Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Cell Rep ; 41(5): 111569, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36323259

ABSTRACT

Innate lymphoid cells (ILCs) play important roles in regulating tissue homeostasis and innate immune responses. Generation of ILCs after engraftment of pluripotent stem cell (PSC)-derived hematopoietic progenitors (iHPCs) has not yet been reported. Here, we document that ILCs exist in Rag2-/-Il2rg-/- recipients engrafted with PSC-derived iHPCs guided by Runx1 and Hoxa9 expression. Upon transplantation, iHPCs immediately give rise to ILC-related progenitors containing common helper ILC progenitors in the bone marrow, followed by a more restricted population named ILC progenitors, which are able to further differentiate into mature ILCs in the primary and secondary immunodeficient recipients. The PSC-derived ILCs exhibit multiple tissue distributions and normal immunological functions. Single-cell transcriptomics illustrates the developmental trajectory of PSC-derived ILCs in vivo, which is consistent with that of natural ILCs. Our study provides insights into the generation of ILCs in animals transplanted with PSC-derived iHPCs as a cell source.


Subject(s)
Immunity, Innate , Pluripotent Stem Cells , Animals , Lymphocytes/metabolism , Cell Differentiation , Lymphoid Progenitor Cells/metabolism
3.
Cell Discov ; 8(1): 121, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36344493

ABSTRACT

Human pluripotent stem cell (hPSC)-induced NK (iNK) cells are a source of off-the-shelf cell products for universal immune therapy. Conventional methods for iNK cell regeneration from hPSCs include embryoid body (EB) formation and feeder-based expansion steps, which are time-consuming and cause instability and high costs of manufacturing. Here, we develop an EB-free, organoid aggregate method for NK cell regeneration from hPSCs. In a short time-window of 27-day induction, millions of hPSC input can output over billions of iNK cells without the necessity of NK cell expansion feeders. The iNK cells highly express classical toxic granule proteins, apoptosis-inducing ligands, as well as abundant activating and inhibitory receptors. Functionally, the iNK cells eradicate human tumor cells via mechanisms of direct cytotoxicity, apoptosis, and antibody-dependent cellular cytotoxicity. This study provides a reliable scale-up method for regenerating human NK cells from hPSCs, which promotes the universal availability of NK cell products for immune therapy.

4.
Cell Mol Immunol ; 19(4): 492-503, 2022 04.
Article in English | MEDLINE | ID: mdl-34893754

ABSTRACT

Regeneration of functional B lymphopoiesis from pluripotent stem cells (PSCs) is challenging, and reliable methods have not been developed. Here, we unveiled the guiding role of three essential factors, Lhx2, Hoxa9, and Runx1, the simultaneous expression of which preferentially drives B lineage fate commitment and in vivo B lymphopoiesis using PSCs as a cell source. In the presence of Lhx2, Hoxa9, and Runx1 expression, PSC-derived induced hematopoietic progenitors (iHPCs) immediately gave rise to pro/pre-B cells in recipient bone marrow, which were able to further differentiate into entire B cell lineages, including innate B-1a, B-1b, and marginal zone B cells, as well as adaptive follicular B cells. In particular, the regenerative B cells produced adaptive humoral immune responses, sustained antigen-specific antibody production, and formed immune memory in response to antigen challenges. The regenerative B cells showed natural B cell development patterns of immunoglobulin chain switching and hypermutation via cross-talk with host T follicular helper cells, which eventually formed T cell-dependent humoral responses. This study exhibits de novo evidence that B lymphopoiesis can be regenerated from PSCs via an HSC-independent approach, which provides insights into treating B cell-related deficiencies using PSCs as an unlimited cell resource.


Subject(s)
Lymphopoiesis , Pluripotent Stem Cells , B-Lymphocytes , Bone Marrow , Cell Differentiation , Lymphopoiesis/genetics , Precursor Cells, B-Lymphoid
SELECTION OF CITATIONS
SEARCH DETAIL
...