Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Front Bioeng Biotechnol ; 12: 1381201, 2024.
Article in English | MEDLINE | ID: mdl-39070167

ABSTRACT

Intertrochanteric femur fracture is a common type of osteoporotic fracture in elderly patients, and postoperative femoral head varus following proximal femoral nail anti-rotation (PFNA) fixation is a crucial factor contributing to the deterioration of clinical outcomes. The cross-angle between the implant and bone might influence fixation stability. Although there is a wide range of adjustment in the direction of anti-rotation blades within the femoral neck, the impact of this direct variation on the risk of femoral head varus and its biomechanical mechanisms remain unexplored. In this study, we conducted a retrospective analysis of clinical data from 69 patients with PFNA fixation in our institution. We judge the direction of blade on the femoral neck in on the immediate postoperative lateral X-rays or intraoperative C-arm fluoroscopy, investigating its influence on the early postoperative risk of femoral head varus. p < 0.05 indicates significant results in both correlation and regression analyses. Simultaneously, a three-dimensional finite element model was constructed based on the Syn-Bone standard proximal femur outline, exploring the biomechanical mechanisms of the femoral neck-anti-rotation blade direction variation on the risk of this complication. The results indicated that ventral direction insertion of the anti-rotation blade is an independent risk factor for increased femoral head varus. Complementary biomechanical studies further confirmed that ventral angulation leads to loss of fixation stability and a decrease in fixation failure strength. Therefore, based on this study, it is recommended to avoid ventral directional insertion of the anti-rotation blade in PFNA operation or to adjust it in order to reduce the risk of femoral head varus biomechanically, especially in unstable fractures. This adjustment will help enhance clinical outcomes for patients.

2.
Article in English | MEDLINE | ID: mdl-39078446

ABSTRACT

Major depressive disorder (MDD) represents a complex and challenging mental health condition with multifaceted etiology. Recent research exploring the gut-brain axis has shed light on the potential influence of gut microbiota on mental health, offering novel avenues for therapeutic intervention. This paper reviews current evidence on the role of prebiotics and probiotics in the context of MDD treatment. Clinical studies assessing the effects of prebiotic and probiotic interventions have demonstrated promising results, showcasing improvements in depression symptoms and metabolic parameters in certain populations. Notably, prebiotics and probiotics have shown the capacity to modulate inflammatory markers, cortisol levels, and neurotransmitter pathways linked to MDD. However, existing research presents varied outcomes, underscoring the need for further investigation into specific microbial strains, dosage optimization, and long-term effects. Future research should aim at refining personalized interventions, elucidating mechanisms of action, and establishing standardized protocols to integrate these interventions into clinical practice. While prebiotics and probiotics offer potential adjunctive therapies for MDD, continued interdisciplinary efforts are vital to harnessing their full therapeutic potential and reshaping the landscape of depression treatment paradigms.

3.
J Am Chem Soc ; 146(29): 20477-20493, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38982945

ABSTRACT

Cobalt complexes with chiral quinox ligands effectively promote the enantioselective conjugate addition of enones using aryl, heteroaryl, and alkenyl halides and sulfonates. Additionally, a cobalt complex with a strongly donating diphosphine, BenzP*, successfully catalyzes the asymmetric reductive arylation and alkenylation of α,ß-unsaturated amides. Both catalytic systems show broad scopes and tolerance of sensitive functional groups. Both reactions can be scaled up with low loadings of cobalt catalysts. Experimental results and density functional theory (DFT) calculations suggest a new mechanism of elementary 1,4-addition of aryl cobalt(I) complexes.

4.
Polymers (Basel) ; 16(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000701

ABSTRACT

Porous membrane technology has garnered significant attention in the fields of separation and biology due to its remarkable contributions to green chemistry and sustainable development. The porous membranes fabricated from polylactic acid (PLA) possess numerous advantages, including a low relative density, a high specific surface area, biodegradability, and excellent biocompatibility. As a result, they exhibit promising prospects for various applications, such as oil-water separation, tissue engineering, and drug release. This paper provides an overview of recent research advancements in the fabrication of PLA membranes using electrospinning, the breath-figure method, and the phase separation method. Firstly, the principles of each method are elucidated from the perspective of pore formation. The correlation between the relevant parameters and pore structure is discussed and summarized, subsequently followed by a comparative analysis of the advantages and limitations of each method. Subsequently, this article presents the diverse applications of porous PLA membranes in tissue engineering, oil-water separation, and other fields. The current challenges faced by these membranes, however, encompass inadequate mechanical strength, limited production efficiency, and the complexity of pore structure control. Suggestions for enhancement, as well as future prospects, are provided accordingly.

5.
Diabetes Metab Syndr Obes ; 17: 2155-2163, 2024.
Article in English | MEDLINE | ID: mdl-38827165

ABSTRACT

Purpose: To explore the validity of the thoracic spine Hounsfield Unit (HU) measured by chest computed tomography (CT) for opportunistic screening of diabetic osteoporosis. The current study attempted to establish a diagnostic threshold for thoracic spine HU in a type 2 diabetes mellitus (T2DM) population with osteoporosis. Patients and Methods: The current study retrospectively included 334 patients with T2DM. They underwent chest CT and Dual-energy X-ray (DXA) between August 2021 and January 2022 in our hospital. HU values were measured on the resulting chest CT images at thoracic spine 11 and 12 to construct regions of interest. All patients were grouped according to the lowest T-value of DXA examination: osteoporosis, osteopenia and normal bone density. HU values were compared with T-values in each group of patients, and receiver operating characteristics curves were plotted to calculate diagnostic thresholds as well as sensitivity and specificity. Results: There was a strong correlation between the HU values of chest CT and the T-values of DXA (p < 0.01). The sensitivity for osteoporosis was 88.7% for T11 attenuation≤ 98 HU and the specificity for osteoporosis was 87.5% for T12 attenuation ≤ 117HU; the specificity for normal BMD was 85.4% for T11 attenuation ≥ 147 HU and 82% for T12 attenuation ≥ 146 HU. Conclusion: Chest CT can be used to screen patients with T2DM for opportunistic osteoporosis and help determine if they need DXA screening. The current study suggests that when the HU threshold of T11 ≤ 98/T12 ≤ 117, patients may need further osteoporosis screening.

6.
Article in English | MEDLINE | ID: mdl-38856914

ABSTRACT

The role of amentoflavone on cartilage injury in knee osteoarthritis (KOA) rats and the underlying mechanism were explored. KOA rat and IL-1ß-stimulated chondrocyte models were constructed. MTT, colony formation, and ELISA were performed to determine the cytotoxicity, cell proliferation, and inflammatory factors. The role of PTGS2 in IL-1ß-stimulated chondrocytes was also confirmed through transfecting PTGS2 overexpression and silencing plasmids. Further, we analyzed how amentoflavone regulated PTGS2 to improve IL-1ß-stimulated chondrocytes in vitro. Additionally, we analyzed the expression of PTGS2 after amentoflavone treatment. In vivo, HE and Safranin-O staining were carried out, and the inflammatory response was detected by ELISA and HE staining. In addition, we also analyzed the regulatory effect of amentoflavone on PTGS2 and explored the mechanism effect of PTGS2 in vitro and in vivo. The results indicated that PTGS2 was the downstream molecule of amentoflavone, which was highly expressed in IL-1ß-stimulated chondrocytes and KOA rats, and amentoflavone decreased PTGS2 expression. We also confirmed the potential role of amentoflavone on KOA, which was also characterized by the repair of cartilage injury, reduction of inflammatory infiltration, and improvement of functional disability. Consistent with in vivo results, in vitro experiments gave the same conclusions. Amentoflavone reduced PTGS2 expression in IL-1ß-stimulated chondrocytes and inhibited inflammation of chondrocytes via PTGS2. Collectively, the results confirmed that this drug was the potential targeted drug for KOA, whose repair effect on cartilage injury was partly related to PTGS2.

7.
Eur J Med Res ; 29(1): 336, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890700

ABSTRACT

BACKGROUND: Femoral head varus triggers poor clinical prognosis in intertrochanteric fracture patients with proximal femoral nail antirotation (PFNA) fixation. Studies present that changes in nail position and screw insertion angles will affect fixation stability, but the biomechanical significance of these factors on the risk of femoral head varus has yet to be identified in PFNA fixed patients. METHODS: Clinical data in PFNA fixed intertrochanteric fracture patients have been reviewed, the relative position of intermedullary nail has been judged in the instant postoperative lateral radiography. Regression analyses have been performed to identify the effect of this factor on femoral head varus. Corresponding biomechanical mechanism has been identified by numerical mechanical simulations. RESULTS: A clinical review revealed that ventral side nail insertion can trigger higher risk of femoral head varus, corresponding numerical mechanical simulations also recorded poor fixation stability in models with ventral side nail insertion, and changes in the trajectory of anti-rotation blade will not obviously affect this tendency. CONCLUSIONS: Ventral side insertion of intramedullary nail can trigger higher risk of femoral head varus in PFNA fixed patients by deteriorating the instant postoperative biomechanical environment, and changes in blade trajectory cannot change this tendency biomechanically. Therefore, this nail position should be adjusted to optimize patients' prognosis.


Subject(s)
Bone Nails , Femur Head , Fracture Fixation, Intramedullary , Hip Fractures , Humans , Biomechanical Phenomena , Femur Head/surgery , Femur Head/physiopathology , Fracture Fixation, Intramedullary/methods , Fracture Fixation, Intramedullary/adverse effects , Fracture Fixation, Intramedullary/instrumentation , Hip Fractures/surgery
8.
Materials (Basel) ; 17(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38793254

ABSTRACT

In engineering practice, similar surface insulation measures are typically applied to different parts of mass concrete surfaces. However, this can lead to cracking at the edges of the concrete surface or the wastage of insulation materials. In comparison to flat surfaces, the edges of mass concrete structures dissipate heat more rapidly, leading to more pronounced stress concentration phenomena. Therefore, reinforced insulation measures are necessary. To reduce energy consumption and enhance overall insulation effectiveness, it is essential to study the specific insulation requirements of both the flat surfaces and edges of concrete separately and implement targeted surface insulation measures. Taking the bridge abutment planned for pouring in Nanjing City as the research object, this study established a finite element model to explore the effects of different ambient temperatures and different surface heat dissipation coefficients on the early-age temperature and stress fields of different parts of the abutment's surface. Based on simulation results, reasonable heat dissipation coefficients that meet the requirements for crack prevention on both the structure's plane and edges under different ambient temperatures were obtained. The results indicate that under the same conditions, the reasonable heat dissipation coefficient at the edges was smaller than that on the flat surfaces, indicating the need for stronger insulation measures at the edges. Finally, mathematical models correlating ambient temperature with reasonable heat dissipation coefficients for the structure's plane and edges at these temperatures were established, with high data correlation and determination coefficients (R2) of 0.95 and 0.92. The mathematical models were validated, and the results from finite element calculations were found to be consistent with those from the mathematical models, validating the accuracy of the mathematical models. The conclusions drawn can provide references for the insulation of similar engineering concrete planes and edges.

9.
J Orthop Surg Res ; 19(1): 296, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750513

ABSTRACT

BACKGROUND: Osteoporosis is one of the risk factors for screw loosening after lumbar fusion. However, the probability of preoperative osteoporosis screening in patients with lumbar degenerative disease is low. Therefore, the aim of this study was to investigate whether a simplified vertebral bone quality (VBQ) score based on T12 T1-MRI could opportunistically predict osteoporosis in patients with degenerative lumbar spine diseases. METHODS: We retrospectively analyzed cases treated for lumbar degenerative diseases at a single institution between August 2021 and June 2022. The patients were divided into three groups by the lowest T-score: osteoporosis group, osteopenia group, and normal bone mineral density (BMD) group. The signal intensity based on the T12 vertebral body divided by the signal intensity of the cerebrospinal fluid was calculated to obtain the simplified VBQ score, as well as the CT-based T12HU value and the traditional L1-4VBQ score. Various statistical analyses were used to compare VBQ, HU and DEXA, and the optimal T12VBQ threshold for predicting osteoporosis was obtained by plotting the receiver operating curve (ROC) analysis. RESULTS: Total of 166 patients were included in this study. There was a statistically significant difference in T12VBQ scores between the three groups (p < 0.001). Pearson correlation showed that there was a moderate correlation between T12VBQ and T-score (r=-0.406, p < 0.001). The AUC value of T12VBQ, which distinguishes between normal and low BMD, was 0.756, and the optimal diagnostic threshold was 2.94. The AUC value of T12VBQ, which distinguishes osteoporosis from non-osteoporosis, was 0.634, and the optimal diagnostic threshold was 3.18. CONCLUSION: T12VBQ can be used as an effective opportunistic screening method for osteoporosis in patients with lumbar degenerative diseases. It can be used as a supplement to the evaluation of DEXA and preoperative evaluation. TRIAL REGISTRATION: retrospectively registered number:1502-009-644; retrospectively registered number date:27 oct 2022.


Subject(s)
Bone Density , Lumbar Vertebrae , Osteoporosis , Humans , Osteoporosis/diagnostic imaging , Female , Male , Lumbar Vertebrae/diagnostic imaging , Retrospective Studies , Middle Aged , Aged , Magnetic Resonance Imaging/methods , Predictive Value of Tests , Thoracic Vertebrae/diagnostic imaging , Intervertebral Disc Degeneration/diagnostic imaging , Absorptiometry, Photon , Bone Diseases, Metabolic/diagnostic imaging , Bone Diseases, Metabolic/etiology , Adult
10.
BMC Musculoskelet Disord ; 25(1): 405, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783225

ABSTRACT

Femoral head varus is an important complication in intertrochanteric fracture patients treated with proximal femoral nail anti-rotation (PFNA) fixation. Theoretically, extending the length of the intramedullary nail could optimize fixation stability by lengthening the force arm. However, whether extending the nail length can optimize patient prognosis is unclear. In this study, a review of imaging data from intertrochanteric fracture patients with PFNA fixation was performed, and the length of the intramedullary nail in the femoral trunk and the distance between the lesser trochanter and the distal locking screw were measured. The femoral neck varus status was judged at the 6-month follow-up. The correlation coefficients between nail length and femoral neck varus angle were computed, and linear regression analysis was used to determine whether a change in nail length was an independent risk factor for femoral neck varus. Moreover, the biomechanical effects of different nail lengths on PFNA fixation stability and local stress distribution have also been verified by numerical mechanical simulations. Clinical review revealed that changes in nail length were not significantly correlated with femoral head varus and were also not an independent risk factor for this complication. In addition, only slight biomechanical changes can be observed in the numerical simulation results. Therefore, commonly used intramedullary nails should be able to meet the needs of PFNA-fixed patients, and additional procedures for longer nail insertion may be unnecessary.


Subject(s)
Bone Nails , Fracture Fixation, Intramedullary , Hip Fractures , Humans , Biomechanical Phenomena/physiology , Fracture Fixation, Intramedullary/instrumentation , Fracture Fixation, Intramedullary/methods , Fracture Fixation, Intramedullary/adverse effects , Female , Male , Aged , Hip Fractures/surgery , Hip Fractures/diagnostic imaging , Femur Head/surgery , Femur Head/diagnostic imaging , Aged, 80 and over , Risk Factors , Middle Aged , Computer Simulation
11.
J Affect Disord ; 359: 109-116, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38768823

ABSTRACT

BACKGROUND: Inter-hemispheric cooperation is a prominent feature of the human brain, and previous neuroimaging studies have revealed aberrant inter-hemispheric cooperation patterns in patients with major depressive disorder (MDD). Typically, inter-hemispheric cooperation is examined by calculating the functional connectivity (FC) between each voxel in one hemisphere and its anatomical (structurally homotopic) counterpart in the opposite hemisphere. However, bilateral hemispheres are actually asymmetric in anatomy. METHODS: In the present study, we utilized connectivity between functionally homotopic voxels (CFH) to investigate abnormal inter-hemispheric cooperation in 96 MDD patients compared to 173 age- and sex-matched healthy controls (HCs). In addition, we analyzed the spatial correlations between abnormal CFH and the density maps of 13 neurotransmitter receptors and transporters. RESULTS: The CFH values in bilateral orbital frontal gyri and bilateral postcentral gyri were abnormally decreased in patients with MDD. Furthermore, these CFH abnormalities were correlated with clinical symptoms. In addition, the abnormal CFH pattern in MDD patients was spatially correlated with the distribution pattern of 5-HT1AR. LIMITATIONS: drug effect; the cross-sectional research design precludes causal inferences; the neurotransmitter atlases selected were constructed from healthy individuals rather than MDD patients. CONCLUSION: These findings characterized the abnormal inter-hemispheric cooperation in MDD using a novel method and the underlying neurotransmitter mechanism, which promotes our understanding of the pathophysiology of depression.


Subject(s)
Depressive Disorder, Major , Magnetic Resonance Imaging , Humans , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/metabolism , Female , Male , Adult , Middle Aged , Brain/physiopathology , Brain/diagnostic imaging , Neurotransmitter Agents/metabolism , Cross-Sectional Studies , Case-Control Studies , Functional Laterality/physiology , Receptors, Neurotransmitter/metabolism , Receptor, Serotonin, 5-HT1A/metabolism
12.
Mol Biol Rep ; 51(1): 507, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622406

ABSTRACT

BACKGROUND: Our previous research has demonstrated that hypoxic preconditioning (HPC) can improve spatial learning and memory abilities in adult mice. Adult hippocampal neurogenesis has been associated with learning and memory. The Neurogenic locus notch homolog protein (Notch) was involved in adult hippocampal neurogenesis, as well as in learning and memory. It is currently unclear whether the Notch pathway regulates hippocampal neuroregeneration by modifying the DNA methylation status of the Notch gene following HPC. METHOD: The HPC animal model and cell model were established through repeated hypoxia exposure using mice and the mouse hippocampal neuronal cell line HT22. Step-down test was conducted on HPC mice. Real-time PCR and Western blot analysis were used to assess the mRNA and protein expression levels of Notch1 and hairy and enhancer of split1 (HES1). The presence of BrdU-positive cells and Notch1 expression in the hippocampal dental gyrus (DG) were examined with confocal microscopy. The methylation status of the Notch1 was analyzed using methylation-specific PCR (MS-PCR). HT22 cells were employed to elucidate the impact of HPC on Notch1 in vitro. RESULTS: HPC significantly improved the step-down test performance of mice with elevated levels of mRNA and protein expression of Notch1 and HES1 (P < 0.05). The intensities of the Notch1 signal in the control group, the H group and the HPC group were 2.62 ± 0.57 × 107, 2.87 ± 0.84 × 107, and 3.32 ± 0.14 × 107, respectively, and the number of BrdU (+) cells in the hippocampal DG were 1.83 ± 0.54, 3.71 ± 0.64, and 7.29 ± 0.68 respectively. Compared with that in C and H group, the intensity of the Notch1 signal and the number of BrdU (+) cells increased significantly in HPC group (P < 0.05). The methylation levels of the Notch1 promoter 0.82 ± 0.03, 0.65 ± 0.03, and 0.60 ± 0.02 in the C, H, and HPC groups, respectively. The methylation levels of Notch1 decreased significantly (P < 0.05). The effect of HPC on HT22 cells exhibited similarities to that observed in the hippocampus. CONCLUSION: HPC may confer neuroprotection by activating the Notch1 signaling pathway and regulating its methylation level, resulting in the regeneration of hippocampal neurons.


Subject(s)
DNA Methylation , Hippocampus , Mice , Animals , DNA Methylation/genetics , Bromodeoxyuridine/metabolism , Hippocampus/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Receptors, Notch/metabolism , RNA, Messenger/metabolism , Receptor, Notch1/genetics , Receptor, Notch1/metabolism
13.
Polymers (Basel) ; 16(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38611179

ABSTRACT

As a promising candidate for high-energy-density rechargeable lithium metal batteries, Li/FeS2 batteries still suffer from the large volume change and severe shuttle effect of lithium polysulfides during cycling. To improve the electrochemical performance, great efforts have been made to modify FeS2 cathodes by constructing various nanocomposites. However, energy density is sacrificed, and these materials are not applicable at a large scale. Herein, we report that the electrochemical performance of commercial FeS2 can be greatly enhanced with the application of a double-layer MoS2-CNTs-PVA (MCP)/PVA separator fabricated by electrospinning. The assembled Li/FeS2 batteries can still deliver a high discharge capacity of 400 mAh/g after 200 cycles at a current density of 0.5 C. The improved cycling stability can be attributed to the strong affinity towards lithium polysulfides (LiPSs) of the hydroxyl-rich PVA matrix and the unique double-layer structure, in which the bottom layer acts as an electrical insulation layer and the top layer coupled with MoS2/CNTs provides catalytic sites for LiPS conversion.

14.
Adv Sci (Weinh) ; 11(25): e2402915, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38641884

ABSTRACT

The silicon (Si) anode is prone to forming a high electric field gradient and concentration gradient on the electrode surface under high-rate conditions, which may destroy the surface structure and decrease cycling stability. In this study, a ferroelectric (BaTiO3) interlayer and field polarization treatment are introduced to set up a built-in field, which optimizes the transport mechanisms of Li+ in solid and liquid phases and thus enhances the rate performance and cycling stability of Si anodes. Also, a fast discharging and slow charging phenomenon is observed in a half-cell with a high reversible capacity of 1500.8 mAh g-1 when controlling the polarization direction of the interlayer, which means a fast charging and slow discharging property in a full battery and thus is valuable for potential applications in commercial batteries. Simulation results demonstrated that the built-in field plays a key role in regulating the Li+ concentration distribution in the electrolyte and the Li+ diffusion behavior inside particles, leading to more uniform Li+ diffusion from local high-concentration sites to surrounding regions. The assembled lithium-ion battery with a BaTiO3 interlayer exhibited superior electrochemical performance and long-term cycling life (915.6 mAh g-1 after 300 cycles at a high current density of 4.2 A g-1). The significance of this research lies in exploring a new approach to improve the performance of lithium-ion batteries and providing new ideas and pathways for addressing the challenges faced by Si-based anodes.

15.
J Cell Mol Med ; 28(8): e18234, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520214

ABSTRACT

Liver fibrosis is characterized by the activation and transformation of hepatic stellate cells (HSCs) induced by various injury factors. The degree of liver fibrosis can be significantly improved, but persistent injury factors present a significant therapeutic challenge. Hepatocytes are the most important parenchymal cell type in the liver. In this study, we explored the molecular mechanisms by which damaged liver cells activate HSCs through extracellular vesicles. We established a coculture model of LO2 and LX2 and validated its exosomal transmission activity. Subsequently, differentially expressed long noncoding RNAs (lncRNAs) were screened through RNA sequencing and their mechanisms of action as competing endogenous RNAs (ceRNAs) further confirmed using biological methods, such as FISH and luciferase assays. Damaged liver cells induced activation of LX2 and upregulation of liver fibrosis-related markers. Exosomes extracted and identified from the supernatant fraction contained differentially expressed lncRNA cytoskeleton regulator RNA (CYTOR) that competed with microRNA-125 (miR-125) for binding to glial cell line-derived neurotrophic factor (GDNF) in HSCs, in turn, promoting LX2 activation. MiR-125 could target and regulate both CYTOR and GDNF and vice versa, as verified using the luciferase assay. In an in vivo model, damaged liver extracellular vesicles induced the formation of liver fibrosis. Notably, downregulation of CYTOR within extracellular vesicles effectively inhibited liver fibrosis. The lncRNA CYTOR in exosomes of damaged liver cells is upregulated and modulates the expression of downstream GDNF through activity as a ceRNA, providing an effective mechanism for activation of HSCs.


Subject(s)
Exosomes , MicroRNAs , RNA, Long Noncoding , Humans , Hepatic Stellate Cells/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Exosomes/genetics , Exosomes/metabolism , Gene Expression Regulation , Hepatocytes/metabolism , Liver Cirrhosis/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Luciferases/metabolism
16.
Cells ; 13(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38474345

ABSTRACT

Developmental pluripotency-associated 2 (DPPA2) and DPPA4 are crucial transcription factors involved in maintaining pluripotency in humans and mice. However, the role of DPPA2/4 in bovine extended pluripotent stem cells (bEPSCs) has not been investigated. In this study, a subset of bEPSC-related differentially expressed genes (DEGs), including DPPA2 and DPPA4, was identified based on multiomics data (ATAC-seq and RNA-seq). Subsequent investigations revealed that double overexpression of DPPA2/4 facilitates the reprogramming of bovine fetal fibroblasts (BFFs) into bEPSCs, whereas knockout of DPPA2/4 in BFFs leads to inefficient reprogramming. DPPA2/4 overexpression and knockdown experiments revealed that the pluripotency and proliferation capability of bEPSCs were maintained by promoting the transition from the G1 phase to the S phase of the cell cycle. By activating the PI3K/AKT/GSK3ß/ß-catenin pathway in bEPSCs, DPPA2/4 can increase the nuclear accumulation of ß-catenin, which further upregulates lymphoid enhancer binding factor 1 (LEF1) transcription factor activity. Moreover, DPPA2/4 can also regulate the expression of LEF1 by directly binding to its promoter region. Overall, our results demonstrate that DPPA2/4 promote the reprogramming of BFFs into bEPSCs while also maintaining the pluripotency and proliferation capability of bEPSCs by regulating the PI3K/AKT/GSK3ß/ß-catenin pathway and subsequently activating LEF1. These findings expand our understanding of the gene regulatory network involved in bEPSC pluripotency.


Subject(s)
Nuclear Proteins , Pluripotent Stem Cells , Transcription Factors , beta Catenin , Animals , Cattle , beta Catenin/metabolism , Cell Proliferation , Glycogen Synthase Kinase 3 beta/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pluripotent Stem Cells/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Transcription Factors/metabolism , Nuclear Proteins/metabolism
17.
IEEE Trans Pattern Anal Mach Intell ; 46(8): 5645-5662, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38517729

ABSTRACT

Estimating and synthesizing the hand's manipulation of objects is central to understanding human behaviour. To accurately model the interaction between the hand and object (referred to as the "hand-object"), we must not only focus on the pose of the hand and object, but also consider the contact between them. This contact provides valuable information for generating semantically and physically plausible grasps. In this paper, we propose an explicit contact representation called Contact Potential Field (CPF). In CPF, we model the contact between a pair of hand-object vertices as a spring-mass system. This system encodes the distance of the pair, as well as a likelihood of that contact being stable. Therefore, the system of multiple extended and compressed springs forms an elastic potential field with minimal energy at the optimal grasp position. We apply CPF to two relevant tasks, namely, hand-object pose estimation and grasping pose generation. Extensive experiments on the two challenging tasks and three commonly used datasets have demonstrated that our method can achieve state-of-the-art in several reconstruction metrics, allowing us to produce more physically plausible hand-object poses even when the ground-truth exhibits severe interpenetration or disjointedness.

18.
Schizophr Bull ; 50(3): 545-556, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38253437

ABSTRACT

BACKGROUND AND HYPOTHESIS: There is a huge heterogeneity of magnetic resonance imaging findings in schizophrenia studies. Here, we hypothesized that brain regions identified by structural and functional imaging studies of schizophrenia could be reconciled in a common network. STUDY DESIGN: We systematically reviewed the case-control studies that estimated the brain morphology or resting-state local function for schizophrenia patients in the literature. Using the healthy human connectome (n = 652) and a validated technique "coordinate network mapping" to identify a common brain network affected in schizophrenia. Then, the specificity of this schizophrenia network was examined by independent data collected from 13 meta-analyses. The clinical relevance of this schizophrenia network was tested on independent data of medication, neuromodulation, and brain lesions. STUDY RESULTS: We identified 83 morphological and 60 functional studies comprising 7389 patients with schizophrenia and 7408 control subjects. The "coordinate network mapping" showed that the atrophy and dysfunction coordinates were functionally connected to a common network although they were spatially distant from each other. Taking all 143 studies together, we identified the schizophrenia network with hub regions in the bilateral anterior cingulate cortex, insula, temporal lobe, and subcortical structures. Based on independent data from 13 meta-analyses, we showed that these hub regions were specifically connected with regions of cortical thickness changes in schizophrenia. More importantly, this schizophrenia network was remarkably aligned with regions involving psychotic symptom remission. CONCLUSIONS: Neuroimaging abnormalities in cross-sectional schizophrenia studies converged into a common brain network that provided testable targets for developing precise therapies.


Subject(s)
Brain , Connectome , Schizophrenia , Humans , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Magnetic Resonance Imaging , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/pathology , Schizophrenia/diagnostic imaging , Schizophrenia/physiopathology , Schizophrenia/pathology
19.
J Biomol Struct Dyn ; : 1-9, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38258435

ABSTRACT

The high expression or mutation of SHP2 can induce cancer, so targeting SHP2 has become a new strategy for cancer treatment. In this study, we used the previously reported SHP2 allosteric inhibitor IACS-13909 as a lead drug for structural derivation and modification, and synthesized three SHP2 inhibitors. Among them, 1H-pyrazolo[3,4-b]pyrazine derivative 4b was a highly selective SHP2 allosteric inhibitor, with an IC50 value of 3.2 nM, and its inhibitory activity was 17.75 times than that of the positive control IACS-13909. The cell proliferation experiment detected that compound 4b would markedly inhibit the proliferation of various cancer cells. Interestingly, compound 4b was highly sensitive to KRASG12C-mutant non-small cell lung cancer NCI-H358 cells, with an IC50 value of 0.58 µM and its antiproliferative activity was 4.79 times than that of IACS-13909. Furthermore, the combination therapy of compound 4b and KRASG12C inhibitor sotorasib would play a strong synergistic effect against NCI-H358 cells. The western blot experiment detected that compound 4b markedly downregulated the phosphorylation levels of ERK and AKT in NCI-H358 cells. Molecular docking study predicted that compound 4b bound to the allosteric site of SHP2 and formed H-bond interactions with key residues Thr108, Glu110, Arg111, and Phe113. In summary, this study aims to provide new ideas for the development of SHP2 allosteric inhibitors for the treatment of KRASG12C mutant non-small cell lung cancer.Communicated by Ramaswamy H. Sarma.

20.
Neural Netw ; 172: 106088, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38159510

ABSTRACT

Inspired by visual-tactile cross-modal bidirectional mapping of the human brain, this paper introduces a novel approach to bidirectional mapping between visual and tactile data, an area not fully explored in the predominantly unidirectional existing studies. First, we adopt separate Variational AutoEncoder (VAE) models for visual and tactile data. Furthermore, we introduce a conditional flow model built on the VAE latent feature space, enabling cross-modal bidirectional mapping between visual and tactile data using one model. The experimental results show that our method achieves excellent performance in terms of the similarity between the generated data and the original data (Structural Similarity Index (SSIM) of visual data: 0.58, SSIM of tactile data: 0.80), the classification accuracy on generated data (visual data: 91.60%, tactile data: 88.05%), and the zero-shot classification accuracy between generated data and language (visual data: 44.49%, tactile data: 45.03%). To the best of our knowledge, the method proposed in this paper is the first one to utilize a single model to achieve bidirectional mapping between visual and tactile data. Our model and code will be made public after the acceptance of the paper.


Subject(s)
Brain , Touch , Humans , Brain Mapping/methods
SELECTION OF CITATIONS
SEARCH DETAIL