Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
Adv Mater ; : e2310659, 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38871360

Layered iron/manganese-based oxides are a class of promising cathode materials for sustainable batteries due to their high energy densities and earth abundance. However, the stabilization of cationic and anionic redox reactions in these cathodes during cycling at high voltage remain elusive. Here, an electrochemically/thermally stable P2-Na0.67Fe0.3Mn0.5Mg0.1Ti0.1O2 cathode material with zero critical elements is designed for sodium-ion batteries (NIBs) to realize a highly reversible capacity of ≈210 mAh g-1 at 20 mA g-1 and good cycling stability with a capacity retention of 74% after 300 cycles at 200 mA g-1, even when operated with a high charge cut-off voltage of 4.5 V versus sodium metal. Combining a suite of cutting-edge characterizations and computational modeling, it is shown that Mg/Ti co-doping leads to stabilized surface/bulk structure at high voltage and high temperature, and more importantly, enhances cationic/anionic redox reaction reversibility over extended cycles with the suppression of other undesired oxygen activities. This work fundamentally deepens the failure mechanism of Fe/Mn-based layered cathodes and highlights the importance of dopant engineering to achieve high-energy and earth-abundant cathode material for sustainable and long-lasting NIBs.

2.
Chem Soc Rev ; 53(10): 5264-5290, 2024 May 20.
Article En | MEDLINE | ID: mdl-38619389

The energy storage and vehicle industries are heavily investing in advancing all-solid-state batteries to overcome critical limitations in existing liquid electrolyte-based lithium-ion batteries, specifically focusing on mitigating fire hazards and improving energy density. All-solid-state lithium-sulfur batteries (ASSLSBs), featuring earth-abundant sulfur cathodes, high-capacity metallic lithium anodes, and non-flammable solid electrolytes, hold significant promise. Despite these appealing advantages, persistent challenges like sluggish sulfur redox kinetics, lithium metal failure, solid electrolyte degradation, and manufacturing complexities hinder their practical use. To facilitate the transition of these technologies to an industrial scale, bridging the gap between fundamental scientific research and applied R&D activities is crucial. Our review will address the inherent challenges in cell chemistries within ASSLSBs, explore advanced characterization techniques, and delve into innovative cell structure designs. Furthermore, we will provide an overview of the recent trends in R&D and investment activities from both academia and industry. Building on the fundamental understandings and significant progress that has been made thus far, our objective is to motivate the battery community to advance ASSLSBs in a practical direction and propel the industrialized process.

3.
Angew Chem Int Ed Engl ; 63(5): e202316112, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38088222

Compensating the irreversible loss of limited active lithium (Li) is essentially important for improving the energy-density and cycle-life of practical Li-ion battery full-cell, especially after employing high-capacity but low initial coulombic efficiency anode candidates. Introducing prelithiation agent can provide additional Li source for such compensation. Herein, we precisely implant trace Co (extracted from transition metal oxide) into the Li site of Li2 O, obtaining (Li0.66 Co0.11 □0.23 )2 O (CLO) cathode prelithiation agent. The synergistic formation of Li vacancies and Co-derived catalysis efficiently enhance the inherent conductivity and weaken the Li-O interaction of Li2 O, which facilitates its anionic oxidation to peroxo/superoxo species and gaseous O2 , achieving 1642.7 mAh/g~Li2O prelithiation capacity (≈980 mAh/g for prelithiation agent). Coupled 6.5 wt % CLO-based prelithiation agent with LiCoO2 cathode, substantial additional Li source stored within CLO is efficiently released to compensate the Li consumption on the SiO/C anode, achieving 270 Wh/kg pouch-type full-cell with 92 % capacity retention after 1000 cycles.

4.
Small ; 20(12): e2306868, 2024 Mar.
Article En | MEDLINE | ID: mdl-37946620

The inhomogeneous nucleation and growth of Li dendrite combined with the spontaneous side reactions with the electrolytes dramatically challenge the stability and safety of Li metal anode (LMA). Despite tremendous endeavors, current success relies on the use of significant excess of Li to compensate the loss of active Li during cycling. Herein, a near-surface Li+ irrigation strategy is developed to regulate the inhomogeneous Li deposition behavior and suppress the consequent side reactions under limited Li excess condition. The conformal polypyrrole (PPy) coating layer on Cu surface via oxidative chemical vapor deposition technique can induce the migration of Li+ to the interregional space between PPy and Cu, creating a near-surface Li+-rich region to smooth diffusion of ion flux and uniform the deposition. Moreover, as evidenced by multiscale characterizations including synchrotron high-energy X-ray diffraction scanning, a robust N-rich solid-electrolyte interface (SEI) is formed on the PPy skeleton to effectively suppress the undesired SEI formation/dissolution process. Strikingly, stable Li metal cycling performance under a high areal capacity of 10 mAh cm-2 at 2.0 mA cm-2 with merely 0.5 × Li excess is achieved. The findings not only resolve the long-standing poor LMA stability/safety issues, but also deepen the mechanism understanding of Li deposition process.

5.
Adv Mater ; 36(13): e2308380, 2024 Mar.
Article En | MEDLINE | ID: mdl-38134206

Protonation of oxide cathodes triggers surface transition metal dissolution and accelerates the performance degradation of Li-ion batteries. While strategies are developed to improve cathode material surface stability, little is known about the effects of protonation on bulk phase transitions in these cathode materials or their sodium-ion battery counterparts. Here, using NaNiO2 in electrolytes with different proton-generating levels as model systems, a holistic picture of the effect of incorporated protons is presented. Protonation of lattice oxygens stimulate transition metal migration to the alkaline layer and accelerates layered-rock-salt phase transition, which leads to bulk structure disintegration and anisotropic surface reconstruction layers formation. A cathode that undergoes severe protonation reactions attains a porous architecture corresponding to its multifold performance fade. This work reveals that interactions between electrolyte and cathode that result in protonation can dominate the structural reversibility/stability of bulk cathodes, and the insight sheds light for the development of future batteries.

6.
Acc Chem Res ; 56(19): 2700-2712, 2023 Oct 03.
Article En | MEDLINE | ID: mdl-37728762

ConspectusLithium-sulfur (Li-S) batteries are promising for automotive applications due to their high theoretical energy density (2600 Wh/kg). In addition, the natural abundance of sulfur could mitigate the global raw material supply chain challenge of commercial lithium-ion batteries that use critical elements, such as nickel and cobalt. However, due to persistent polysulfide shuttling and uncontrolled lithium dendrite growth, Li-S batteries using nonencapsulated sulfur cathodes and conventional ether-based electrolytes suffer from rapid cell degradation upon cycling. Despite significant improvements in recent decades, there is still a big gap between lab research and commercialization of the technology. To date, the reported cell energy densities and cycling life of practical Li-S pouch cells remain largely unsatisfactory.Traditional approaches to improving Li-S performance are primarily focused on confining polysulfides using electronically conductive hosts. However, these micro- and mesoporous hosts suffer from limited pore volume to accommodate high sulfur loading and the associated volume change during cycling. Moreover, they fail to balance adsorption-conversion of polysulfides during charge-discharge, leading to the formation of massive dead sulfur. Such hosts are themselves electrochemically inactive, which decreases the practical energy density. In contrast, a series of nontraditional approaches, paired with advances in multiscale mechanistic understanding, have recently demonstrated exciting performance outcomes not only in conventional coin cells but also in practical pouch cells.In this Account, we first introduce our novel cathode design strategies to overcome polysulfide shuttling and sluggish redox kinetics in thick S cathodes via selenium-sulfur chemistry and cathode host engineering. Next, we gain a mechanistic understanding of Li-S batteries in various types of electrolytes via a series of spectroscopic, nuclear magnetic resonance, and electrochemical methods. Meanwhile, a novel cathode solid electrolyte interphase encapsulation strategy via nonviscous highly fluorinated ether-based electrolyte is introduced. The established selection rule by investigating how solvating power retards the shuttle effect and induces robust cathode/solid-electrolyte interphase formation is also included. We then discuss how the synergistic interactions between rational cathode structures and electrolytes can be exploited to tailor the reaction pathways and kinetics of S cathodes under high mass loading and lean electrolyte conditions. In addition, a novel interlayer design to simultaneously overcome degradation processes (polysulfide shuttling and lithium dendrite formation) and accelerate redox reaction kinetics is presented. Finally, this Account concludes with an overview of the challenges and strategies to develop Li-S pouch cells with high practical energy density, long cycle life, and fast-charging capability.

7.
Nature ; 621(7977): 75-81, 2023 Sep.
Article En | MEDLINE | ID: mdl-37673990

Benefiting from high energy density (2,600 Wh kg-1) and low cost, lithium-sulfur (Li-S) batteries are considered promising candidates for advanced energy-storage systems1-4. Despite tremendous efforts in suppressing the long-standing shuttle effect of lithium polysulfides5-7, understanding of the interfacial reactions of lithium polysulfides at the nanoscale remains elusive. This is mainly because of the limitations of in situ characterization tools in tracing the liquid-solid conversion of unstable lithium polysulfides at high temporal-spatial resolution8-10. There is an urgent need to understand the coupled phenomena inside Li-S batteries, specifically, the dynamic distribution, aggregation, deposition and dissolution of lithium polysulfides. Here, by using in situ liquid-cell electrochemical transmission electron microscopy, we directly visualized the transformation of lithium polysulfides over electrode surfaces at the atomic scale. Notably, an unexpected gathering-induced collective charge transfer of lithium polysulfides was captured on the nanocluster active-centre-immobilized surface. It further induced an instantaneous deposition of nonequilibrium Li2S nanocrystals from the dense liquid phase of lithium polysulfides. Without mediation of active centres, the reactions followed a classical single-molecule pathway, lithium polysulfides transforming into Li2S2 and Li2S step by step. Molecular dynamics simulations indicated that the long-range electrostatic interaction between active centres and lithium polysulfides promoted the formation of a dense phase consisting of Li+ and Sn2- (2 < n ≤ 6), and the collective charge transfer in the dense phase was further verified by ab initio molecular dynamics simulations. The collective interfacial reaction pathway unveils a new transformation mechanism and deepens the fundamental understanding of Li-S batteries.

8.
Angew Chem Int Ed Engl ; 62(19): e202217476, 2023 May 02.
Article En | MEDLINE | ID: mdl-36917790

The universal cathode crossover such as chemical and oxygen has been significantly overlooked in lithium metal batteries using high-energy cathodes which leads to severe capacity degradation and raises serious safety concerns. Herein, a versatile and thin (≈25 µm) interlayer composed of multifunctional active sites was developed to simultaneously regulate the Li deposition process and suppress the cathode crossover. The as-induced dual-gradient solid-electrolyte interphase combined with abundant lithiophilic sites enable stable Li stripping/plating process even under high current density of 10 mA cm-2 . Moreover, X-ray photoelectron spectroscopy and synchrotron X-ray experiments revealed that N-rich framework and CoZn dual active sites can effectively mitigate the undesired cathode crossover, hence significantly minimizing Li corrosion. Therefore, assembled lithium metal cells using various high-energy cathode materials including LiNi0.7 Mn0.2 Co0.1 O2 , Li1.2 Co0.1 Mn0.55 Ni0.15 O2 , and sulfur demonstrate significantly improved cycling stability with high cathode loading.

9.
J Am Chem Soc ; 144(44): 20372-20384, 2022 Nov 09.
Article En | MEDLINE | ID: mdl-36283038

The poor durability of Pt-based nanoparticles dispersed on carbon black is the challenge for the application of long-life polymer electrolyte fuel cells. Recent work suggests that Fe- and N-codoped carbon (Fe-N-C) might be a better support than conventional high-surface-area carbon. In this work, we find that the electrochemical surface area retention of Pt/Fe-N-C is much better than that of commercial Pt/C during potential cycling in both acidic and basic media. In situ inductively coupled plasma mass spectrometry studies indicate that the Pt dissolution rate of Pt/Fe-N-C is 3 times smaller than that of Pt/C during cycling. Density functional theory calculations further illustrate that the Fe-N-C substrate can provide strong and stable support to the Pt nanoparticles and alleviate the oxide formation by adjusting the electronic structure. The strong metal-substrate interaction, together with a lower metal dissolution rate and highly stable support, may be the reason for the significantly enhanced stability of Pt/Fe-N-C. This finding highlights the importance of carbon support selection to achieve a more durable Pt-based electrocatalyst for fuel cells.

10.
Adv Sci (Weinh) ; 9(34): e2106116, 2022 12.
Article En | MEDLINE | ID: mdl-36316243

Developing fast-charging, high-temperature, and sustainable batteries is critical for the large-scale deployment of energy storage devices in electric vehicles, grid-scale electrical energy storage, and high temperature regions. Here, a transition metal-free all-organic rechargeable potassium battery (RPB) based on abundant and sustainable organic electrode materials (OEMs) and potassium resources for fast-charging and high-temperature applications is demonstrated. N-doped graphene and a 2.8 m potassium hexafluorophosphate (KPF6 ) in diethylene glycol dimethyl ether (DEGDME) electrolyte are employed to mitigate the dissolution of OEMs, enhance the electrode conductivity, accommodate large volume change, and form stable solid electrolyte interphase in the all-organic RPB. At room temperature, the RPB delivers a high specific capacity of 188.1 mAh g-1 at 50 mA g-1 and superior cycle life of 6000 and 50000 cycles at 1 and 5 A g-1 , respectively, demonstrating an ultra-stable and fast-charging all-organic battery. The impressive performance at room temperature is extended to high temperatures, where the high-mass-loading (6.5 mg cm-2 ) all-organic RPB exhibits high-rate capability up to 2 A g-1 and a long lifetime of 500 cycles at 70-100 °C, demonstrating a superb fast-charging and high-temperature battery. The cell configuration demonstrated in this work shows great promise for practical applications of sustainable batteries at extreme conditions.

11.
ACS Nano ; 16(9): 14527-14538, 2022 Sep 27.
Article En | MEDLINE | ID: mdl-36098636

Single-crystal Ni-rich Li[NixMnyCo1-x-y]O2 (SC-NMC) cathodes represent a promising approach to mitigate the cracking issue of conventional polycrystalline cathodes. However, many reported SC-NMC cathodes still suffer from unsatisfactory cycling stability, particularly under high charge cutoff voltage and/or elevated temperature. Herein, we report an ultraconformal and durable poly(3,4-ethylenedioxythiophene) (PEDOT) coating for SC-NMC cathodes using an oxidative chemical vapor deposition (oCVD) technique, which significantly improves their high-voltage (4.6 V) and high-temperature operation resiliency. The PEDOT coated SC LiNi0.83Mn0.1Co0.07O2 (SC-NMC83) delivers an impressive capacity retention rate of 96.7% and 89.5% after 100 and 200 cycles, respectively. Significantly, even after calendar aging at 45 °C and 4.6 V, the coated cathode can still retain 85.3% (in comparison with 59.6% for the bare one) of the initial capacity after 100 cycles at a 0.5 C rate. Synchrotron X-ray experiments and interface characterization collectively reveal that the conformal PEDOT coating not only effectively stabilizes the crystallographic structure and maintains the integrity of the particles but also significantly suppresses the electrolyte's corrosion, resulting in improved electrochemical/thermal stability. Our findings highlight the promise of an oCVD PEDOT coating for single-crystal Ni-rich cathodes to meet the grand challenge of high-energy batteries under extreme conditions.

12.
Adv Sci (Weinh) ; 9(32): e2204059, 2022 Nov.
Article En | MEDLINE | ID: mdl-36073818

With continuous improvement of batteries in energy density, enhancing their safety is becoming increasingly urgent. Herein, practical high energy density LiNi0.8 Mn0.1 Co0.1 O2 |graphite-SiO pouch cell with nonflammable localized high concentration electrolyte (LHCE) is proposed that presents unique self-discharge characteristic before thermal runaway (TR), thus effectively reducing safety hazards. Compared with the reference electrolyte, pouch cell with nonflammable LHCE can increase self-generated heat temperature by 4.4 °C, increase TR triggering temperature by 47.3 °C, decrease the TR highest temperature by 71.8 °C, and extend the time from self-generated heat to triggering TR by ≈8 h. In addition, the cell with nonflammable LHCE presents superior high voltage cycle stability, attributed to the formation of robust inorganic-rich electrode-electrolyte interphase. The strategy represents a pivotal step forward for practical high energy and high safety batteries.

13.
Nat Commun ; 13(1): 4629, 2022 Aug 08.
Article En | MEDLINE | ID: mdl-35941110

Lithium-sulfur batteries have theoretical specific energy higher than state-of-the-art lithium-ion batteries. However, from a practical perspective, these batteries exhibit poor cycle life and low energy content owing to the polysulfides shuttling during cycling. To tackle these issues, researchers proposed the use of redox-inactive protective layers between the sulfur-containing cathode and lithium metal anode. However, these interlayers provide additional weight to the cell, thus, decreasing the practical specific energy. Here, we report the development and testing of redox-active interlayers consisting of sulfur-impregnated polar ordered mesoporous silica. Differently from redox-inactive interlayers, these redox-active interlayers enable the electrochemical reactivation of the soluble polysulfides, protect the lithium metal electrode from detrimental reactions via silica-polysulfide polar-polar interactions and increase the cell capacity. Indeed, when tested in a non-aqueous Li-S coin cell configuration, the use of the interlayer enables an initial discharge capacity of about 8.5 mAh cm-2 (for a total sulfur mass loading of 10 mg cm-2) and a discharge capacity retention of about 64 % after 700 cycles at 335 mA g-1 and 25 °C.

14.
Nat Commun ; 13(1): 2826, 2022 May 20.
Article En | MEDLINE | ID: mdl-35595772

P2-type sodium manganese-rich layered oxides are promising cathode candidates for sodium-based batteries because of their appealing cost-effective and capacity features. However, the structural distortion and cationic rearrangement induced by irreversible phase transition and anionic redox reaction at high cell voltage (i.e., >4.0 V) cause sluggish Na-ion kinetics and severe capacity decay. To circumvent these issues, here, we report a strategy to develop P2-type layered cathodes via configurational entropy and ion-diffusion structural tuning. In situ synchrotron X-ray diffraction combined with electrochemical kinetic tests and microstructural characterizations reveal that the entropy-tuned Na0.62Mn0.67Ni0.23Cu0.05Mg0.07Ti0.01O2 (CuMgTi-571) cathode possesses more {010} active facet, improved structural and thermal stability and faster anionic redox kinetics compared to Na0.62Mn0.67Ni0.37O2. When tested in combination with a Na metal anode and a non-aqueous NaClO4-based electrolyte solution in coin cell configuration, the CuMgTi-571-based positive electrode enables an 87% capacity retention after 500 cycles at 120 mA g-1 and about 75% capacity retention after 2000 cycles at 1.2 A g-1.

15.
Angew Chem Int Ed Engl ; 61(27): e202203466, 2022 Jul 04.
Article En | MEDLINE | ID: mdl-35466514

The commercialization of lithium-sulfur (Li-S) batteries is still hindered by the unsatisfactory cell performance under practical working conditions, which is mainly caused by the sluggish cathode redox kinetics, severe polysulfide shuttling, and poor Li stripping/plating reversibility. Herein, we report an effective strategy by combining Se-doped S hosted in an ordered macroporous framework with a highly fluorinated ether (HFE)-based electrolyte to simultaneously address the aforementioned issues in both cathode and anode. A reversible and stable high areal capacity of >5.4 mAh cm-2 with high Coulombic efficiency >99.2 % can be achieved under high areal Se/S loading (5.8 mg cm-2 ), while the underlying mechanism was further revealed through synchrotron X-ray probes and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). The practical application potential was further evaluated at low (0 °C) and high (55 °C) temperatures under high areal Se/S loading (>5.0 mg cm-2 ) and thin Li metal (40 µm).

16.
Nat Commun ; 13(1): 172, 2022 Jan 10.
Article En | MEDLINE | ID: mdl-35013293

Lithium reactivity with electrolytes leads to their continuous consumption and dendrite growth, which constitute major obstacles to harnessing the tremendous energy of lithium-metal anode in a reversible manner. Considerable attention has been focused on inhibiting dendrite via interface and electrolyte engineering, while admitting electrolyte-lithium metal reactivity as a thermodynamic inevitability. Here, we report the effective suppression of such reactivity through a nano-porous separator. Calculation assisted by diversified characterizations reveals that the separator partially desolvates Li+ in confinement created by its uniform nanopores, and deactivates solvents for electrochemical reduction before Li0-deposition occurs. The consequence of such deactivation is realizing dendrite-free lithium-metal electrode, which even retaining its metallic lustre after long-term cycling in both Li-symmetric cell and high-voltage Li-metal battery with LiNi0.6Mn0.2Co0.2O2 as cathode. The discovery that a nano-structured separator alters both bulk and interfacial behaviors of electrolytes points us toward a new direction to harness lithium-metal as the most promising anode.

17.
Nat Commun ; 13(1): 436, 2022 Jan 27.
Article En | MEDLINE | ID: mdl-35087034

High-voltage operation is essential for the energy and power densities of battery cathode materials, but its stabilization remains a universal challenge. To date, the degradation origin has been mostly attributed to cycling-initiated structural deformation while the effect of native crystallographic defects induced during the sophisticated synthesis process has been significantly overlooked. Here, using in situ synchrotron X-ray probes and advanced transmission electron microscopy to probe the solid-state synthesis and charge/discharge process of sodium layered oxide cathodes, we reveal that quenching-induced native lattice strain plays an overwhelming role in the catastrophic capacity degradation of sodium layered cathodes, which runs counter to conventional perception-phase transition and cathode interfacial reactions. We observe that the spontaneous relaxation of native lattice strain is responsible for the structural earthquake (e.g., dislocation, stacking faults and fragmentation) of sodium layered cathodes during cycling, which is unexpectedly not regulated by the voltage window but is strongly coupled with charge/discharge temperature and rate. Our findings resolve the controversial understanding on the degradation origin of cathode materials and highlight the importance of eliminating intrinsic crystallographic defects to guarantee superior cycling stability at high voltages.

18.
Adv Mater ; 34(2): e2106335, 2022 Jan.
Article En | MEDLINE | ID: mdl-34617339

The separator, an ionic permeable and electronic insulating membrane between cathode and anode, plays a crucial role in the electrochemical and safety performance of batteries. However, commercial polyolefin separators not only suffer from inevitable thermal shrinkage at elevated temperature, but also fail to inhibit the hidden chemical crosstalk of reactive gases such as O2 , leading to often reported thermal runaway (TR) and hence preventing large-scale implementation of high-energy-density lithium-ion batteries. Herein, a nanoporous non-shrinkage separator (GS-PI) is fabricated via a novel gel-stretching orientation approach to eliminate TR. In situ synchrotron small angle X-ray scattering during heating clearly shows that the as-prepared thin GS-PI separator exhibits superior mechanical tolerance at high temperature, thus effectively preventing internal short circuit. Meanwhile, the unique nanoporous structure design further blocks chemical crosstalk and the associated exothermic reactions. Accelerating rate calorimetry tests reveal that the practical 1 Ah LiNi0.6 Co0.2 Mn0.2 O2 (NCM622)/graphite pouch cell using GS-PI nanoporous separator show a maximum temperature rise (dT/dtmax ) of only 3.7 °C s-1 compared to 131.6 °C s-1 in the case of Al2 O3 @PE macroporous separator. Moreover, despite the reduced pore size, the GS-PI separator demonstrates better cycling stability than conventional Al2 O3 @PE separator at high temperature without sacrificing specific capacity and rate capability.

19.
Adv Mater ; 34(4): e2107326, 2022 Jan.
Article En | MEDLINE | ID: mdl-34699633

The worldwide energy demand in electric vehicles and the increasing global temperature have called for development of high-energy and long-life lithium-ion batteries (LIBs) with improved high-temperature operational resiliency. However, current attention has been mostly focused on cycling aging at elevated temperature, leaving considerable gaps of knowledge in the failure mechanism, and practical control of abusive calendar aging and thermal runaway that are highly related to the eventual operational lifetime and safety performance of LIBs. Herein, using a combination of various in situ synchrotron X-ray and electron microscopy techniques, a multiscale understanding of surface structure effects involved in regulating the high-temperature operational tolerance of polycrystalline Ni-rich layered cathodes is reported. The results collectively show that an ultraconformal poly(3,4-ethylenedioxythiophene) coating can effectively prevent a LiNi0.8 Co0.1 Mn0.1 O2 cathode from undergoing undesired phase transformation and transition metal dissolution on the surface, atomic displacement, and dislocations within primary particles, intergranular cracking along the grain boundaries within secondary particles, and intensive bulk oxygen release during high state-of-charge and high-temperature aging. The present work highlights the essential role of surface structure controls in overcoming the multiscale degradation pathways of high-energy battery materials at extreme temperature.

...