which is a promising field of green and sustainable energy. In this aspect, flexible thermoelectrics (FTE) such as wearable fabrics, smart biosensing, and biomedical electronics offer a variety of applications. Since the nanofibers are one of the important constructions of FTE, inorganic thermoelectric fibers are focused on here due to their excellent thermoelectric performance and acceptable flexibility. Additionally, measurement and microstructure characterizations for various thermoelectric fibers (Bi-Sb-Te, Ag2Te, PbTe, SnSe and NaCo2O4) made by different fabrication methods, such as electrospinning, two-step anodization process, solution-phase deposition method, focused ion beam, and self-heated 3ω method, are detailed. This review further illustrates that some techniques, such as thermal drawing method, result in high performance of fiber-based thermoelectric properties, which can emerge in wearable devices and smart electronics in the near future.

6.
ACS Appl Mater Interfaces ; 12(49): 54653-54661, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33215926

ABSTRACT

Bi2(TeSe)3 is a dominant n-type thermoelectric material used in commercial applications. However, its toxicity and rarity hamper further large-scale industrial applications. Herein, we develop a Ag8SiSe6-based composite as a promising n-type semiconductor with the advantages of nontoxicity and elemental abundance. Ag8SiSe6 composites with Ag2Se and Si nanoprecipitation are fabricated by a unique precipitation reaction sensitive to the hot pressing process. The energy-filtering effect between these phases optimizes electrical resistivity (∼14.59 µΩ·m) and the Seebeck coefficient (above -150 µV·K-1) of the composites, resulting in a maximum power factor of ∼1772 µW·m-1·K-2(@125 °C), which is the highest value in an argyrodite system near room temperature. Nanoprecipitation of Ag2Se and Si can also scatter more phonons and further reduce the lattice thermal conductivity to 0.20 W·m-1·K-1. As a result, a maximum ZT value of ∼0.9 (@125 °C) and an average ZT value of ∼0.7 (25-200 °C) are obtained in the composite with 12 vol % Ag2Se and 0.23 vol % Si, which is sintered at 525 °C. These thermoelectric properties are comparable to those of a commercial n-type Bi2Te3 compound. In addition, the Ag8SiSe6 composite has robust mechanical properties (Vickers hardness of >110 HV and bending strength of 70.6 MPa), much better than those of other thermoelectric compounds, because of which Ag8SiSe6 has great commercial application as an alternative to Bi2Te3-based compounds.

7.
Adv Sci (Weinh) ; 7(11): 1903493, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32537405

ABSTRACT

Lead-free chalcogenide SnTe has been demonstrated to be an efficient medium temperature thermoelectric (TE) material. However, high intrinsic Sn vacancies as well as high thermal conductivity devalue its performance. Here, ß-Zn4Sb3 is incorporated into the SnTe matrix to regulate the thermoelectric performance of SnTe. Sequential in situ reactions take place between the ß-Zn4Sb3 additive and SnTe matrix, and an interesting "core-shell" microstructure (Sb@ZnTe) is obtained; the composition of SnTe matrix is also tuned and thus Sn vacancies are compensated effectively. Benefitting from the synergistic effect of the in situ reactions, an ultralow κlat ≈0.48 W m-1 K-1 at 873 K is obtained and the carrier concentrations and electrical properties are also improved successfully. Finally, a maximum ZT ≈1.32, which increases by ≈220% over the pristine SnTe, is achieved in the SnTe-1.5% ß-Zn4Sb3 sample at 873 K. This work provides a new strategy to regulate the TE performance of SnTe and also offers a new insight to other related thermoelectric materials.

8.
ACS Appl Mater Interfaces ; 12(20): 23102-23109, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32338496

ABSTRACT

SnTe has attracted considerable attention as an environmentally friendly thermoelectric material. The thermoelectric figure of merit ZT value is related to low thermal conductivity that can be successfully realized using fabrication of nanostructures. However, the practical realization of SnTe nanostructured composites is often limited by long reaction time, low yield, and aggregation of nanoparticles. Herein, a simple substitution reaction between Cu2Se and SnTe was adopted to realize Cu1.75Te-SnTe nanocomposites with unique all-scale hierarchical structures. On the atomic level, the substitution SeTe is introduced into the lattice via the reaction between Cu2Se and SnTe; on the nanoscopic level, Cu1.75Te nanoinclusions with 10 nm size are evenly distributed at the grain boundaries of SnTe with average grain size less than 1 µm; on the mesoscopic level, these SnTe grains stack up to larger particles (10-20 µm), which are further surrounded by Cu1.75Te grains with a predominant size of 1-2 µm. These hierarchical structures, together with additional SnTe stacking faults, can effectively scatter phonons with different wavelengths to reduce the lattice thermal conductivity. At 873 K, a thermal conductivity value of 0.49 W·m-1·K-1 was obtained in the SnTe nanocomposite sample with 0.057 Cu1.75Te molar content, which is 40% lower than that of the pristine SnTe. By using the same approach for scattering phonons across integrated length scales, a ZT value of 1.02 (∼80% enhancement, compared with that of the pristine SnTe) was achieved at 873 K for the sample of the SnTe nanocomposite with 0.034 Cu1.75Te molar content. This large increase in ZT values highlights the role of multiscale hierarchical architecture in controlling phonon scattering, offering a viable alternative to realize higher performance thermoelectric bulk materials.

9.
ACS Nano ; 12(6): 5605-5614, 2018 Jun 26.
Article in English | MEDLINE | ID: mdl-29741863

ABSTRACT

For a typical perovskite solar cell (PKSC), the electron transport layer (ETL) has a great effect on device performance and stability. Herein, we manifest that low-temperature solution-processed ZnSe can be used as a potential ETL for PKSCs. Our optimized device with ZnSe ETL has achieved a high power conversion efficiency (PCE) of 17.78% with negligible hysteresis, compared with the TiO2 based cell (13.76%). This enhanced photovoltaic performance is attributed to the suitable band alignment, high electron mobility, and reduced charge accumulation at the interface of ETL/perovskite. Encouraging results were obtained when the thin layer of ZnSe cooperated with TiO2. It shows that the device based on the TiO2/ZnSe ETL with cascade conduction band level can effectively reduce the interfacial charge recombination and promote carrier transfer with the champion PCE of 18.57%. In addition, the ZnSe-based device exhibits a better photostability than the control device due to the greater ultraviolet (UV) light harvesting of the ZnSe layer, which can efficiently prevent the perovskite film from intense UV-light exposure to avoid associated degradation. Consequently, our results present that a promising ETL can be a potential candidate of the n-type ETL for commercialization of efficient and photostable PKSCs.

10.
ACS Appl Mater Interfaces ; 9(47): 41354-41362, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29111639

ABSTRACT

For a typical perovskite solar cell (PKSC), both the electron transport layers (ETLs) and hole transport materials (HTMs) play a very important role in improving the device performance and long-term stability. In this paper, we firstly improve the electron transport properties by modification of TiO2 ETLs with Na species, and an enhanced power conversion efficiency (PCE) of 16.91% has been obtained with less hysteresis. Subsequently, an inorganic CuI film prepared by a facile spray deposition method has been employed to replace the conventional spiro-OMeTAD as the HTM in PKSCs. Because of the improved transport properties at the ETL/perovskite and perovskite/HTM interfaces, a maximum photovoltaic efficiency of 17.6% with reduced hysteresis has been achieved in the PKSC with both the Na-modified TiO2 ETL and 60 nm-thick CuI layer HTM. To our knowledge, the PCE achieved in this paper is one of the highest values ever reported for the PKSC devices with inorganic HTMs. More significantly, the PKSCs exhibit an outstanding device stability, their PCE remains constant after storage in the dark for 50 days, and they can retain approximately 92% of their initial efficiency after storage even for 90 days.

11.
ACS Appl Mater Interfaces ; 9(34): 28558-28565, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28792200

ABSTRACT

The effect of Al-, Ga-, and In-doping on the thermoelectric (TE) properties of Cu3SbSe4 has been comparatively studied on the basis of theoretical prediction and experimental validation. It is found that tiny Al/Ga/In substitution leads to a great enhancement of electrical conductivity with high carrier concentration and also large Seebeck coefficient due to the preserved high band degeneracy and thereby a remarkably high power factor. Ultimately, coupled with the depressed lattice thermal conductivity, all three elements (Al/Ga/In) substituted samples have obtained a highly improved thermoelectric performance with respect to undoped Cu3SbSe4. Compared to the samples at the same Al/In doping level, the slightly Ga-doped sample presents better TE performance over the wide temperature range, and the Cu3Sb0.995Ga0.005Se4 sample presents a record high ZT value of 0.9 among single-doped Cu3SbSe4 at 623 K, which is about 80% higher than that of pristine Cu3SbSe4. This work offers an alternative approach to boost the TE properties of Cu3SbSe4 by selecting efficient dopant to weaken the coupling between electrical conductivity and Seebeck coefficient.

12.
Rev Sci Instrum ; 87(12): 124901, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28040937

ABSTRACT

A new method has been proposed and verified to measure the Seebeck coefficient and electrical resistivity of a sample in the paper. Different from the conventional method for Seebeck coefficient and resistivity measurement, the new method adopts a four-point configuration to measure both the Seebeck coefficient and resistivity. It can well identify the inhomogeneity of the sample by simply comparing the four Seebeck coefficients of different probe combinations, and it is more accurate and appropriate to take the average value of the four Seebeck coefficients as the measured result of the Seebeck coefficient of the sample than that measured by the two-point method. Furthermore, the four-point configuration makes it also very convenient to measure the resistivity by using the Van der Pauw method. The validity of this method has been verified with both the constantan alloy and p-type Bi2Te3 semiconductor samples, and the measurement results are in good agreement with those obtained by commercial available equipment.

SELECTION OF CITATIONS
SEARCH DETAIL
...