Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 10: 1386, 2020.
Article in English | MEDLINE | ID: mdl-32974139

ABSTRACT

Objective: Herpes simplex viruses (HSVs) are widely spread throughout the world, causing infections from oral, and genital mucous membrane ulcerations to severe viral encephalitis. Glycoprotein B (gB) was the first HSV envelope glycoprotein identified to induce cell fusion. This glycoprotein initiates viral entry and thereby determines the infectivity of HSV, as well as oncolytic HSV (oHSV). Clarifying its molecular characterization and enlarging its motif reservoir will help to engineer oHSV and in cancer treatment applications. Only in recent years has the importance of gB been acknowledged in HSV infection and oHSV engineering. Although gB-modified oHSVs have been developed, the detailed molecular biology of gB needs to be illustrated more clearly in order to construct more effective oHSVs. Method: Here, we performed a systematic comparative sequence analysis of gBs from the 9 HSV-1 and 2 HSV-2 strains, including HSV-1-LXMW, which was isolated by our lab. Online software was implemented to predict gB secondary structure and motifs. Based on extensive literature reviews, a functional analysis of the predicted motifs was performed. Results: Here, we reported the DNA and predicted amino acid sequences of our recently isolated HSV-1-LXMW and found that the strain was evolutionarily close to HSV-1 strains F, H129, and SC16 based on gB analysis. The 22 novel motifs of HSV gB were identified for the first time. An amino acid sequence alignment of the 11 HSV strains showed that the gB motifs are conserved among HSV strains, suggesting that they are functional in vivo. Additionally, we found that certain amino acids within the 13 motifs out of the 22 were reported to be functional in vivo. Furthermore, the gB mutants and gB-engineered oHSVs were also summarized. Conclusion: Our identification of the 22 novel motifs shed light on HSV gB biology and provide new options for gB engineering to improve the efficiency and safety of oHSVs.

2.
J Hematol Oncol ; 13(1): 107, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32746880

ABSTRACT

As crucial antigen presenting cells, dendritic cells (DCs) play a vital role in tumor immunotherapy. Taking into account the many recent advances in DC biology, we discuss how DCs (1) recognize pathogenic antigens with pattern recognition receptors through specific phagocytosis and through non-specific micropinocytosis, (2) process antigens into small peptides with proper sizes and sequences, and (3) present MHC-peptides to CD4+ and CD8+ T cells to initiate immune responses against invading microbes and aberrant host cells. During anti-tumor immune responses, DC-derived exosomes were discovered to participate in antigen presentation. T cell microvillar dynamics and TCR conformational changes were demonstrated upon DC antigen presentation. Caspase-11-driven hyperactive DCs were recently reported to convert effectors into memory T cells. DCs were also reported to crosstalk with NK cells. Additionally, DCs are the most important sentinel cells for immune surveillance in the tumor microenvironment. Alongside DC biology, we review the latest developments for DC-based tumor immunotherapy in preclinical studies and clinical trials. Personalized DC vaccine-induced T cell immunity, which targets tumor-specific antigens, has been demonstrated to be a promising form of tumor immunotherapy in patients with melanoma. Importantly, allogeneic-IgG-loaded and HLA-restricted neoantigen DC vaccines were discovered to have robust anti-tumor effects in mice. Our comprehensive review of DC biology and its role in tumor immunotherapy aids in the understanding of DCs as the mentors of T cells and as novel tumor immunotherapy cells with immense potential.


Subject(s)
Antigen Presentation/immunology , Dendritic Cells/immunology , Immunotherapy , Neoplasms/therapy , Animals , Antigens, Neoplasm/immunology , Autophagy/immunology , Clinical Trials as Topic , Exosomes/immunology , Histocompatibility Antigens Class I/immunology , Humans , Immunologic Memory , Immunologic Surveillance , Lectins, C-Type/immunology , Lymphocyte Activation , Lymphocyte Subsets/immunology , Mice , Models, Immunological , Neoplasms/immunology , Protein Conformation , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Receptors, Fc/immunology , Receptors, Immunologic/immunology , Tumor Microenvironment
3.
J Cancer ; 10(2): 430-440, 2019.
Article in English | MEDLINE | ID: mdl-30719137

ABSTRACT

An oncolytic herpes simplex virus (oHSV) has proven amenable in oncolytic virotherapy and was approved to treat melanoma. The immediate-early (IE) protein ICP27 encoded by gene UL54 is essential for HSV infection. Post-transcriptional modification of UL54 would increase tumor targeting of oHSVs. However, UL54 gene transcription regulatory sequences and factors were not reported yet. Here we isolated a new strain LXMW of type 1 HSV (HSV-1-LXMW) in China and found it's closely related to HSV-1 strains Patton and H129 in the US by the first and next generation DNA sequencing viral DNA phylogenetic analysis. Using a weight matrix-based program Match, we found the UL54 transcription regulatory sequences binding to the transcription factors Oct-1, v-Myb and Pax-6 in HSV-1-LXMW, while the sequences binding to Oct-1 and Hairy in a HSV-2 strain. Further validation showed that HSV-1 and HSV-2 shared the common sequence binding to Oct-1, but had unique sequences to bind v-Myb and Pax-6, or Hairy, respectively, by DNA sequence alignment of total 11 HSV strains. The published results howed that the expression of transcription factors is consistent with the tissue tropism of HSV-1 and HSV-2. In the current article a new HSV-1 strain LXMW was isolated and its putative HSV UL54 transcription regulatory sequences and factors were identified for the first time. Our findings highlight the new understanding of the principles of transcriptional regulation in HSV biology and oncolytic virotherapy.

4.
Cancer Gene Ther ; 25(5-6): 93-105, 2018 06.
Article in English | MEDLINE | ID: mdl-29691470

ABSTRACT

Herpes simplex viruses (HSVs) are important pathogens and ideal for gene therapy due to its large genome size. Previous researches on HSVs were hampered because the technology to construct recombinant HSVs were based on DNA homology-dependent repair (HDR) and plaque assay, which are inefficient, laborious, and time-consuming. Fortunately, clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9 (CRISPR/Cas9) recently provided the possibility to precisely, efficiently, and rapidly edit genomes and indeed is successfully being used in HSVs. Importantly, CRISPR/Cas9 technology increased HSV HDR efficiency exponentially by a 10,000-1,000,000 times when making recombinant HSVs, and its combination with flow cytometric technology made HSV recombination practically automatic. These may have a significant impact on virus and gene therapy researches. This review will summarize the latest development and molecular mechanisms of CRISPR/Cas9 genome editing technology and its recent application in HSVs.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Genome, Viral , Simplexvirus/genetics , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...