Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 827
Filter
1.
J Hazard Mater ; 476: 135123, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38981228

ABSTRACT

Understanding the interaction mechanisms between complex heavy metals and soil components is a prerequisite for effectively forecasting the mobility and availability of contaminants in soils. Soil organic matter (SOM), with its diverse functional groups, has long been a focal point of research interest. In this study, four soils with manipulated levels of SOM, cadmium (Cd) and lead (Pb) were subjected to a 90-day incubation experiment. The competitive interactions between Cd and Pb in soils were investigated using Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and X-ray adsorption near-edge structure (XANES) analysis. Our results indicate that Pb competed with Cd for adsorption sites on the surface of SOM, particularly on carboxyl and hydroxyl functional groups. Approximately 22.6 % of Cd adsorption sites on humus were occupied by Pb. The use of sequentially extracted exchangeable heavy metals as indicators for environment risk assessments, considering variations in soil physico-chemical properties and synergistic or antagonistic effects between contaminants, provides a better estimation of metal bioavailability and its potential impacts. Integrating comprehensive contamination characterization of heavy metal interactions with the soil organic phase is an important advancement to assess the environmental risks of heavy metal dynamics in soil compared to individual contamination assessments.

2.
Adv Sci (Weinh) ; : e2310037, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953362

ABSTRACT

Programmed death-ligand 1 (PD-L1) is overexpressed in multiple cancers and critical for their immune escape. It has previously shown that the nuclear coactivator SRC-1 promoted colorectal cancer (CRC) progression by enhancing CRC cell viability, yet its role in CRC immune escape is unclear. Here, we demonstrate that SRC-1 is positively correlated with PD-L1 in human CRC specimens. SRC-1 deficiency significantly inhibits PD-L1 expression in CRC cells and retards murine CRC growth in subcutaneous grafts by enhancing CRC immune escape via increasing tumor infiltration of CD8+ T cells. Genetic ablation of SRC-1 in mice also decreases PD-L1 expression in AOM/DSS-induced murine CRC. These results suggest that tumor-derived SRC-1 promotes CRC immune escape by enhancing PD-L1 expression. Mechanistically, SRC-1 activated JAK-STAT signaling by inhibiting SOCS1 expression and coactivated STAT3 and IRF1 to enhance PD-L1 transcription as well as stabilized PD-L1 protein by inhibiting proteasome-dependent degradation mediated by speckle type POZ protein (SPOP). Pharmacological inhibition of SRC-1 improved the antitumor effect of PD-L1 antibody in both subcutaneous graft and AOM/DSS-induced murine CRC models. Taken together, these findings highlight a crucial role of SRC-1 in regulating PD-L1 expression and targeting SRC-1 in combination with PD-L1 antibody immunotherapy may be an attractive strategy for CRC treatment.

3.
Chin J Cancer Res ; 36(3): 257-269, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988490

ABSTRACT

Objective: The open-label, phase II RATIONALE-209 study evaluated tislelizumab (anti-programmed cell death protein 1 antibody) as a tissue-agnostic monotherapy for microsatellite instability-high (MSI-H)/mismatch repair-deficient (dMMR) tumors. Methods: Adults with previously treated, locally advanced unresectable or metastatic MSI-H/dMMR solid tumors were enrolled. Patients received tislelizumab 200 mg intravenously every 3 weeks. Objective response rate (ORR; primary endpoint), duration of response (DoR), and progression-free survival (PFS) were assessed by independent review committee (Response Evaluation Criteria in Solid Tumors v1.1). Results: Eighty patients were enrolled and treated; 75 (93.8%) patients had measurable disease at baseline. Most had metastatic disease and received at least one prior therapy for advanced/metastatic disease (n=79; 98.8%). At primary analysis (data cutoff July 8, 2021; median follow-up 15.2 months), overall ORR [46.7%; 95% confidence interval (95% CI), 35.1-58.6; one-sided P<0.0001] and ORR across tumor-specific subgroups [colorectal (n=46): 39.1% (95% CI, 25.1-54.6); gastric/gastroesophageal junction (n=9): 55.6% (95% CI, 21.2-86.3); others (n=20): 60.0% (95% CI, 36.1-80.9)] were significantly greater with tislelizumab vs. a prespecified historical control ORR of 10%; five (6.7%) patients had complete responses. Median DoR, PFS, and overall survival were not reached with long-term follow-up (data cutoff December 5, 2022; median follow-up 28.9 months). Tislelizumab was well tolerated with no unexpected safety signals. Treatment-related adverse events (TRAEs) of grade ≥3 occurred in 53.8% of patients; 7.5% of patients discontinued treatment due to TRAEs. Conclusions: Tislelizumab demonstrated a significant ORR improvement in patients with previously treated, locally advanced unresectable or metastatic MSI-H/dMMR tumors and was generally well tolerated.

4.
Sci Total Environ ; 946: 174415, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969116

ABSTRACT

Mercury (Hg) alkylation and methane (CH4) emissions pose significant global concerns. Paddy soil, due to its long-term anaerobic conditions and abundant organic matter, is hotspots for soil Hg alkylation and CH4 emissions. However, the relevance between Hg alkylation and CH4 emissions, especially their simultaneous reduction strategies, remains poorly understood. Here, we investigated the effects of biochar (BC), selenium (Se) and rice straw (RS) amendments on Hg alkylation and CH4 emissions in paddy soil, and the accumulation of Hg speciation. Results found that both BC and RS amendments significantly increased the levels of soil organic carbon (SOC) and humification index (HIX). Furthermore, BC decreased the concentrations of Hg(II), methylmercury (MeHg) and ethylmercury (EtHg) by 63.1%, 53.6% and 100% in rice grains. However, RS increased Hg(II) concentration but decreased the total Hg (THg), MeHg and EtHg concentrations in rice grains. Compared to the CK, RS significantly increased CH4 emissions, while BC decreased CH4 emissions, and Se showed no significant difference. Se amendment increased the Hg(II) and EtHg concentrations by 20.3% and 17.0% respectively, and decreased the MeHg concentration in grains by 58.3%. Both BC and RS impacted the abundance of methanogens by enhancing SOC and HIX, subsequently modulating the relevance between Hg alkylation and CH4 emissions. These findings provide insights into the relevance between Hg alkylation and CH4 emissions and propose potential mitigation mechanisms in Hg-contaminated paddy soil.

5.
Sci Adv ; 10(26): eadl2675, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941473

ABSTRACT

Declined memory is a hallmark of Alzheimer's disease (AD). Experiments in rodents and human postmortem studies suggest that serotonin (5-hydroxytryptamine, 5-HT) plays a role in memory, but the underlying mechanisms are unknown. Here, we investigate the role of 5-HT 2C receptor (5-HT2CR) in regulating memory. Transgenic mice expressing a humanized HTR2C mutation exhibit impaired plasticity of hippocampal ventral CA1 (vCA1) neurons and reduced memory. Further, 5-HT neurons project to and synapse onto vCA1 neurons. Disruption of 5-HT synthesis in vCA1-projecting neurons or deletion of 5-HT2CRs in the vCA1 impairs neural plasticity and memory. We show that a selective 5-HT2CR agonist, lorcaserin, improves synaptic plasticity and memory in an AD mouse model. Cumulatively, we demonstrate that hippocampal 5-HT2CR signaling regulates memory, which may inform the use of 5-HT2CR agonists in the treatment of dementia.


Subject(s)
Alzheimer Disease , Memory , Mice, Transgenic , Neuronal Plasticity , Receptor, Serotonin, 5-HT2C , Animals , Humans , Receptor, Serotonin, 5-HT2C/metabolism , Receptor, Serotonin, 5-HT2C/genetics , Memory/drug effects , Memory/physiology , Mice , Neuronal Plasticity/drug effects , Alzheimer Disease/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Serotonin/metabolism , Disease Models, Animal , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/drug effects , Neurons/metabolism , Neurons/drug effects , Serotonin 5-HT2 Receptor Agonists/pharmacology
6.
Sci Rep ; 14(1): 14658, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918518

ABSTRACT

Previous published data have confirmed that the addition of a citric acid meal improves the accuracy of the 13C-urea breath test (13C-UBT). However, some studies have suggested that a citric acid test meal may not be necessary. Thus, the aim of this study was to evaluate the combination of a 13C-UBT with a citric acid meal for the diagnosis of Helicobacter pylori (Hp) infection in a Chinese population, particularly for patients with results in the gray zone. In this paired self-controlled study, all subjects had previously undergone 13C-UBTs without citric acid meals and were randomly divided into two groups based on different doses of citric acid (a low-dose citric acid group and a high-dose citric acid group, comprising meals with 0.68 g and 3.84 g citric acid powder, respectively). Positive rapid urease test (CLO) test and histology results were considered the 'gold standard'. The mean delta over baseline (DOB) value, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy were compared between the two groups, particularly for patients with results in the gray zone. In total, 285 patients were tested. Of these patients, 189 were included in the low-dose citric acid group, and 96 were included in the high-dose citric acid group. Among patients with a positive 13C-UBT result without citric acid [delta over baseline (DOB) value ≥ 4‰, n = 174] and a negative 13C-UBT result without citric acid (DOB value < 4‰, n = 111), 8.0% (14/174) were false positive, and 0.9% (1/111) was false negative as determined by gold standard. Of 14 patients with false positive, 78.6% (11/14) false positive were in the gray zone of 4-10‰. However, there were no false positive 13C-UBT results with citric acid in the the gray zone of 4-10‰. In the comparison of the commercial 13C-UBT with the 13C-UBT in the low-dose citric acid group, the sensitivity, specificity, PPV, NPV and accuracy at 15 min were as follows: 99.1% vs. 99.1%, 97.5% vs. 88.9%, 98.2% vs. 92.2%, 98.8% vs. 98.6% and 98.4% vs. 94.7%, respectively. In the the gray zone of 4.0-10.0‰, the comparison of the commercial 13C-UBT with the 13C-UBT in the low-dose citric acid group, the sensitivity, specificity, PPV, and accuracy at 15 min were as follows: 94.4% vs. 100.0%, 100.0% vs. 0%, 100.0% vs. 75.0% and 95.8% vs. 75.0%, respectively. No significant difference was observed between the 15-min and 30-min measurement intervals in the low- and high-dose citric acid groups, including patients with results in the gray zone. The low-dose citric acid test, with an optimal measurement interval of 15 min, was highly accurate in the diagnosis of Hp infection in the Chinese population, especially for individuals with results in the gray zone.


Subject(s)
Breath Tests , Carbon Isotopes , Citric Acid , Helicobacter Infections , Helicobacter pylori , Urea , Humans , Breath Tests/methods , Helicobacter Infections/diagnosis , Helicobacter Infections/microbiology , Male , Female , Urea/analysis , Middle Aged , Adult , China , Aged , Sensitivity and Specificity , East Asian People
7.
Sci Total Environ ; 946: 174265, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936739

ABSTRACT

Understanding the spatiotemporal processes governing Cd behavior at the soil-solution-root interface is crucial for developing effective remediation strategies. This study examined the processes of chemical remediation in Cd-contaminated paddy soil using rhizotrons over the entire rice growth period. One-dimensional profile sampling with a 10 cm resolution revealed that during the initial flooding, paddy soil was strongly stimulated, followed by stabilization of porewater properties. X-ray diffraction of freeze-dried porewater confirmed the generation of submicron-precipitates such as CdS under continuous flooding, resulting in low ion levels of water-soluble Cd (<1 µg/L) and sulfate (<10 mg/L) in porewater. Two-dimensional imaging technologies indicated the maximum iron­manganese plaque (IP) within 20-110 µm of the root surface. Subsequently, monitoring O2 in the rhizosphere with a planar optode by two 100 cm2 membranes for a consecutive month revealed significant circadian O2 variations between the root base and tip. Destructive sampling results showed that acid-soluble Cd in soils, as available Cd, is crucial for Cd uptake by rice roots under continuous flooding. The IP deposited on the root surface, as the barriers of Cd translocation, increased with rice growth and blocked Cd translocation from soil to rice by about 18.11 %-25.43 % at maturity. A Si-Ca-Mg compound amendment reduced available Cd by about 10 % and improved Cd blocking efficiency by about 7.32 % through increasing IP concentration, resulting in the absorption ratio of Cd in the amendment group being half that of the control group. By unveiling the complex Cd interactions at the soil-rice interface, this study lays the groundwork for developing effective agricultural practices to mitigate Cd-contaminated paddy and ensure food safety.

8.
Abdom Radiol (NY) ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38834779

ABSTRACT

PURPOSE: To explore which preoperative clinical data and conventional magnetic resonance imaging (MRI) features may indicate the presence of hepatocellular carcinoma (HCC) in HCC patients coexisting with LR-3 and LR-4 lesions. METHODS: HCC Patients coexisting with LR-3 and LR-4 lesions who participated in a prospective clinical trial (XX) were included in this study. Two radiologists independently assessed the preoperative MRI features and each lesion was assigned according to the liver imaging reporting and data system (LI-RADS). The preoperative clinical data were also evaluated. The relative values of these parameters were assessed as potential predictors of HCC for coexisting LR-3 and LR-4 lesions. RESULTS: We enrolled 102 HCC patients (58.1 ± 11.5 years; 84.3% males) coexisting with 110 LR-3 and LR-4 lesions (HCCs group [n = 66]; non-HCCs group [n = 44]). The presence of restricted diffusion (OR: 18.590, p < 0.001), delayed enhancement (OR: 0.113, p < 0.001), and mild-moderate T2 hyperintensity (OR: 3.084, p = 0.048) were found to be independent predictors of HCC diagnosis. The sensitivity and specificity of the above independent variables for the diagnosis of HCC ranged from 66.7 to 80.3% and 56.8 to 88.6%, respectively. ROC analysis showed that, in discriminating HCC, the AUCs of the above factors were 0.777, 0.686, and 0.670, respectively. Combining these three findings for the prediction of HCC resulted in a specificity greater than 97%, and the AUC further increased to 0.874. CONCLUSION: The presence of restricted diffusion, delayed enhancement, and mild-moderate T2 hyperintensity can be useful features for risk stratification of coexisting LR-3 and LR-4 lesions in HCC patients. Trial registration a prospective clinical trial (ChiCTR2000036201).

9.
Cancers (Basel) ; 16(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38893094

ABSTRACT

In breast cancer, epithelial-mesenchymal transition (EMT) is positively associated with programmed death ligand 1 (PD-L1) expression and immune escape, and TWIST1 silences ERα expression and induces EMT and cancer metastasis. However, how TWIST1 regulates PD-L1 and immune evasion is unknown. This study analyzed TWIST1 and PD-L1 expression in breast cancers, investigated the mechanism for TWIST1 to regulate PD-L1 transcription, and assessed the effects of TWIST1 and PD-L1 in cancer cells on cytotoxic CD8+ T cells. Interestingly, TWIST1 expression is correlated with high-level PD-L1 expression in ERα-negative breast cancer cells. The overexpression and knockdown of TWIST1 robustly upregulate and downregulate PD-L1 expression, respectively. TWIST1 binds to the PD-L1 promoter and recruits the TIP60 acetyltransferase complex in a BRD8-dependent manner to transcriptionally activate PD-L1 expression, which significantly accelerates the exhaustion and death of the cytotoxic CD8+ T cells. Accordingly, knockdown of TWIST1 or BRD8 or inhibition of PD-L1 significantly enhances the tumor antigen-specific CD8+ T cells to suppress the growth of breast cancer cells. These results demonstrate that TWIST1 directly induces PD-L1 expression in ERα-negative breast cancer cells to promote immune evasion. Targeting TWIST1, BRD8, and/or PD-L1 in ERα-negative breast cancer cells with TWIST1 expression may sensitize CD8+ T-cell-mediated immunotherapy.

10.
Environ Sci Technol ; 58(24): 10611-10622, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38836563

ABSTRACT

Net nitrogen mineralization (Nmin) and nitrification regulate soil N availability and loss after severe wildfires in boreal forests experiencing slow vegetation recovery. Yet, how microorganisms respond to postfire phosphorus (P) enrichment to alter soil N transformations remains unclear in N-limited boreal forests. Here, we investigated postfire N-P interactions using an intensive regional-scale sampling of 17 boreal forests in the Greater Khingan Mountains (Inner Mongolia-China), a laboratory P-addition incubation, and a continental-scale meta-analysis. We found that postfire soils had an increased risk of N loss by accelerated Nmin and nitrification along with low plant N demand, especially during the early vegetation recovery period. The postfire N/P imbalance created by P enrichment acts as a "N retention" strategy by inhibiting Nmin but not nitrification in boreal forests. This strategy is attributed to enhanced microbial N-use efficiency and N immobilization. Importantly, our meta-analysis found that there was a greater risk of N loss in boreal forest soils after fires than in other climatic zones, which was consistent with our results from the 17 soils in the Greater Khingan Mountains. These findings demonstrate that postfire N-P interactions play an essential role in mitigating N limitation and maintaining nutrient balance in boreal forests.


Subject(s)
Forests , Nitrogen , Phosphorus , Soil , Soil/chemistry , Nitrification , Taiga , China , Fires
11.
Sci Total Environ ; 937: 173597, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38810741

ABSTRACT

Microfluidics, also called lab-on-a-chip, represents an emerging research platform that permits more precise and manipulation of samples at the microscale or even down to the nanoscale (nanofluidic) including picoliter droplets, microparticles, and microbes within miniaturized and highly integrated devices. This groundbreaking technology has made significant strides across multiple disciplines by providing an unprecedented view of physical, chemical, and biological events, fostering a holistic and an in-depth understanding of complex systems. The application of microfluidics to address the challenges in environmental science is likely to contribute to our better understanding, however, it's not yet fully developed. To raise researchers' interest, this discussion first delineates the valuable and underutilized environmental applications of microfluidic technology, ranging from environmental surveillance to acting as microreactors for investigating interfacial dynamic processes, and facilitating high-throughput bioassays. We highlight, with examples, how rationally designed microfluidic devices lead to new insights into the advancement of environmental science and technology. We then critically review the key challenges that hinder the practical adoption of microfluidic technologies. Specifically, we discuss the extent to which microfluidics accurately reflect realistic environmental scenarios, outline the areas to be improved, and propose strategies to overcome bottlenecks that impede the broad application of microfluidics. We also envision new opportunities and future research directions, aiming to provide guidelines for the broader utilization of microfluidics in environmental studies.


Subject(s)
Environmental Science , Microfluidics , Microfluidics/methods , Environmental Monitoring/methods , Lab-On-A-Chip Devices
12.
Cancer Immunol Immunother ; 73(7): 119, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713205

ABSTRACT

BACKGROUND: The programmed death 1 inhibitor toripalimab plus the angio-immuno kinase inhibitor surufatinib showed a tolerable safety profile and preliminary efficacy in patients with advanced solid tumors in a phase I study. METHODS: This open-label, multi-cohort study in China enrolled patients with advanced solid tumors who had failed or were intolerable to standard treatment into tumor-specific cohorts. Patients received surufatinib (250 mg orally, once daily) plus toripalimab (240 mg intravenously, once every three weeks). Results for three cohorts (gastric/gastroesophageal junction [GC/GEJ] adenocarcinoma, esophageal squamous cell carcinoma [ESCC], and biliary tract carcinoma [BTC]) are reported here. The primary endpoint was investigator-assessed objective response rate (ORR) per Response Evaluation criteria in Solid Tumors version 1.1. RESULTS: Between December 17, 2019, and January 29, 2021, 60 patients were enrolled (GC/GEJ, n = 20; ESCC, n = 20; BTC, n = 20). At data cutoff (February 28, 2023), ORRs were 31.6%, 30.0%, and 11.1%, respectively. Median progression-free survival was 4.1, 2.7, and 2.9 months, respectively. Median overall survival was 13.7, 10.4, and 7.0 months, respectively. Overall, grade ≥ 3 treatment-related adverse events occurred in 28 (46.7%) patients. CONCLUSIONS: Surufatinib plus toripalimab showed promising antitumor activity and a tolerable safety profile in immunotherapy-naïve patients with GC/GEJ adenocarcinoma, ESCC, or BTC. These findings warrant further study in larger randomized trials comparing surufatinib plus toripalimab with standard therapies in these tumors. CLINICALTRIALS: gov NCT04169672.


Subject(s)
Adenocarcinoma , Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Biliary Tract Neoplasms , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Male , Female , Middle Aged , Aged , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Biliary Tract Neoplasms/drug therapy , Biliary Tract Neoplasms/pathology , Biliary Tract Neoplasms/mortality , Adult , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/pathology , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Adenocarcinoma/mortality , Stomach Neoplasms/drug therapy , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology , Esophagogastric Junction/pathology , Imidazoles/administration & dosage , Imidazoles/therapeutic use , Imidazoles/adverse effects , Aged, 80 and over , Cohort Studies
13.
Cancer Med ; 13(9): e7235, 2024 May.
Article in English | MEDLINE | ID: mdl-38716626

ABSTRACT

BACKGROUND: First-line nivolumab plus chemotherapy and nivolumab plus ipilimumab both demonstrated significant overall survival (OS) benefit versus chemotherapy in previously untreated patients with advanced esophageal squamous cell carcinoma (ESCC) in the CheckMate 648 trial, leading to approvals of both nivolumab-containing regimens in many countries. We report longer-term follow-up data. METHODS: This open-label, phase III trial (NCT03143153) enrolled adults with previously untreated, unresectable, advanced, recurrent, or metastatic ESCC. Patients were randomized 1:1:1 to nivolumab plus chemotherapy, nivolumab plus ipilimumab, or chemotherapy. Primary endpoints were OS and progression-free survival (PFS) by blinded independent central review. Hierarchical testing was performed first in patients with tumor cell programmed death ligand 1 (PD-L1) expression of ≥1% and then in the overall population. RESULTS: A total of 970 patients were randomly assigned. After 29 months of minimum follow-up, nivolumab plus chemotherapy continued to demonstrate improvement in OS versus chemotherapy (hazard ratio [HR] = 0.59 [95% CI: 0.46-0.76]) in patients with tumor cell PD-L1 expression of ≥1% and in the overall population (HR = 0.78 [95% CI: 0.65-0.93]) and with nivolumab plus ipilimumab versus chemotherapy (HR = 0.62 [95% CI: 0.48-0.80]) in patients with tumor cell PD-L1 expression of ≥1% and in the overall population (HR = 0.77 [95% CI: 0.65-0.92]). In patients with tumor cell PD-L1 expression of ≥1%, nivolumab plus chemotherapy demonstrated PFS benefit versus chemotherapy (HR = 0.67 [95% CI: 0.51-0.89]); PFS benefit was not observed with nivolumab plus ipilimumab versus chemotherapy (HR = 1.04 [95% CI: 0.79-1.36]). Among all treated patients (n = 936), Grade 3-4 treatment-related adverse events were reported in 151 (49%, nivolumab plus chemotherapy), 105 (32%, nivolumab plus ipilimumab), and 110 (36%, chemotherapy) patients. CONCLUSIONS: Nivolumab plus chemotherapy and nivolumab plus ipilimumab continued to demonstrate clinically meaningful OS benefit versus chemotherapy with no new safety signals identified with longer follow-up, further supporting use as first-line standard treatment options for patients with advanced ESCC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Ipilimumab , Nivolumab , Humans , Ipilimumab/administration & dosage , Ipilimumab/therapeutic use , Ipilimumab/adverse effects , Nivolumab/administration & dosage , Nivolumab/therapeutic use , Male , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/mortality , Esophageal Squamous Cell Carcinoma/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Female , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/mortality , Middle Aged , Aged , Follow-Up Studies , Adult , Progression-Free Survival , B7-H1 Antigen/metabolism , Aged, 80 and over
14.
Nat Commun ; 15(1): 4124, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750026

ABSTRACT

Basal progenitor cells are crucial for maintaining foregut (the esophagus and forestomach) homeostasis. When their function is dysregulated, it can promote inflammation and tumorigenesis. However, the mechanisms underlying these processes remain largely unclear. Here, we employ genetic mouse models to reveal that Jag1/2 regulate esophageal homeostasis and foregut tumorigenesis by modulating the function of basal progenitor cells. Deletion of Jag1/2 in mice disrupts esophageal and forestomach epithelial homeostasis. Mechanistically, Jag1/2 deficiency impairs activation of Notch signaling, leading to reduced squamous epithelial differentiation and expansion of basal progenitor cells. Moreover, Jag1/2 deficiency exacerbates the deoxycholic acid (DCA)-induced squamous epithelial injury and accelerates the initiation of squamous cell carcinoma (SCC) in the forestomach. Importantly, expression levels of JAG1/2 are lower in the early stages of human esophageal squamous cell carcinoma (ESCC) carcinogenesis. Collectively, our study demonstrates that Jag1/2 are important for maintaining esophageal and forestomach homeostasis and the onset of foregut SCC.


Subject(s)
Carcinogenesis , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Esophagus , Homeostasis , Jagged-1 Protein , Jagged-2 Protein , Stem Cells , Animals , Jagged-1 Protein/metabolism , Jagged-1 Protein/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Esophagus/pathology , Esophagus/metabolism , Stem Cells/metabolism , Mice , Jagged-2 Protein/metabolism , Jagged-2 Protein/genetics , Humans , Carcinogenesis/genetics , Carcinogenesis/pathology , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Mice, Knockout , Signal Transduction , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Receptors, Notch/metabolism , Receptors, Notch/genetics , Cell Differentiation , Male , Female
15.
Article in English | MEDLINE | ID: mdl-38789900

ABSTRACT

Commensal-derived peptidoglycan (PG) or lipoteichoic acid (LTA) can improve the growth, immunity, and intestinal health of fish, but it is not clear whether the two components have synergistic effects. To clarify this, grouper (Epinephelus coioides) was fed basal diet (CG) or diets containing 1.0 × 108 CFU/g heat-inactivated SE5 (HIB), PG (21.30 mg/kg), LTA (6.70 mg/kg), mixture (PL1) of PG (10.65 mg/kg) and LTA (3.35 mg/kg), and mixture (PL2) of PG (21.30 mg/kg) and LTA (6.70 mg/kg). Improved growth performance and feed utilization were observed in groups PG, LTA, PL1, and PL2, and the optimum growth performance was recorded in group PL1. Furthermore, improved serum alkaline phosphatase (AKP) activity and immunoglobulin M (IgM) and complement C3 (C3) contents were observed in all treatments, and the AKP activity in group PL1 was significantly superior to that of groups PG and LTA. Although PG and LTA alone or in combination exert comparable effects on intestinal microbiota and physical structure, obviously enhanced intestinal protease activity was observed in group PL1. The combined efficacy of PL1 could further potentiate the immune response by modulating the nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and upregulating the expression of antimicrobial peptides (epinecidin-1, hepcidin-1, and ß-defensin) as well as IgM. At the same time, group PL1 could further mitigate intestinal inflammation by downregulating pro-inflammatory cytokines and upregulating anti-inflammatory cytokines. In conclusion, probiotic B. pumilus SE5-derived PG and LTA mixture (10.65 mg/kg PG and 3.35 mg/kg LTA) exhibits better potential for improving the growth performance, intestinal health, and immune function compared to another mixture (21.30 mg/kg PG and 6.70 mg/kg LTA) and PG or LTA alone in grouper.

16.
Biochar ; 6(1): 52, 2024.
Article in English | MEDLINE | ID: mdl-38799721

ABSTRACT

While many studies have examined the role of biochar in carbon (C) accrual in short-term scale, few have explored the decadal scale influences of biochar on non-biochar C, e.g., native soil organic C (SOC) and added substrate. To address this knowledge gap, soils were collected from decade-old biochar field trials located in the United Kingdom (Cambisol) and China (Fluvisol), with each site having had three application rates (25-30, 50-60 and 75-100 Mg ha-1) of biochar plus an unamended Control, applied once in 2009. We assessed physicochemical and microbial properties associated with sucrose (representing the rhizodeposits) mineralization and the priming effect (PE) on native SOC. Here, we showed both soils amended with biochar at the middle application rate (50 Mg ha-1 biochar in Cambisol and 60 Mg ha-1 biochar in Fluvisol) resulted in greater substrate mineralization. The enhanced accessibility and availability of sucrose to microorganisms, particularly fast-growing bacterial genera like Arenimonas, Spingomonas, and Paenibacillus (r-strategists belonging to the Proteobacteria and Firmicutes phyla, respectively), can be attributed to the improved physicochemical properties of the soil, including pH, porosity, and pore connectivity, as revealed by synchrotron-based micro-CT. Random forest analysis also confirmed the contribution of the microbial diversity and physical properties such as porosity on sucrose mineralization. Biochar at the middle application rate, however, resulted in the lowest PE (0.3 and 0.4 mg of CO2-C g soil-1 in Cambisol and Fluvisol, respectively) after 53 days of incubation. This result might be associated with the fact that the biochar promoted large aggregates formation, which enclosed native SOC in soil macro-aggregates (2-0.25 mm). Our study revealed a diverging pattern between substrate mineralization and SOC priming linked to the biochar application rate. This suggests distinct mechanisms, biophysical and physicochemical, driving the mineralization of non-biochar carbon in a field where biochar was applied a decade before. Supplementary Information: The online version contains supplementary material available at 10.1007/s42773-024-00327-0.

17.
Ecotoxicol Environ Saf ; 278: 116443, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38744068

ABSTRACT

Heavy-metal contamination in soil has long been a persistent challenge and the utilization of agricultural waste for in-situ stabilization remediation presents a promising approach to tackle this problem. Agricultural wastes exhibit promising potential in the remediation of contaminated land and modification could improve the adsorption performance markedly. Citric acid and Fe3O4 treated sugarcane bagasse adsorbed more heavy metals than raw materials in the aqueous system, employing these materials for heavy metal remediation in soil holds significant implications for broadening the raw material source of passivators and enhancing waste utilization efficiency. In this paper, a 120-day soil incubation study was conducted to compare the effects of pristine sugarcane bagasse (SB), citric-acid modified (SSB1, SSB2 and SSB3 with increasing proportion of citric acid) and citric-acid/Fe3O4 modified (MSB1, MSB4 and MSB7 with increasing proportion of Fe3O4) sugarcane bagasse at 1 % addition rate on cadmium (Cd) and copper (Cu) passivation. The SB, SSB1 and MSB1 did not always decrease the content of CaCl2-extractable Cd while all the seven amendments decreased the CaCl2-extractable Cu during the experiment period. Among all materials, SSB3 and MSB7 exhibited the highest efficiency in reducing the concentrations of CaCl2-extractable Cd and Cu. At Day 120, SB, SSB3 and MSB7 reduced the content of CaCl2-extractable Cd by 8 %, 18 % and 24 %, and of CaCl2-extractable Cu by 25 %, 50 % and 61 %, respectively. The efficiency of Cd and Cu immobilization was associated positively with the pH, functional groups and H-bonds of the amendments. The results suggest that the efficiency of sugarcane bagasse in heavy-metal passivation can be largely enhanced through chemical modifications using high proportions of citric acid and Fe3O4.


Subject(s)
Cadmium , Cellulose , Copper , Saccharum , Soil Pollutants , Saccharum/chemistry , Cellulose/chemistry , Cadmium/chemistry , Cadmium/analysis , Copper/chemistry , Soil Pollutants/chemistry , Soil Pollutants/analysis , Adsorption , Environmental Restoration and Remediation/methods , Citric Acid/chemistry , Soil/chemistry , Chemical Fractionation , Metals, Heavy/chemistry , Metals, Heavy/analysis
18.
Int J Mol Sci ; 25(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38674129

ABSTRACT

To investigate the plasma lipoprotein subclasses in patients with primary open-angle glaucoma (POAG), a total of 20 Chinese POAG patients on intraocular pressure (IOP)-lowering treatment and 20 age-matched control subjects were recruited. Based on the levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), the study subjects were divided into elevated- and normal-level subgroups. The plasma lipoprotein, lipoprotein subclasses, and oxidized LDL (oxLDL) levels were quantitatively measured. The discrimination potential of the lipoproteins was evaluated using the area under the receiver operating characteristic curve (AUC), and their correlation with clinical parameters was also evaluated. Compared to the control subjects with elevated TC and/or LDL-C levels, the levels of TC, LDL-C, non-high-density lipoprotein cholesterol (non-HDL), LDL subclass LDL3 and small dense LDL (sdLDL), and oxLDL were significantly higher in POAG patients with elevated TC and/or LDL-C levels. No differences in any lipoproteins or the subclasses were found between the POAG patients and control subjects with normal TC and LDL-C levels. Moderate-to-good performance of TC, LDL-C, non-HDL, LDL3, sdLDL, and oxLDL was found in discriminating between the POAG patients and control subjects with elevated TC and/or LDL-C levels (AUC: 0.710-0.950). Significant negative correlations between LDL3 and sdLDL with retinal nerve fiber layer (RNFL) thickness in the superior quadrant and between LDL3 and average RNFL thickness were observed in POAG patients with elevated TC and/or LDL-C levels. This study revealed a significant elevation of plasma lipoproteins, especially the LDL subclasses, in POAG patients with elevated TC and/or LDL-C levels, providing insights on monitoring specific lipoproteins in POAG patients with elevated TC and/or LDL-C.


Subject(s)
Glaucoma, Open-Angle , Humans , Glaucoma, Open-Angle/blood , Glaucoma, Open-Angle/classification , Male , Female , Middle Aged , Aged , Lipoproteins, LDL/blood , Lipoproteins/blood , Lipoproteins/classification , Intraocular Pressure , Cholesterol, LDL/blood , Case-Control Studies , China , Asian People , Cholesterol/blood , East Asian People
19.
Heliyon ; 10(7): e28806, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38617955

ABSTRACT

The conjunctiva of primary open angle glaucoma patients showed high level of oxidized low-density lipoprotein (ox-LDL), which is associated with the inflammatory response. Microglia and macrophages are the immune cells involved in retinal ganglion cell survival regulation; yet, their roles of the ox-LDL-induced inflammation in glaucoma remain elusive. Here we aimed to investigate the lipid uptake, inflammatory cytokine expression, and metabolomics profiles of human and murine-derived microglial and macrophage cell lines treated with ox-LDL. Under the same ox-LDL concentration, macrophages exhibited higher lipid uptake and expression of pro-inflammatory cytokines as compared to microglia. The ox-LDL increased the levels of fatty acid metabolites in macrophages and sphingomyelin metabolites in microglia. In summary, this study revealed the heterogeneity in the inflammatory capacity and metabolic profiles of macrophages and microglia under the stimulation of ox-LDL.

20.
Environ Sci Technol ; 58(18): 8065-8075, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38597221

ABSTRACT

We report a previously unrecognized but efficient reductive degradation pathway in peroxydisulfate (PDS)-driven soil remediation. With supplements of naturally occurring low-molecular-weight organic acids (LMWOAs) in anaerobic biochar-activated PDS systems, degradation rates of 12 γ-hexachlorocyclohexanes (HCH)-spiked soils boosted from 40% without LMWOAs to a maximum of 99% with 1 mM malic acid. Structural analysis revealed that an increase in α-hydroxyl groups and a diminution in pKa1 values of LMWOAs facilitated the formation of reductive carboxyl anion radicals (COO•-) via electrophilic attack by SO4•-/•OH. Furthermore, degradation kinetics were strongly correlated with soil organic matter (SOM) contents than iron minerals. Combining a newly developed in situ fluorescence detector of reductive radicals with quenching experiments, we showed that for soils with high, medium, and low SOM contents, dominant reactive species switched from singlet oxygen/semiquinone radicals to SO4•-/•OH and then to COO•- (contribution increased from 30.8 to 66.7%), yielding superior HCH degradation. Validation experiments using SOM model compounds highlighted critical roles of redox-active moieties, such as phenolic - OH and quinones, in radical formation and conversion. Our study provides insights into environmental behaviors related to radical activation of persulfate in a broader soil horizon and inspiration for more advanced reduction technologies.


Subject(s)
Soil , Soil/chemistry , Free Radicals/chemistry , Soil Pollutants/chemistry , Oxidation-Reduction , Halogenation
SELECTION OF CITATIONS
SEARCH DETAIL
...