Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
NMR Biomed ; : e5248, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39231762

ABSTRACT

Slice-to-volume registration and super-resolution reconstruction are commonly used to generate 3D volumes of the fetal brain from 2D stacks of slices acquired in multiple orientations. A critical initial step in this pipeline is to select one stack with the minimum motion among all input stacks as a reference for registration. An accurate and unbiased motion assessment (MA) is thus crucial for successful selection. Here, we presented an MA method that determines the minimum motion stack based on 3D low-rank approximation using CANDECOMP/PARAFAC (CP) decomposition. Compared to the current 2D singular value decomposition (SVD) based method that requires flattening stacks into matrices to obtain ranks, in which the spatial information is lost, the CP-based method can factorize 3D stack into low-rank and sparse components in a computationally efficient manner. The difference between the original stack and its low-rank approximation was proposed as the motion indicator. Experiments on linearly and randomly simulated motion illustrated that CP demonstrated higher sensitivity in detecting small motion with a lower baseline bias, and achieved a higher assessment accuracy of 95.45% in identifying the minimum motion stack, compared to the SVD-based method with 58.18%. CP also showed superior motion assessment capabilities in real-data evaluations. Additionally, combining CP with the existing SRR-SVR pipeline significantly improved 3D volume reconstruction. The results indicated that our proposed CP showed superior performance compared to SVD-based methods with higher sensitivity to motion, assessment accuracy, and lower baseline bias, and can be used as a prior step to improve fetal brain reconstruction.

2.
IEEE Trans Med Imaging ; 42(1): 209-219, 2023 01.
Article in English | MEDLINE | ID: mdl-36129858

ABSTRACT

Multi-slice magnetic resonance images of the fetal brain are usually contaminated by severe and arbitrary fetal and maternal motion. Hence, stable and robust motion correction is necessary to reconstruct high-resolution 3D fetal brain volume for clinical diagnosis and quantitative analysis. However, the conventional registration-based correction has a limited capture range and is insufficient for detecting relatively large motions. Here, we present a novel Affinity Fusion-based Framework for Iteratively Random Motion (AFFIRM) correction of the multi-slice fetal brain MRI. It learns the sequential motion from multiple stacks of slices and integrates the features between 2D slices and reconstructed 3D volume using affinity fusion, which resembles the iterations between slice-to-volume registration and volumetric reconstruction in the regular pipeline. The method accurately estimates the motion regardless of brain orientations and outperforms other state-of-the-art learning-based methods on the simulated motion-corrupted data, with a 48.4% reduction of mean absolute error for rotation and 61.3% for displacement. We then incorporated AFFIRM into the multi-resolution slice-to-volume registration and tested it on the real-world fetal MRI scans at different gestation stages. The results indicated that adding AFFIRM to the conventional pipeline improved the success rate of fetal brain super-resolution reconstruction from 77.2% to 91.9%.


Subject(s)
Fetus , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Fetus/diagnostic imaging , Neuroimaging , Brain/diagnostic imaging , Imaging, Three-Dimensional/methods , Motion , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL