Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Front Pediatr ; 12: 1366990, 2024.
Article En | MEDLINE | ID: mdl-38783919

Objective: To study the current status of hemophilia B (HB) patients in the central and western regions of China. Methods: This cross-sectional, multicenter study was conducted in seven provinces in the central and western regions of China from April 2019 to June 2023. Samples were collected for the factor IX activity, inhibitor screen, and gene mutation. Furthermore, the status of six index joints and quality of life (QoL) were assessed. Results: A total of 185 HB patients (mild 15, moderate 75, and severe 95) with a median age of 12.17 years were enrolled. 30.3% (56/185) of patients had a family history of HB. 34.6% (64/185) of HB patients had diagnostic delay and 38.5% (69/179) experienced treatment delay. The incidence of inhibitors was 6.1% (11/179). We identified 123 genetic variants in this study, with missense mutations being the most common. 84.0% (89/106) of HB mothers were genetically identified as carriers, with 27.7% (13/47) of carriers having clotting factor levels less than 0.40 IU/ml. 71.4% (132/185) of HB patients had a history of joint hemorrhage, with a rate of target joint in these patients was 64.4% (85/132). Lower extremity joints were most often affected in patients. The Hemophilia Joint Health Score (HJHS) score was significantly positively correlated with the Hemophilia Early Arthropathy Detection with Ultrasound in China (HEAD-US-C) (r = 0.542, P < 0.001). Patients who received prevention treatment, inhibitor negative, without treatment delay, and without high-intensity replacement therapy showed a higher total score of the short form-36 health survey (SF-36). Conclusions: One-third of HB patients had delay in diagnosis and treatment, and the incidence of inhibitors was 6.1%. Target joints were present in nearly half of HB patients. Missense was the main mutation type. 84.0% of mothers of HB patients in this study were found to be carriers. HEAD-US-C and HJHS can complement each other in the evaluation of joint status and give a valid basis for early clinical management. Early detection and preventive treatment, as well as reducing high-intensity replacement therapy and inhibitor generation, can effectively improve the QoL of patients.

2.
Front Immunol ; 15: 1376276, 2024.
Article En | MEDLINE | ID: mdl-38745658

Background: Hepatic Inflammatory Pseudotumor (IPT) is an infrequent condition often masquerading as a malignant tumor, resulting in misdiagnosis and unnecessary surgical resection. The emerging concept of IgG4-related diseases (IgG4-RD) has gained widespread recognition, encompassing entities like IgG4-related hepatic IPT. Clinically and radiologically, corticosteroids and immunosuppressive therapies have proven effective in managing this condition. Case Presentation: A 3-year-old Chinese boy presented to the clinic with an 11-month history of anemia, fever of unknown origin, and a tender hepatic mass. Blood examinations revealed chronic anemia (Hb: 6.4 g/L, MCV: 68.6 fl, MCH: 19.5 pg, reticulocytes: 1.7%) accompanied by an inflammatory reaction and an elevated serum IgG4 level (1542.2 mg/L). Abdominal contrast-enhanced computed tomography unveiled a 7.6 cm low-density mass in the right lateral lobe, while magnetic resonance imaging demonstrated slight hypointensity on T1-weighted images and slight hyperintensity on T2-weighted images, prompting suspicion of hepatic malignancy. A subsequent liver biopsy revealed a mass characterized by fibrous stroma and dense lymphoplasmacytic infiltration. Immunohistochemical analysis confirmed the presence of IgG4-positive plasma cells, leading to the diagnosis of IgG4-related hepatic IPT. Swift resolution occurred upon initiation of corticosteroid and mycophenolate mofetil therapies. Conclusion: This study underscores the diagnostic approach to hepatic IPT, utilizing histopathology, immunostaining, imaging, serology, organ involvement, and therapeutic response. Early histological examination plays a pivotal role in clinical guidance, averting misdiagnosis as a liver tumor and unnecessary surgical interventions.


Granuloma, Plasma Cell , Immunoglobulin G4-Related Disease , Immunoglobulin G , Humans , Male , Granuloma, Plasma Cell/diagnosis , Granuloma, Plasma Cell/immunology , Granuloma, Plasma Cell/drug therapy , Child, Preschool , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin G4-Related Disease/diagnosis , Liver Diseases/diagnosis , Liver Diseases/immunology , Diagnosis, Differential , Liver/pathology , Liver/diagnostic imaging , Liver/immunology , Tomography, X-Ray Computed , Biopsy , Immunosuppressive Agents/therapeutic use
3.
Front Genet ; 15: 1390924, 2024.
Article En | MEDLINE | ID: mdl-38655052

Objective: The objective of this study was to pinpoint pathogenic genes and assess the mutagenic pathogenicity in two pediatric patients with hereditary spherocytosis. Methods: We utilized whole-exome sequencing (WES) for individual analysis (case 1) and family-based trio analysis (case 2). The significance of the intronic mutation was validated through a Minigene splicing assay and supported by subsequent in vitro experiments. Results: Both probands received a diagnosis of hereditary spherocytosis. WES identified a novel ANK1 c.1504-9G>A mutation in both patients, causing the retention of seven nucleotides at the 5' end of intron 13, as substantiated by the Minigene assay. This variant results in a premature stop codon and the production of a truncated protein. In vitro studies indicated a reduced expression of the ANK1 gene. Conclusion: The novel ANK1 c.1504-9G>A variant is established as the causative factor for hereditary spherocytosis, with the c.1504-9G site functioning as a splicing receptor.

4.
Br J Haematol ; 204(5): 1958-1965, 2024 May.
Article En | MEDLINE | ID: mdl-38362793

Avatrombopag (AVA) is a novel thrombopoietin receptor agonist (TPO-RA) that has been recently approved as a second-line therapy for immune thrombocytopenia (ITP) in adults; however, its safety and efficacy data in children are lacking. Here, we demonstrated the efficacy and safety of AVA as second-line therapy in children with ITP. A multicentre, retrospective, observational study was conducted in children with persistent or chronic ITP who did not respond to or relapsed from previous treatment and were treated with AVA for at least 12 weeks between August 2020 and December 2022. The outcomes were the responses (defined as achieving a platelet count ≥30 × 109/L, twofold increase in platelet count from baseline and absence of bleeding), including rapid response within 4 weeks, sustained response at weeks 12 and 24, bleeding control and adverse events (AEs). Thirty-four (18 males) patients with a mean age of 6.3 (range: 1.9-15.3) years were enrolled. The median number of previous treatment types was four (range: 1-6), and 41.2% patients switched from other TPO-RAs. Within 4 weeks, overall response (OR) was achieved in 79.4% patients and complete response (CR, defined as a platelet count ≥100 × 109/L and the absence of bleeding) in 67.7% patients with a median response time of 7 (range: 1-27) days. At 12 weeks, OR was achieved in 88.2%, CR in 76.5% and sustained response in 44% of patients. At 24 weeks, 22/34 (64.7%) patients who achieved a response and were followed up for 24 weeks were evaluated; 12/22 (54.55%) achieved a sustained response. During AVA therapy, median platelet counts increased by week 1 and were maintained throughout the treatment period. The proportion of patients with grade 1-3 bleeding decreased from 52.95% at baseline to 2.94% at 12 weeks, while concomitant ITP medications decreased from 36.47% at baseline to 8.82% at 12 weeks, with only 9 (26.47%) patients receiving rescue therapy 23 times within 12 weeks. There were 61.8% patients with 59 AEs: 29.8% with Common Terminology Criteria for Adverse Events grade 1 and the rest with grade 2. These findings show that AVA could achieve a rapid and sustained response in children with persistent or chronic ITP as a second-line treatment, with good clinical bleeding control and reduction of concomitant ITP therapy, without significant AEs.


Purpura, Thrombocytopenic, Idiopathic , Humans , Child , Male , Female , Retrospective Studies , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Purpura, Thrombocytopenic, Idiopathic/blood , Child, Preschool , Adolescent , Infant , China , Chronic Disease , Treatment Outcome , Platelet Count , Pyrazoles/therapeutic use , Pyrazoles/adverse effects , Hemorrhage/chemically induced , Receptors, Thrombopoietin/agonists , East Asian People , Thiazoles , Thiophenes
5.
Cell Biosci ; 13(1): 175, 2023 Sep 22.
Article En | MEDLINE | ID: mdl-37740216

BACKGROUND: Menin is a scaffold protein encoded by the Men1 gene, which interacts with various transcriptional proteins to activate or repress cellular processes and is a key mediator in multiple organs. Both liver-specific and hepatocyte-specific Menin deficiency promotes high-fat diet-induced liver steatosis in mice, as well as insulin resistance and type 2 diabetic phenotype. The potential link between Menin and hepatic metabolism homeostasis may provide new insights into the mechanism of fatty liver disease. RESULTS: Disturbance of hepatic Menin expression impacts metabolic pathways associated with non-alcoholic fatty liver disease (NAFLD), including the FoxO signaling pathway, which is similar to that observed in both oleic acid-induced fatty hepatocytes model and biopsied fatty liver tissues, but with elevated hepatic Menin expression and inhibited FABP1. Higher levels of Menin facilitate glucose uptake while restraining fatty acid uptake. Menin targets the expression of FABP3/4/5 and also CD36 or GK, PCK by binding to their promoter regions, while recruiting and deploying the cellular localization of PPARγ and SIRT1 in the nucleus and cytoplasm. Accordingly, Menin binds to PPARγ and/or FoxO1 in hepatocytes, and orchestrates hepatic glucose and fatty acid uptake by recruiting SIRT1. CONCLUSION: Menin plays an orchestration role as a transcriptional activator and/or repressor to target downstream gene expression levels involved in hepatic energy uptake by interacting with the cellular energy sensor SIRT1, PPARγ, and/or FoxO1 and deploying their translocations between the cytoplasm and nucleus, thereby maintaining metabolic homeostasis. These findings provide more evidence suggesting Menin could be targeted for the treatment of hepatic steatosis, NAFLD or metabolic dysfunction-associated fatty liver disease (MAFLD), and even other hepatic diseases.

6.
Mol Cell Biochem ; 477(5): 1555-1568, 2022 May.
Article En | MEDLINE | ID: mdl-35182330

Non-alcoholic fatty liver disease (NAFLD) is rapidly being recognized as the leading cause of chronic liver disease worldwide. Men1, encoding protein of menin, is a key causative gene of multiple endocrine neoplasia type 1 syndrome including pancreatic tumor. It is known that insulin that secretes by endocrine tissue pancreatic islets plays a critical role in hepatic metabolism. Mouse model of hemizygous deletion of Men1 was shown to have severe hepatic metabolism disorders. However, the molecular function of menin on lipid deposition in hepatocytes needs to be further studied. Transcriptome sequencing does show that expression suppression of Men1 in mouse hepatocytes widely affect signaling pathways involved in hepatic metabolism, such as fatty acid metabolism, insulin response, glucose metabolism and inflammation. Further molecular studies indicates that menin overexpression inhibits expressions of the fat synthesis genes Srebp-1c, Fas, and Acc1, the fat differentiation genes Pparγ1 and Pparγ2, and the fat transport gene Cd36, thereby inhibiting the fat accumulation in hepatocytes. The biological process of menin regulating hepatic lipid metabolism was accomplished by interacting with the transcription factor FoxO1, which is also found to be critical for lipid metabolism. Moreover, menin responds to insulin in hepatocytes and mediates its regulatory effect on hepatic metabolism. Our findings suggest that menin is a crucial mediation factor in regulating the hepatic fat deposition, suggesting it could be a potential important therapeutic target for NAFLD.


Non-alcoholic Fatty Liver Disease , Animals , CD36 Antigens/metabolism , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Hepatocytes/metabolism , Insulin/metabolism , Lipid Metabolism/genetics , Lipids , Liver/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Proto-Oncogene Proteins , Sterol Regulatory Element Binding Protein 1/genetics
7.
BMJ Open ; 11(7): e048432, 2021 07 05.
Article En | MEDLINE | ID: mdl-34226228

INTRODUCTION: Haemophilia A is a rare inherited bleeding disease caused by the deficiency of coagulation factor VIII (FVIII). The main treatment protocol is to administer regular exogenous FVIII concentrate infusions. With the discovery of variability in individualised pharmacokinetics (PK) and bleeding phenotype, the previous weight-based approach needs to be replaced by more advanced PK-tailored prophylaxis with an accurate evaluation system. In this study, we combine individualised PK profiles and a complementary evaluation system to guide prophylaxis in paediatric patients with haemophilia A. METHODS AND ANALYSIS: This is a single-centre, prospective single-arm study. The aim of this study is to assess the effectiveness of a new strategy combining PK and a complementary evaluation system to treat haemophilia A in Chinese paediatric patients. Sixty paediatric patients with haemophilia will be recruited. After PK testing, they will receive a PK-guided stepup prophylaxis in the next 2 years. The dosing regimen will be determined according to individualised PK profiles and complementary evaluation findings. Related indicators at the end of the study will be compared with the values at treatment initiation to examine the effectiveness of this new strategy. The demographic data of the investigated patients will be summarised by descriptive statistics. Quantitative data will be described by summary statistics, including arithmetic median, range, mean and arithmetic SD. Analyses will use t-test to compare indicators such as bleeding rate and imaging score at both ends of the study as well as during follow-up. ETHICS AND DISSEMINATION: The study has been approved by the Ethics Committee of Beijing Children's Hospital (Number 2020-Z-095). The findings will be presented at international meetings such as World Federation of Hemophilia World Congress. Related manuscripts will be submitted to peer-review journals such as Blood and Hemophilia. TRIAL REGISTRATION NUMBER: ChiCTR2000037821; Pre-results.


Factor VIII , Hemophilia A , Child , China , Factor VIII/therapeutic use , Hemophilia A/drug therapy , Humans , Prospective Studies
8.
Front Genet ; 12: 652376, 2021.
Article En | MEDLINE | ID: mdl-33868383

OBJECTIVE: To investigate the clinical and genetic characteristics of hereditary spherocythemia (HS) in Chinese children, and to analyze the potential genotypic/phenotypic associations. METHODS: The clinical data and gene test results of children with HS were collected. All patients were diagnosed by gene test results, and the laboratory results were obtained before splenectomy. The data of red blood cell (RBC), hemoglobin (HB), mean red blood cell volume (MCV), mean red blood cell hemoglobin (MCH), mean red blood cell hemoglobin concentration (MCHC), and hematocrit (HCT) were statistically analyzed according to different mutation genes. Statistical methods for comparison between groups Mann-Whitney test analysis, two-terminal p < 0.05 was considered significant difference. RESULTS: A total of 15 children were enrolled in our hospital, and 14 variants were found (nine variants have not been reported before), including 10 ANK1 mutations (seven ANK1 truncated mutations) and five SPTB mutations. Patients with ANK1 mutations had more severe anemia than those with SPTB mutations (significantly lower RBC, HB, MCHC, and HCT). CONCLUSION: This is one of the few studies on the genetic and clinical characteristics of children with HS in China. This study identified the unique genetic and clinical characteristics of Chinese children with HS and analyzed the pathogenic genotype-phenotypic association. The results confirmed that the anemia degree of HS patients caused by ANK1 was more serious than that of patients with SPTB deficiency. However, further study of the correlation between genotype and phenotype requires a larger sample size.

9.
Animals (Basel) ; 10(4)2020 Apr 07.
Article En | MEDLINE | ID: mdl-32272794

Frequently occurring fatty liver disease in dairy cows during the perinatal period, a typical type of non-alcoholic fatty liver disease (NAFLD), results in worldwide high culling rates of dairy cows (averagely about 25%) after calving. This has been developing into a critical industrial problem throughout the world, because the metabolic disease severely affects the welfare and economic value of dairy cows. Findings about the molecular mechanisms how the fatty liver disease develops would help scientists to discover novel therapeutic targets for NAFLD. Studies have shown that PPARγ participates or regulates the fat deposition in liver by affecting the biological processes of hepatic lipid metabolism, insulin resistance, gluconeogenesis, oxidative stress, endoplasmic reticulum stress and inflammation, which all contribute to fatty liver. This review mainly focuses on crucial regulatory mechanisms of PPARγ regulating lipid deposition in the liver via direct and/or indirect pathways, suggesting that PPARγ might be a potential critical therapeutic target for fatty liver disease, however, it would be of our significant interest to reveal the pathology and pathogenesis of NAFLD by using dairy cows with fatty liver as an animal model. This review will provide a molecular mechanism basis for understanding the pathogenesis of NAFLD.

10.
Front Genet ; 11: 163, 2020.
Article En | MEDLINE | ID: mdl-32194633

A genome-wide association study (GWAS) was conducted on 23 serum biochemical traits in Chinese Holstein cattle. The experimental population consisted of 399 cattle, each genotyped by a commercial bovine 50K SNP chip, which had 49,663 SNPs. After data cleaning, 41,092 SNPs from 361 Holstein cattle were retained for GWAS. The phenotypes were measured values of serum measurements of these animals that were taken at 11 days after parturition. Two statistical models, a fixed-effect linear regression model (FLM) and a mixed-effect linear model (MLM), were used to estimate the association effects of SNPs. Genome-wide significant and suggestive thresholds were set up to be 1.22E-06 and 2.43E-06, respectively. In the Chinese Holstein population, FLM identified 81 genome-wide significant (0.05/41,092 = 1.22E-06) SNPs associated with 11 serum traits. Among these SNPs, five SNPs (BovineHD0100005950, ARS-BFGL-NGS-115158, BovineHD1500021175, BovineHD0800028900, and BTB-00442438) were also identified by the MLM to have genome-wide suggestive effects on CHE, DBIL, and LDL. Both statistical models pinpointed two SNPs that had significant effects on the Holstein population. The SNP BovineHD0800028900 (located near the gene LOC101903458 on chromosome 8) was identified to be significantly associated with serum high- and low-density lipoprotein (HDL and LDL), whereas BovineHD1500021175 (located in 73.4Mb on chromosome 15) was an SNP significantly associated with total bilirubin and direct bilirubin (TBIL and DBIL). Further analyses are needed to identify the causal mutations affecting serum traits and to investigate the correlation of effects for loci associated with fatty liver disease in dairy cattle.

11.
J Cell Physiol ; 234(2): 1522-1533, 2019 02.
Article En | MEDLINE | ID: mdl-30221364

MiR-24-3p, a broadly conserved, small, noncoding RNA, is abundantly expressed in mammary tissue. However, its regulatory role in this tissue remains poorly understood. It was predicted that miR-24-3p targets the 3' untranslated region (3'-UTR) of multiple endocrine neoplasia type 1 (MEN1), an important regulatory factor in mammary tissue. The objective of this study was to investigate the function of miR-24-3p in mammary cells. Using a luciferase assay in mammary epithelial cells (MAC-T), miR-24-3p was confirmed to target the 3'-UTR of MEN1. Furthermore, miR-24-3p negatively regulated the expression of the MEN1 gene and its encoded protein, menin. miR-24-3p enhanced proliferation of MAC-T by promoting G1/S phase progression. MiR-24-3p also regulated the expression of key factors involved in phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin and Janus kinase/signal transducer and activators of transcription signaling pathways, therefore controlling milk protein synthesis in epithelial cells. Thus, miR-24-3p appears to act on MAC-T by targeting MEN1. The expression of miR-24-3p was controlled by MEN1/menin, indicating a negative feedback loop between miR-24-3p and MEN1/menin. The negatively inhibited expression pattern of miR-24-3p and MEN1 was active in mammary tissues at different lactation stages. The feedback mechanism is a new concept to further understand the lactation cycle of mammary glands and can possibly to be manipulated to improve milk yield and quality.


Cell Proliferation , Epithelial Cells/metabolism , Mammary Glands, Animal/metabolism , MicroRNAs/metabolism , Milk Proteins/biosynthesis , Proto-Oncogene Proteins/metabolism , 3' Untranslated Regions , Animals , Binding Sites , Cattle , Cell Line , Dairying , Female , Mammary Glands, Animal/cytology , MicroRNAs/genetics , Proto-Oncogene Proteins/genetics , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Up-Regulation
12.
J Mammary Gland Biol Neoplasia ; 22(4): 221-233, 2017 12.
Article En | MEDLINE | ID: mdl-29188494

Menin, the protein encoded by the MEN1 gene, is abundantly expressed in the epithelial cells of mammary glands. Here, we found MEN1/menin expression slowly decreased with advancing lactation but increased by the end of lactation. It happened that the number of bovine mammary epithelial cells decreases since lactation, suggesting a role of menin in the control of mammary epithelial cell growth. Indeed, reduction of menin expression through MEN1-specific siRNA transfection in the bovine mammary epithelial cells caused cell growth arrest in G1/S phase. Decreased mRNA and protein expression of Cyclin D1 was observed upon MEN1 knockdown. Furthermore, menin was confirmed to physically bind to the promoter region of Cyclin D1 through a ChIP assay, indicating that menin plays a regulatory role in mammary epithelial cell cycle progression. Moreover, lower expression of MEN1/menin induced increased epithelial cell apoptosis and caused extracellular matrix remodeling by down-regulating its associated genes, such as DSG2 and KRT5, suggesting that menin's role may also be involved in the control of cell-cell adhesion in normal mammary glands. Taken together, our data revealed an unknown molecular function of menin in epithelial cell proliferation, which may be important in the regulation of lactation behavior of mammary glands.


Cyclin D1/metabolism , Epithelial Cells/metabolism , Epithelial Cells/physiology , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/physiology , Proto-Oncogene Proteins/metabolism , Animals , Apoptosis/physiology , Cattle , Cell Proliferation/physiology , Down-Regulation/physiology , Extracellular Matrix/metabolism , Extracellular Matrix/physiology , Female , Lactation/metabolism , Lactation/physiology , Promoter Regions, Genetic/physiology
...