Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 643
Filter
1.
Nat Commun ; 15(1): 5654, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969669

ABSTRACT

Hematopoietic stem cell transplantation can deliver therapeutic proteins to the central nervous system (CNS) through transplant-derived microglia-like cells. However, current conditioning approaches result in low and slow engraftment of transplanted cells in the CNS. Here we optimized a brain conditioning regimen that leads to rapid, robust, and persistent microglia replacement without adverse effects on neurobehavior or hematopoiesis. This regimen combines busulfan myeloablation and six days of Colony-stimulating factor 1 receptor inhibitor PLX3397. Single-cell analyses revealed unappreciated heterogeneity of microglia-like cells with most cells expressing genes characteristic of homeostatic microglia, brain-border-associated macrophages, and unique markers. Cytokine analysis in the CNS showed transient inductions of myeloproliferative and chemoattractant cytokines that help repopulate the microglia niche. Bone marrow transplant of progranulin-deficient mice conditioned with busulfan and PLX3397 restored progranulin in the brain and eyes and normalized brain lipofuscin storage, proteostasis, and lipid metabolism. This study advances our understanding of CNS repopulation by hematopoietic-derived cells and demonstrates its therapeutic potential for treating progranulin-dependent neurodegeneration.


Subject(s)
Busulfan , Microglia , Progranulins , Animals , Microglia/metabolism , Microglia/drug effects , Progranulins/metabolism , Progranulins/genetics , Mice , Busulfan/pharmacology , Hematopoietic Stem Cell Transplantation , Aminopyridines/pharmacology , Brain/metabolism , Pyrroles/pharmacology , Mice, Inbred C57BL , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/cytology , Bone Marrow Transplantation , Male , Central Nervous System/metabolism , Mice, Knockout , Transplantation Conditioning/methods , Single-Cell Analysis , Cytokines/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors
2.
J Immunol Res ; 2024: 3145695, 2024.
Article in English | MEDLINE | ID: mdl-38983273

ABSTRACT

Background: This work focused on investigating the role of programmed death ligand 2 (PD-L2) in the progression of breast cancer by utilizing breast cancer specimens and cells. Materials and Methods: The serum levels of soluble PD-L2 (sPD-L2) in breast cancer patients and healthy individuals were analyzed by means of the enzyme-linked immunosorbent assay, and the PD-L2 levels within 416 resected breast cancer specimens were assessed through immunohistochemistry. Concurrently, in vitro cell experiments and in vivo animal experiments were carried out to analyze the relationship between PD-L2 and the invasion and migration of breast cancer. Results: The concentration of sPD-L2 in breast cancer patients significantly increased compared to that in the control groups. Additionally, breast cancer patients with high concentrations of sPD-L2 had higher Ki67 values (≥30%) and tumor grades. PD-L2 was expressed in 79.09% of the cancer samples, which exhibited a positive correlation with the progesterone receptor (PR) and the human epidermal growth factor receptor 2 (HER2). Furthermore, we discovered that knockdown of PD-L2 inhibited the migratory and invasive abilities of both MCF-7 and MDA-MB231 cells. Conclusion: Our findings demonstrated that knockdown of PD-L2 suppressed tumor growth, providing novel insights into important biological functions.


Subject(s)
Breast Neoplasms , Cell Movement , Disease Progression , Programmed Cell Death 1 Ligand 2 Protein , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Animals , Programmed Cell Death 1 Ligand 2 Protein/metabolism , Programmed Cell Death 1 Ligand 2 Protein/genetics , Mice , Cell Line, Tumor , Middle Aged , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Adult , Cell Proliferation , MCF-7 Cells , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness , Aged , Immunohistochemistry , Neoplasm Grading , Biomarkers, Tumor/metabolism , Disease Models, Animal , Receptors, Progesterone/metabolism , Gene Knockdown Techniques
3.
Article in English | MEDLINE | ID: mdl-39013587

ABSTRACT

BACKGROUND AND AIM: Helicobacter pylori infection is linked to various gastrointestinal conditions, such as chronic active gastritis, peptic ulcers, and gastric cancer. Traditional treatment options encounter difficulties due to antibiotic resistance and adverse effects. Therefore, the aim of this study was to explore the effectiveness of a new treatment plan that combines vonoprazan (VPZ), amoxicillin, and bismuth for the eradication of H. pylori. METHODS: A total of 600 patients infected with H. pylori were recruited for this multicenter randomized controlled trial. Patients treated for H. pylori elimination were randomly assigned at a 1:1 ratio to receive 14 days of vonoprazan-based triple therapy (vonoprazan + amoxicillin + bismuth, group A) or standard quadruple therapy (esomeprazole + clarithromycin + amoxicillin + bismuth, group B). Compliance and adverse effects were tracked through daily medication and side effect records. All patients underwent a 13C/14C-urea breath test 4 weeks after treatment completion. RESULTS: Intention-to-treat (ITT) and per-protocol (PP) analyses revealed no substantial differences in H. pylori eradication rates between groups A and B (ITT: 83.7% vs 83.2%; PP: 90.9% vs 89.7%). However, significant differences were observed in the assessment of side effects (13.7% vs 28.6%, P < 0.001). Specifically, group A had significantly fewer "bitter mouths" than group B did (3.7% vs 16.2%, P < 0.001). CONCLUSION: Triple therapy comprising vonoprazan (20 mg), amoxicillin (750 mg), and bismuth potassium citrate (220 mg) achieved a PP eradication rate ≥90%, paralleling standard quadruple therapy, and had fewer adverse events and lower costs (¥306.8 vs ¥645.8) for treatment-naive patients.

4.
bioRxiv ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39026880

ABSTRACT

Venous thrombosis (VT) is a common vascular disease associated with reduced survival and a high recurrence rate. Previous studies have shown that the accumulation of platelets and neutrophils at sites of endothelial cell activation is a primary event in VT, but a role for platelet αIIbß3 in the initiation of venous thrombosis has not been established. This task has been complicated by the increased bleeding linked to partial agonism of current αIIbß3 inhibitory drugs such as tirofiban (Aggrastat ® ). Here, we show that m-tirofiban, an engineered version of tirofiban, is not a partial agonist of αIIbß3. This is based on its cryo-EM structure in complex with human full-length αIIbß3 and its inability to increase expression of an activation-sensitive epitope on platelet αIIbß3. m-tirofiban abolished agonist-induced platelet aggregation ex vivo at concentrations that preserved clot retraction and markedly suppressed the accumulation of platelets, neutrophils, and fibrin on thrombin-activated endothelium in real-time using intravital microscopy in a mouse model of venous thrombogenesis. Unlike tirofiban, however, m-tirofiban did not increase bleeding at the thrombosis-inhibitory dose. These findings establish a key role for αIIbß3 in the initiation of VT, provide a guiding principle for designing potentially safer inhibitors for other integrins, and suggest that pure antagonists of αIIbß3 like m-tirofiban merit further consideration as potential thromboprophylaxis agents in patients at high-risk for VT and hemorrhage.

5.
Food Res Int ; 190: 113905, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945555

ABSTRACT

Bee bread is a product of honeybees, which collect and ferment pollen, that contains highly nutritious and easily digestible active substances. However, its nutritional composition varies significantly with fermentation strains and seasonal changes. To unveil the patterns of microbial community and nutritional component changes in bee bread across seasons, we employed high-throughput techniques to assess the diversity of bacteria and fungi in bee bread. The results indicated that the compositions of bacteria and fungi in bee bread undergo significant seasonal variation, with noticeable changes in the microbial diversity of bee bread from different bee species. Subsequently, metabolomic analysis revealed high activity of glycerophospholipid metabolism in bee bread. Furthermore, our analysis identifaied noteworthy differences in nutritional components, including pH values, sugar content, and free amino acid levels, in bee bread across different seasons.


Subject(s)
Bacteria , Microbiota , Nutritive Value , Seasons , Bees/microbiology , Animals , Bacteria/classification , Fermentation , Amino Acids/analysis , Fungi/classification , Pollen/chemistry , Bread/analysis , Bread/microbiology , Hydrogen-Ion Concentration , Metabolomics
6.
Molecules ; 29(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930986

ABSTRACT

In this study, hybrid skeleton material ZIF-8@ZIF-67 was synthesized by the epitaxial growth method and then was utilized as a carrier for encapsulating Pseudomonas fluorescens lipase (PFL) through the co-precipitation method, resulting in the preparation of immobilized lipase (PFL@ZIF-8@ZIF-67). Subsequently, it was further treated with glutaraldehyde to improve protein immobilization yield. Under optimal immobilization conditions, the specific hydrolytic activity of PFL@ZIF-8@ZIF-67 was 20.4 times higher than that of the free PFL. The prepared biocatalyst was characterized and analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR). Additionally, the thermal stability of PFL@ZIF-8@ZIF-67 at 50 °C was significantly improved compared to the free PFL. After 7 weeks at room temperature, PFL@ZIF-8@ZIF-67 retained 78% of the transesterification activity, while the free enzyme was only 29%. Finally, PFL@ZIF-8@ZIF-67 was applied to the neryl acetate preparation in a solvent-free system, and the yield of neryl acetate reached 99% after 3 h of reaction. After 10 repetitions, the yields of neryl acetate catalyzed by PFL@ZIF-8@ZIF-67 and the free PFL were 80% and 43%, respectively.


Subject(s)
Enzymes, Immobilized , Lipase , Pseudomonas fluorescens , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Pseudomonas fluorescens/enzymology , Lipase/chemistry , Lipase/metabolism , Esterification , Enzyme Stability , Zeolites/chemistry , Spectroscopy, Fourier Transform Infrared , Temperature , Acetates/chemistry , X-Ray Diffraction , Biocatalysis , Imidazoles
7.
Fa Yi Xue Za Zhi ; 40(2): 154-163, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38847030

ABSTRACT

OBJECTIVES: To develop a deep learning model for automated age estimation based on 3D CT reconstructed images of Han population in western China, and evaluate its feasibility and reliability. METHODS: The retrospective pelvic CT imaging data of 1 200 samples (600 males and 600 females) aged 20.0 to 80.0 years in western China were collected and reconstructed into 3D virtual bone models. The images of the ischial tuberosity feature region were extracted to create sex-specific and left/right site-specific sample libraries. Using the ResNet34 model, 500 samples of different sexes were randomly selected as training and verification set, the remaining samples were used as testing set. Initialization and transfer learning were used to train images that distinguish sex and left/right site. Mean absolute error (MAE) and root mean square error (RMSE) were used as primary indicators to evaluate the model. RESULTS: Prediction results varied between sexes, with bilateral models outperformed left/right unilateral ones, and transfer learning models showed superior performance over initial models. In the prediction results of bilateral transfer learning models, the male MAE was 7.74 years and RMSE was 9.73 years, the female MAE was 6.27 years and RMSE was 7.82 years, and the mixed sexes MAE was 6.64 years and RMSE was 8.43 years. CONCLUSIONS: The skeletal age estimation model, utilizing ischial tuberosity images of Han population in western China and employing the ResNet34 combined with transfer learning, can effectively estimate adult ischium age.


Subject(s)
Age Determination by Skeleton , Deep Learning , Imaging, Three-Dimensional , Ischium , Tomography, X-Ray Computed , Humans , Male , Female , Ischium/diagnostic imaging , Adult , Middle Aged , Tomography, X-Ray Computed/methods , Imaging, Three-Dimensional/methods , China , Retrospective Studies , Age Determination by Skeleton/methods , Aged , Young Adult , Aged, 80 and over , Reproducibility of Results
8.
bioRxiv ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38895439

ABSTRACT

Lysosomes catabolize lipids and other biological molecules, a function essential for cellular and organismal homeostasis. Key to lipid catabolism in the lysosome is bis(monoacylglycero)phosphate (BMP), a major lipid constituent of intralysosomal vesicles (ILVs) and a stimulator of lipid-degrading enzymes. BMP levels are altered in a broad spectrum of human conditions, including neurodegenerative diseases. Although BMP synthase was recently discovered, it has long been thought that BMP's unique stereochemistry confers resistance to acid phospholipases, a requirement for its role in the lysosome. Here, we demonstrate that PLA2G15, a major lysosomal phospholipase, efficiently hydrolyzes BMP with primary esters regardless of stereochemistry. Interestingly, we discover that BMP's unique esterification position is what confers resistance to hydrolysis. Purified PLA2G15 catabolizes most BMP species derived from cell and tissue lysosomes under acidic conditions. Furthermore, PLA2G15 catalytic activity against synthesized BMP stereoisomers with primary esters was comparable to its canonical substrates. Conversely, BMP with secondary esters is intrinsically stable in vitro and requires acyl migration for hydrolysis in lysosomes. Consistent with our biochemical data, PLA2G15-deficient tissues and cells accumulate multiple BMP species, a phenotype reversible by supplementing wildtype PLA2G15 but not its catalytically dead mutant. Increasing BMP levels by targeting PLA2G15 reverses the cholesterol accumulation phenotype in Niemann Pick Disease Type C (NPC1) patient fibroblasts and significantly ameliorate disease pathologies in NPC1-deficient mice leading to extended lifespan. Our findings establish the rules that govern the stability of BMP in the lysosome and identify PLA2G15 as a lysosomal BMP hydrolase and as a potential target for modulating BMP levels for therapeutic intervention.

9.
Mol Med ; 30(1): 93, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898476

ABSTRACT

BACKGROUND: The epithelial-mesenchymal transition (EMT) of human bronchial epithelial cells (HBECs) is essential for airway remodeling during asthma. Wnt5a has been implicated in various lung diseases, while its role in the EMT of HBECs during asthma is yet to be determined. This study sought to define whether Wnt5a initiated EMT, leading to airway remodeling through the induction of autophagy in HBECs. METHODS: Microarray analysis was used to investigate the expression change of WNT5A in asthma patients. In parallel, EMT models were induced using 16HBE cells by exposing them to house dust mites (HDM) or interleukin-4 (IL-4), and then the expression of Wnt5a was observed. Using in vitro gain- and loss-of-function approaches via Wnt5a mimic peptide FOXY5 and Wnt5a inhibitor BOX5, the alterations in the expression of the epithelial marker E-cadherin and the mesenchymal marker protein were observed. Mechanistically, the Ca2+/CaMKII signaling pathway and autophagy were evaluated. An autophagy inhibitor 3-MA was used to examine Wnt5a in the regulation of autophagy during EMT. Furthermore, we used a CaMKII inhibitor KN-93 to determine whether Wnt5a induced autophagy overactivation and EMT via the Ca2+/CaMKII signaling pathway. RESULTS: Asthma patients exhibited a significant increase in the gene expression of WNT5A compared to the healthy control. Upon HDM and IL-4 treatments, we observed that Wnt5a gene and protein expression levels were significantly increased in 16HBE cells. Interestingly, Wnt5a mimic peptide FOXY5 significantly inhibited E-cadherin and upregulated α-SMA, Collagen I, and autophagy marker proteins (Beclin1 and LC3-II). Rhodamine-phalloidin staining showed that FOXY5 resulted in a rearrangement of the cytoskeleton and an increase in the quantity of stress fibers in 16HBE cells. Importantly, blocking Wnt5a with BOX5 significantly inhibited autophagy and EMT induced by IL-4 in 16HBE cells. Mechanistically, autophagy inhibitor 3-MA and CaMKII inhibitor KN-93 reduced the EMT of 16HBE cells caused by FOXY5, as well as the increase in stress fibers, cell adhesion, and autophagy. CONCLUSION: This study illustrates a new link in the Wnt5a-Ca2+/CaMKII-autophagy axis to triggering airway remodeling. Our findings may provide novel strategies for the treatment of EMT-related diseases.


Subject(s)
Asthma , Autophagy , Epithelial Cells , Epithelial-Mesenchymal Transition , Wnt-5a Protein , Humans , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Asthma/metabolism , Asthma/pathology , Asthma/genetics , Epithelial Cells/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Bronchi/metabolism , Bronchi/pathology , Male , Cell Line , Female , Middle Aged , Signal Transduction , Adult
10.
Postgrad Med J ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832627

ABSTRACT

PURPOSE: We aimed to explore the causal relationship between human serum metabolites and angina pectoris. METHODS: This study used two-sample Mendelian randomization (MR) analysis to assess the association between 486 serum metabolites and angina pectoris. The analytical methods employed to reduce study bias included inverse variance weighted, MR-Egger, and weighted median method. A comprehensive sensitivity analysis was performed using the leave-one-out method, while instrumental variable pleiotropy was tested with MR-Pleiotropy RESidual Sum and Outlier. Metabolic pathways of angina-associated metabolites were analysed on the MetaboAnalyst metabolomics analysis tool platform. RESULTS: In this study, 42 serum metabolites were found to be strongly associated with angina pectoris. They mainly belonged to seven groups: amino acids, carbohydrates, cofactors and vitamins, lipids, nucleotides, unknown metabolites, and exogenous substances. Pipecolate posed the highest risk for the development of angina pectoris among the 42 serum metabolites. The main metabolic pathways associated with angina pectoris were glycine, serine, threonine metabolism, primary bile acid biosynthesis, and caffeine metabolism. CONCLUSION: We identified 25 high-risk and 17 protective human serum metabolites associated with angina pectoris. Their associated major metabolic pathways were also determined. The serum metabolite pipecolate was significantly and positively correlated with the risk of angina pectoris. This finding may serve as a valuable reference for testing serum markers associated with angina pectoris.

11.
Food Chem X ; 22: 101339, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38721385

ABSTRACT

This study investigated the savory intensity of aroma-active compounds derived from yeast extract Maillard reaction models. Sensory evaluation results revealed that beef flavoring model (28.00 g) exhibited the highest savory perception intensity when the yeast extract FA34 (0.50 g) the added. Eleven aroma-active compounds associated with saltiness perception were identified via solid-phase microextraction and extraction combined with gas chromatography-mass spectrometry/olfactory. The odorant-NaCl mixture model and saltiness intensity evaluation results revealed that thiazole and 4-methylpentanoic acid could significantly (p < 0.05) enhance the saltiness perception of salt solution (5.00 g/L), 2-methylpyrazine, 2-methyl-3-furanthiol, 2,6-dimethylpyrazine, furfuryl mercaptan, and methyl 2-methyl-3-furyl disulfide could significantly (p < 0.01) enhance the saltiness perception of a salt solution (5.00 g/L). Electroencephalography revealed that the main mechanisms underlying aroma-induced saltiness perception enhancement included the strengthening of the saltiness perception signal and prolonging signal stimulation time in the frontal regions of the cerebral cortex.

12.
J Med Chem ; 67(9): 7569-7584, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38690687

ABSTRACT

PTP1B, a promising target for insulin sensitizers in type 2 diabetes treatment, can be effectively degraded using proteolysis-targeting chimera (PROTAC). This approach offers potential for long-acting antidiabetic agents. We report potent bifunctional PROTACs targeting PTP1B through the E3 ubiquitin ligase cereblon. Western blot analysis showed significant PTP1B degradation by PROTACs at concentrations from 5 nM to 5 µM after 48 h. Evaluation of five highly potent PROTACs revealed compound 75 with a longer PEG linker (23 atoms), displaying remarkable degradation activity after 48 and 72 h, with DC50 values of 250 nM and 50 nM, respectively. Compound 75 induced selective degradation of PTP1B, requiring engagement with both the target protein and CRBN E3 ligase, in a ubiquitination and proteasome-dependent manner. It significantly reduced blood glucose AUC0-2h to 29% in an oral glucose tolerance test and activated the IRS-1/PI3K/Akt signaling pathway in HepG2 cells, showing promise for long-term antidiabetic therapy.


Subject(s)
Hypoglycemic Agents , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Proteolysis , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Drug Discovery , Hep G2 Cells , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Proteolysis/drug effects , Signal Transduction/drug effects , Ubiquitin-Protein Ligases/metabolism
13.
Nat Hum Behav ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724650

ABSTRACT

Dysfunction of brain resting-state functional networks has been widely reported in psychiatric disorders. However, the causal relationships between brain resting-state functional networks and psychiatric disorders remain largely unclear. Here we perform bidirectional two-sample Mendelian randomization (MR) analyses to investigate the causalities between 191 resting-state functional magnetic resonance imaging (rsfMRI) phenotypes (n = 34,691 individuals) and 12 psychiatric disorders (n = 14,307 to 698,672 individuals). Forward MR identified 8 rsfMRI phenotypes causally associated with the risk of psychiatric disorders. For example, the increase in the connectivity of motor, subcortical-cerebellum and limbic network was associated with lower risk of autism spectrum disorder. In adddition, increased connectivity in the default mode and central executive network was associated with lower risk of post-traumatic stress disorder and depression. Reverse MR analysis revealed significant associations between 4 psychiatric disorders and 6 rsfMRI phenotypes. For instance, the risk of attention-deficit/hyperactivity disorder increases the connectivity of the attention, salience, motor and subcortical-cerebellum network. The risk of schizophrenia mainly increases the connectivity of the default mode and central executive network and decreases the connectivity of the attention network. In summary, our findings reveal causal relationships between brain functional networks and psychiatric disorders, providing important interventional and therapeutic targets for psychiatric disorders at the brain functional network level.

14.
Discov Oncol ; 15(1): 168, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750182

ABSTRACT

BACKGROUND: Studies evaluating the effectiveness of immune checkpoint inhibitors (ICI) for endometrial cancer (EC) are limited. This study aimed to assess the efficacy of PD-1/PD-L1 inhibitors as monotherapy for EC by conducting a meta-analysis. The predictive significance of MMR status, a biomarker for ICI response, also required further investigation. METHODS: A systematic literature search was conducted in English databases until September 2023. The analysis included objective response rate (ORR), disease control rate (DCR), adverse events (AEs), and odds ratios (OR), along with their corresponding 95% confidence intervals (CI). RESULTS: There were twelve trials totaling 685 individuals. PD-1/PD-L1 inhibitor monotherapy resulted in an ORR for 34% (95% CI = 24-44%) of the pooled EC patients. Subgroup analysis revealed a significantly higher ORR in dMMR EC (45%) compared to pMMR EC (8%), with an OR of 6.36 (95% CI = 3.64-11.13). The overall DCR was 42%, with dMMR EC at 51% and pMMR EC at 30% (OR = 2.61, 95% CI = 1.69-4.05). Grade three or higher adverse events (AEs) occurred in 15% of cases (95% CI = 9-24%) of the pooled incidence of AEs, which was 68% (95% CI = 65-72%). CONCLUSIONS: This meta-analysis provides significant evidence for the effectiveness of PD-1/PD-L1 inhibitors as monotherapy for EC. Notably, dMMR EC patients demonstrated superior treatment efficacy with PD-1/PD-L1 inhibitor immunotherapy. Further research is required to explore subclassifications of EC based on dMMR molecular subtypes, enabling improved treatment strategies and outcomes for EC patients.

16.
Food Chem ; 453: 139691, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781904

ABSTRACT

Yeast extract is increasingly becoming an attractive source for unraveling novel umami peptides that are healthier and more nutritious than traditional seasonings. In the present study, a strategy for screening novel umami peptides was established using mass spectrometry-based peptidomics combined with molecular interaction modeling, emphasizing on smaller peptides than previously reported. Four representative novel umami peptides of FE, YDQ, FQEY, and SPFSQ from yeast extract (Saccharomyces cerevisiae) were identified and validated by sensory evaluation, with thresholds determined as 0.234 ± 0.045, 0.576 ± 0.175, 0.327 ± 0.057 and 0.456 ± 0.070 mmol/L, respectively. Hydrogen and ionic bonds were the main characteristic interactions between the umami peptides and the well-recognized receptor T1R1/T1R3, in which Asp 110, Thr 112, Arg 114, Arg 240, Lys 342, and Glu 264 were the key sites in ligand-receptor recognition. Our study provides accurate sequences of umami peptides and molecular interaction mechanism for the umami effect.


Subject(s)
Peptides , Saccharomyces cerevisiae , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Peptides/chemistry , Humans , Taste , Models, Molecular , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Male , Proteomics , Female , Amino Acid Sequence
17.
World J Gastrointest Surg ; 16(5): 1482-1484, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38817295

ABSTRACT

This letter to the editor addresses the study titled "Predictive value of NLR, Fib4, and APRI in the occurrence of liver failure after hepatectomy in patients with hepatocellular carcinoma" by Kuang et al in the World Journal of Gastrointestinal Surgery. The study acknowledges the comprehensive patient data analysis while suggesting that there is a need for further discussion on the clinical applicability of these markers across diverse patient populations. This letter recommends prospective studies for validation and considers the influence of confounding factors. This finding underscores the significance of this study in improving hepatocellular carcinoma management.

18.
Cancer Lett ; 591: 216860, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38583650

ABSTRACT

Cancer is the result of genetic abnormalities that cause normal cells to grow into neoplastic cells. Cancer is characterized by several distinct features, such as uncontrolled cell growth, extensive spreading to other parts of the body, and the ability to resist treatment. The scientists have stressed the development of nanostructures as novel therapeutic options in suppressing cancer, in response to the emergence of resistance to standard medicines. One of the specific mechanisms with dysregulation during cancer is autophagy. Nanomaterials have the ability to specifically carry medications and genes, and they can also enhance the responsiveness of tumor cells to standard therapy while promoting drug sensitivity. The primary mechanism in this process relies on autophagosomes and their fusion with lysosomes to break down the components of the cytoplasm. While autophagy was initially described as a form of cellular demise, it has been demonstrated to play a crucial role in controlling metastasis, proliferation, and treatment resistance in human malignancies. The pharmacokinetic profile of autophagy modulators is poor, despite their development for use in cancer therapy. Consequently, nanoparticles have been developed for the purpose of delivering medications and autophagy modulators selectively and specifically to the cancer process. Furthermore, several categories of nanoparticles have demonstrated the ability to regulate autophagy, which plays a crucial role in defining the biological characteristics and response to therapy of tumor cells.


Subject(s)
Autophagy , Nanostructures , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/genetics , Neoplasms/metabolism , Autophagy/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Nanoparticles , Drug Resistance, Neoplasm , Animals
19.
ACS Chem Neurosci ; 15(10): 2042-2057, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38656184

ABSTRACT

Based on the neuroprotection of butylphthalide and donepezil, a series of indanone/benzofuranone and piperidine hybrids were designed and synthesized for assessment of their neuroprotective activities, aiming to enhance the bioavailability and therapeutic efficacy of natural phthalide analogues. Within this study, it was observed that most indanone derivatives bearing 1-methylpiperidine in the tail segment demonstrated superior neuroprotective effects on the oxygen glucose deprivation/reperfusion (OGD/R)-induced rat primary neuronal cell injury model in vitro compared to benzofuranone compounds. Among the synthesized compounds, 11 (4, 14, 15, 22, 26, 35, 36, 37, 48, 49, and 52) displayed robust cell viabilities in the OGD/R model, along with favorable blood-brain barrier permeability as confirmed by the parallel artificial membrane permeability assay. Notably, compound 4 showed significant neuronal cell viabilities within the concentration range of 3.125 to 100 µM, without inducing cytotoxicity. Further results from in vivo middle cerebral artery occlusion/R experiments revealed that 4 effectively ameliorated ischemia-reperfusion injury, reducing the infarct volume to 18.45% at a dose of 40 mg/kg. This outcome suggested a superior neuroprotective effect compared to edaravone at 20 mg/kg, further highlighting the potential therapeutic efficacy of compound 4 in addressing neurological disorders.


Subject(s)
Benzofurans , Indans , Neuroprotective Agents , Piperidines , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Piperidines/pharmacology , Piperidines/chemical synthesis , Piperidines/chemistry , Indans/pharmacology , Indans/chemical synthesis , Indans/chemistry , Benzofurans/pharmacology , Benzofurans/chemical synthesis , Rats , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Neurons/drug effects , Neurons/metabolism , Male , Cell Survival/drug effects , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Infarction, Middle Cerebral Artery/drug therapy
20.
Aging (Albany NY) ; 16(7): 6273-6289, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38568100

ABSTRACT

OBJECTIVE: The purpose of this study was to explore the therapeutic characteristics of mesenchymal stem cells generated from human umbilical cord (hUC-MSCs) when utilized in conjunction with auto-crosslinked hyaluronic acid gel (HA-gel) for the management of intrauterine adhesion (IUA). The goal was to see how this novel therapy could enhance healing and improve outcomes for IUA patients. METHODS: In this study, models of intrauterine adhesion (IUA) were established in Sprague-Dawley (SD) rats, which were then organized and divided into hUC-MSCs groups. The groups involved: hUC-MSCs/HA-gel group, control group, and HA-gel group. Following treatment, the researchers examined the uterine cavities and performed detailed analyses of the endometrial tissues to determine the effectiveness of the interventions. RESULTS: The results indicated that in comparison with to the control group, both HA-gel, hUC-MSCs, and hUC-MSCs/HA-gel groups showed partial repair of IUA. However, in a more notable fashion transplantation of hUC-MSCs/HA-gel complex demonstrated significant dual repair effects. Significant outcomes were observed in the group treated with hUC-MSCs and HA-gel, they showed thicker endometrial layers, less fibrotic tissue, and a higher number of endometrial glands. This treatment strategy also resulted in a significant improvement in fertility restoration, indicating a profound therapeutic effect. CONCLUSIONS: The findings of this study suggest that both HA-gel, hUC-MSCs, and hUC-MSCs/HA-gel complexes have the potential for partial repair of IUA and fertility restoration caused by endometrium mechanical injury. Nonetheless, the transplantation of the hUC-MSCs/HA-gel complex displayed exceptional dual healing effects, combining effective anti-adhesive properties with endometrial regeneration stimuli.


Subject(s)
Hyaluronic Acid , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Rats, Sprague-Dawley , Umbilical Cord , Uterine Diseases , Hyaluronic Acid/pharmacology , Hyaluronic Acid/chemistry , Female , Animals , Mesenchymal Stem Cell Transplantation/methods , Humans , Rats , Tissue Adhesions , Umbilical Cord/cytology , Uterine Diseases/therapy , Gels , Endometrium/drug effects , Endometrium/cytology , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL