Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 364: 121489, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38889648

ABSTRACT

Planting rice is a beneficial strategy for improving soda saline-alkali soil, but it comes with the challenge of increased runoff discharge of salt and fluoride (F-) ions. The use of different nitrogen (N) fertilizers can impact this ion discharge, yet the specific characteristics of ion runoff under different N-fertilizer applications remain unclear. A field experiment was conducted in this study, applying five commonly used N-fertilizer types to monitor the ion runoff throughout an entire rice growing season. Salt ions and F- runoff discharge was significantly affected by N-fertilizer type, runoff event, and their interaction (p < 0.001). Regardless of N-fertilizer types, sodium (Na+) and bicarbonate (HCO3-) ions were consistently discharged from runoff in soda saline-alkali fields, constituting 20.55-25.06 % and 47.57-50.49 % of total ion discharges, respectively. Compared to no N-fertilizer (CK) and other N-fertilizer treatments, the organic-inorganic compound fertilizer (OCF) application significantly reduced Na+ and HCO3- runoff discharge, causing a decrease in the competitive adsorption capacity between HCO3- and F- (p < 0.05). The use of OCF and inorganic compound fertilizer (ICF) lowered pH in runoff water, resulting in reduced dissolution capacity of calcium fluoride in the soil and thereby decreasing total F- runoff discharge. In conclusion, OCF proves to be an effective N-fertilizer in mitigating salt ions and F- runoff discharge in soda saline-alkali paddy fields. Additionally, ICF demonstrates the ability to control F- runoff discharge.


Subject(s)
Fertilizers , Fluorides , Oryza , Soil , Fertilizers/analysis , Fluorides/analysis , Soil/chemistry , Alkalies/chemistry , Agriculture/methods , Nitrogen/analysis
2.
Front Microbiol ; 15: 1397683, 2024.
Article in English | MEDLINE | ID: mdl-38650885

ABSTRACT

Freshwater wetlands are the wetland ecosystems surrounded by freshwater, which are at the interface of terrestrial and freshwater ecosystems, and are rich in ecological composition and function. Biodiversity in freshwater wetlands plays a key role in maintaining the stability of their habitat functions. Due to anthropogenic interference and global change, the biodiversity of freshwater wetlands decreases, which in turn destroys the habitat function of freshwater wetlands and leads to serious degradation of wetlands. An in-depth understanding of the effects of biodiversity on the stability of habitat function and its regulation in freshwater wetlands is crucial for wetland conservation. Therefore, this paper reviews the environmental drivers of habitat function stability in freshwater wetlands, explores the effects of plant diversity and microbial diversity on habitat function stability, reveals the impacts and mechanisms of habitat changes on biodiversity, and further proposes an outlook for freshwater wetland research. This paper provides an important reference for freshwater wetland conservation and its habitat function enhancement.

3.
J Environ Manage ; 348: 119306, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37839204

ABSTRACT

Research studies on nutrient content and microbial communities after the application of organic manure have been reported, while available information about multi-interaction mechanisms of nutrient stoichiometry and microbial succession in soil aggregates remains limited. This work conducted a 10-year field experiment amended with cow manure (1.5 t/ha), during which the application of organic manure stimulated the fragmentation of soil macro-aggregates (>5 mm) and the agglomeration of soil micro-aggregates (<0.25 mm). Hence, the proportion of medium-size aggregates (0.25-5 mm) was increased in bulk soil, and there was an insignificant difference in the stability of soil aggregates. Meanwhile, the application of organic manure increased soil organic carbon (SOC), total nitrogen (TN) and phosphorus (TP) in all soil aggregate fractions. SOC, TN and TP were higher in micro-aggregates (<0.25 mm) after the application of organic manure, thus the dominating phylum of bacteria and fungi was more abundance in micro-aggregates due to the increase in nutrient level. During the organic fertilization process, fungal communities significantly changed because the variation of carbon-to-nitrogen ratio (C:N) in soil aggregates. Cultivated farmland in Northeast China showed a considerable capacity to sequestrate SOC during the organic fertilization process, but nitrogen may be a primary macro-element limiting soil productivity. Theoretically, organic manure amended with nitrogen fertilizer could be an effective measure to maintain microbial diversity and crop productivity in agro-ecosystems in Northeast China.


Subject(s)
Microbiota , Soil , Carbon/analysis , Manure , Fertilizers/analysis , Nitrogen/analysis , China , Fertilization , Soil Microbiology , Agriculture
4.
Environ Sci Pollut Res Int ; 30(43): 97977-97989, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37603250

ABSTRACT

The application of nitrogen (N) fertilizer aggravates the nutrient runoff loss from paddy, causing serious agricultural non-point source pollution, and leading to a serious decline in water quality. The global area of saline-alkali paddy has expanded, but the response of nutrient loss via runoff to N-fertilizer applications in saline-alkali paddy is still unclear. This study conducted a 147-day field experiment to evaluate the nutrient runoff loss from saline-alkali paddy with different N-fertilizer application strategies in Songnen Plain of Northeast China. Regardless of N-fertilizer types, the nutrient loss via rainfall runoff in the entire rice-growing season was significantly (p < 0.05) higher than that via artificial drainage. The N and phosphorus (P) concentrations in runoff water were correlated with salinity and alkalinity. Especially, pH had a significant positive correlation with total-P (TP) (r = 0.658, p < 0.01). In the entire rice-growing season, the TN runoff losses in urea (U), microbial fertilizer (MF), and inorganic compound fertilizer (ICF) treatments were significantly (p < 0.05) lower compared with carbon-based slow-release fertilizer (CSF) and organic-inorganic compound fertilizer (OCF), respectively. Meanwhile, the TP runoff losses in OCF and ICF treatments were significantly (p < 0.05) lower than U and MF, respectively. Overall, the application of ICF is a better choice to avoid N and P losses via runoff from saline-alkali paddy fields.


Subject(s)
Alkalies , Oryza , Fertilizers , China , Nitrogen , Nutrients
5.
Chemosphere ; 339: 139764, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37557995

ABSTRACT

Research studies have modified traditional substances to seek fast-acting removal of phosphorus in constructed wetlands (CWs) and ecological dams, rather than develop a brand-new nano-adsorbent. This work synthesized FeCa-based layered double hydroxide (FeCa-LDH) with a chemical co-precipitation method, and the performance, mechanism and factors of phosphorus removal were investigated. FeCa-LDH showed a marked ability to adsorb phosphorus from waste water, with a removal efficiency of 94.4% and 98.2% in CWs and ecological dams, respectively. Both FTIR and XPS spectrum evidenced that FeCa-LDH removed phosphorus via electrostatic and hydrogen-bonding adsorption, as well as a coordination reaction and interlayer anion exchange. FeCa-LDH showed a higher capacity to remove phosphorus in alkaline and neutral waste water than in acid conditions. Co-occurrence anions, which influenced the efficiency of the phosphorus removal capacity are considered in the sequence below: CO32- ≈ HCO3- > SO42- > NO3-. Innovatively, FeCa-LDH was not affected by the low-temperature limitation for CWs, and phosphorus removal efficiency at 5 °C was almost equal to that at 25 °C. These results cast a new idea on the construction, application and phosphorus removal performance of CWs and ecological dams.


Subject(s)
Wastewater , Water Pollutants, Chemical , Waste Disposal, Fluid/methods , Phosphorus , Wetlands , Pilot Projects , Hydroxides , Adsorption , Water Pollutants, Chemical/analysis
6.
Front Microbiol ; 14: 1163896, 2023.
Article in English | MEDLINE | ID: mdl-37333635

ABSTRACT

Coastal wetlands (CW) are the junction of the terrestrial and marine ecosystems and have special ecological compositions and functions, which are important for maintaining biogeochemical cycles. Microorganisms inhabiting in sediments play key roles in the material cycle of CW. Due to the variable environment of CW and the fact that most CW are affected by human activities and climate change, CW are severely degraded. In-depth understanding of the community structure, function, and environmental potential of microorganisms in CW sediments is essential for wetland restoration and function enhancement. Therefore, this paper summarizes microbial community structure and its influencing factors, discusses the change patterns of microbial functional genes, reveals the potential environmental functions of microorganisms, and further proposes future prospects about CW studies. These results provide some important references for promoting the application of microorganisms in material cycling and pollution remediation of CW.

7.
Sci Total Environ ; 884: 163757, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37142047

ABSTRACT

Systematic understanding of phosphorus adsorption performance, mechanism, factors and reusability of layered double hydroxides (LDH) remains limited. Thus, iron (Fe), calcium (Ca) and magnesium (Mg)-based LDH (FeCa-LDH and FeMg-LDH), were synthesized with a co-precipitation method to improve phosphorus removal efficiency during the wastewater treatment process. Both FeCa-LDH and FeMg-LDH showed a considerable ability to remove phosphorus in wastewater. When the phosphorus concentration was 10 mg/L, the removal efficiency reached 99 % (FeCa-LDH: 1 min) and 82 % (FeMg-LDH: 10 min), respectively. The phosphorus removal mechanism was observed to be electrostatic adsorption, coordination reaction and anionic exchange, which was more evident at pH = 10 for FeCa-LDH. Co-occurrence anions that affected phosphorus removal efficiency, were observed in the following order: HCO3- > CO32- ≈ NO3- > SO42-. After five adsorption-desorption cycles, phosphorus removal efficiency was still up to 85 % (FeCa-LDH) and 42 % (FeMg-LDH), respectively. Together, the present findings suggest that LDHs were high-performance, strongly-stable and reusable phosphorus adsorbents.


Subject(s)
Water Pollutants, Chemical , Water Purification , Wastewater , Phosphorus , Hydroxides , Adsorption , Water Purification/methods
8.
Article in English | MEDLINE | ID: mdl-36900888

ABSTRACT

Constructed wetlands (CWs) are an eco-technology for wastewater treatment and are applied worldwide. Due to the regular influx of pollutants, CWs can release considerable quantities of greenhouse gases (GHGs), ammonia (NH3), and other atmospheric pollutants, such as volatile organic compounds (VOCs) and hydrogen sulfide (H2S), etc., which will aggravate global warming, degrade air quality and even threaten human health. However, there is a lack of systematic understanding of factors affecting the emission of these gases in CWs. In this study, we applied meta-analysis to quantitatively review the main influencing factors of GHG emission from CWs; meanwhile, the emissions of NH3, VOCs, and H2S were qualitatively assessed. Meta-analysis indicates that horizontal subsurface flow (HSSF) CWs emit less CH4 and N2O than free water surface flow (FWS) CWs. The addition of biochar can mitigate N2O emission compared to gravel-based CWs but has the risk of increasing CH4 emission. Polyculture CWs stimulate CH4 emission but pose no influence on N2O emission compared to monoculture CWs. The influent wastewater characteristics (e.g., C/N ratio, salinity) and environmental conditions (e.g., temperature) can also impact GHG emission. The NH3 volatilization from CWs is positively related to the influent nitrogen concentration and pH value. High plant species richness tends to reduce NH3 volatilization and plant composition showed greater effects than species richness. Though VOCs and H2S emissions from CWs do not always occur, it should be a concern when using CWs to treat wastewater containing hydrocarbon and acid. This study provides solid references for simultaneously achieving pollutant removal and reducing gaseous emission from CWs, which avoids the transformation of water pollution into air contamination.


Subject(s)
Gases , Greenhouse Gases , Humans , Gases/analysis , Greenhouse Gases/analysis , Methane/analysis , Nitrous Oxide/analysis , Wastewater , Wetlands
9.
Environ Sci Pollut Res Int ; 30(18): 51665-51678, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36810817

ABSTRACT

With the increasing transformation of saline-alkali land into paddy, the nitrogen (N) loss in saline-alkali paddy fields becomes an urgent agricultural-environmental problem. However, N migration and transformation following the application of different N fertilizers in saline-alkali paddy fields remains unclear. In this study, four types of N fertilizers were tested to explore the N migration and transformation among water-soil-gas-plant media in saline-alkali paddy ecosystems. Based on the structural equation models, N fertilizer types can change the effects of electrical conductivity (EC), pH, and ammonia-N (NH4+-N) of surface water and/or soil on ammonia (NH3) volatilization and nitrous oxide (N2O) emission. Compared with urea (U), the application of urea with urease-nitrification inhibitors (UI) can reduce the potential risk of NH4+-N and nitrate-N (NO3--N) loss via runoff, and significantly (p < 0.05) reduce the N2O emission. However, the expected effectiveness of UI on NH3 volatilization control and total N (TN) uptake capacity of rice was not achieved. For organic-inorganic compound fertilizer (OCF) and carbon-based slow-release fertilizer (CSF), the average TN concentrations in surface water at panicle initiation fertilizer (PIF) stage were reduced by 45.97% and 38.63%, respectively, and the TN contents in aboveground crops were increased by 15.62% and 23.91%. The cumulative N2O emissions by the end of the entire rice-growing season were also decreased by 103.62% and 36.69%, respectively. Overall, both OCF and CSF are beneficial for controlling N2O emission and the potential risks of N loss via runoff caused by surface water discharge, and improving the TN uptake capacity of rice in saline-alkali paddy fields.


Subject(s)
Nitrogen , Oryza , Nitrogen/analysis , Fertilizers/analysis , Ammonia/analysis , Ecosystem , Alkalies , Agriculture , Soil/chemistry , Water , Urea , Nitrous Oxide/analysis
10.
Bioresour Technol ; 371: 128610, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36640818

ABSTRACT

There is limited information on the phosphorus availability under copper and tetracycline-amended composting: Insights into microbial communities and genes. Thus, this work investigated the phosphorus redistribution and transformation, illustrated the variation in microbial communities and genes, and ascertained the multiple action-patterns among which within copper and tetracycline-amended composting. Phosphorus bioavailability reduced by 8.96 % âˆ¼ 13.10 % due to the conservation of Ex-P to Ca-P. Copper and tetracycline showed a significant effect on fungal succession, but not to bacteria, as well as inhibited the phosphorus functional genes in fungal communities, while accelerated it in bacterial communities. Under the copper/tetracycline-stressed conditions, bacterial Firmicutes could promote the mineralization of organic phosphorus, and bacterial Proteobacteria might facilitate the dissolution of inorganic phosphorus. These findings could provide theoretical guidance for the further research on phosphorus bioavailability ascribed to microbial communities and genes.


Subject(s)
Composting , Phosphorus , Copper/pharmacology , Biological Availability , Anti-Bacterial Agents/pharmacology , Tetracycline , Bacteria/genetics , Soil , Manure/microbiology
11.
Fundam Res ; 3(6): 890-897, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38933005

ABSTRACT

Sanjiang Plain is intensively used for rice production, and ditch drainage diffuse pollution prevention is crucial. Groundwater, rich in Fe ions, is the main source of irrigation water in this region. In this study, pyrite and zero-valent iron (ZVI) (sponge iron and iron scraps) were used as substrates to identify the synergistic influence of exogenous Fe2+ addition and solid iron substrates on pollutant removal in constructed wetlands. Based on the results, iron substrates hardly improved the ammonia removal, mainly because of the physical structure and oxidation activity. At a hydraulic retention time longer than 8 h, the pollution removal efficiency in the zero-valent iron (ZVI) substrate treatment increased significantly, and the removal of nitrate (NO3 --N) and total phosphorus (TP) in the iron scrap substrate treatment reached about 60% and 70%, respectively. The high-throughput sequencing results showed a significant increase in the abundance of microorganisms involved in denitrification and phosphate accumulation in biofilms on ZVI substrates. The highest diversities of such microorganisms in biofilms on iron scraps were found for denitrifying bacteria (Pseudomonas), nitrate-reducing Fe (II)-oxidizing bacteria (Acidovorax), and Dechloromonas with autotrophic denitrification and phosphate accumulation, with a 43% cumulative abundance. Dechloromonas dominated in the iron sponge substrate treatment. The highest relative abundance of Acidovorax was found in the mixed iron substrate (pyrite, sponge iron, and iron scraps) treatment. The addition of ZVI substrate significantly improved the removal of NO3 --N and TP and reduced the hydraulic retention time through the continuous release of Fe2+ and the promotion of microbial growth. When designing constructed wetlands for treating paddy field drainage, the appropriate addition of iron scrap substrates is recommended to enhance the pollutant removal efficiency and shock load resistance of CWs.

12.
Sci Total Environ ; 849: 157876, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-35940267

ABSTRACT

The extensive application of nitrogen fertilizer in intensive irrigation areas poses a potential threat to groundwater. Given that the vadose zone acts as a buffer zone for the underground entry of surface pollutants, an in-depth understanding of its microbial community structure and function was crucial for controlling groundwater nitrogen pollution. In this study, soil samples from paddy vadose under groundwater irrigation with different depths (G1: 6.8 m, G2: 13.7 m, G3: 15.6 m, and G4: 17.8 m) were collected to unravel the differences in microbial community structure and function at different vadose depths (0-250 cm), as well as their relationship with soil properties. Results showed some differences among soil physicochemical factors under groundwater irrigation with different depths and that some electron acceptors were more abundant than others under deep groundwater irrigation (G2-G4). Remarkable differences in microbial communities under shallow- and deep-groundwater irrigation were found. The high abundances of anammox bacteria Candidatus_Brocadia in G2 and G3 indicated that deep groundwater irrigation was beneficial to its enrichment. Iron-reducing bacteria Anaeromyxobacter and sulfate-reducing bacteria Desulfovibrio were widely distributed in vadose zone and possessed the potential for anammox coupled with Fe(III)/sulfate reduction. Norank_f_Gemmatimonadaceae had nitrate- and vanadium-reducing abilities and could participate in anammox in vadose zone. Dissimilatory nitrate reduction to ammonia (DNRA) bacteria Geobacter facilitated Fe(II)-driven DNRA and thus provided electron donors and acceptors to anammox bacteria. Soil nutrients and electron donors/acceptors played important roles in shaping microbial community structure at phylum and genus levels. Microorganisms in vadose zone under groundwater irrigation showed good material/energy metabolism levels. Deep groundwater irrigation was conducive to the occurrence of anammox coupled with multi-electron acceptors. Our findings highlight the importance of understanding the structure and function of microbial communities in paddy vadose under groundwater irrigation and reveal the potential role of indigenous microorganisms in in-situ nitrogen removal.


Subject(s)
Groundwater , Microbiota , Water Pollutants, Chemical , Ammonia/metabolism , Anaerobic Ammonia Oxidation , Bacteria/metabolism , Ferric Compounds/metabolism , Ferrous Compounds/metabolism , Fertilizers , Groundwater/chemistry , Iron/metabolism , Nitrates/analysis , Nitrogen/analysis , Soil/chemistry , Sulfates/metabolism , Vanadium/metabolism , Water Pollutants, Chemical/analysis
13.
Chemosphere ; 295: 133830, 2022 May.
Article in English | MEDLINE | ID: mdl-35149020

ABSTRACT

Microcystins (MCs) pollution caused by eutrophication and climate change has posed a serious threat to ecosystems and human health. Constructed wetlands (CWs) with biochar addition volume ratios of 0% (BC0-CWs), 10% (BC10-CWs), 20% (BC20-CWs) and 50% (BC50-CWs) were set up to evaluate the efficiency of biochar-amended CWs for eutrophication and MCs pollution control. The results illustrated that removal efficiencies of both NH4+-N and NO3--N were enhanced by biochar addition to varying degrees. The average TP and MC-LR removal efficiencies increased with increasing biochar addition ratios, and the average TP and MC-LR removal efficiencies in biochar-amended CWs were significantly (p < 0.05) improved by 5.64-9.58% and 10.74-14.52%, respectively, compared to that of BC0-CWs. Biochar addition changed the microbial community diversity and structure of CWs. The relative abundance of functional microorganisms such as Burkholderiaceae, Nitrospiraceae, Micrococcaceae, Sphingomonadaceae and Xanthomonadaceae was promoted by biochar addition regardless of addition ratios. The higher relative abundance of the above microorganisms in BC20-CWs and BC50-CWs may contribute to their better removal performance compared to other CWs. The concentrations of extracellular polymeric substance (EPS) in biochar-amended CWs were significantly (p < 0.05) lower than that in BC0-CWs, which can reduce the risk of system clogging. This study demonstrated that biochar addition may be a potential intensification strategy for eutrophication and MCs pollution control by CWs. Considering both the removal performance and economic cost, a biochar addition ratio of 20% was recommended as an optimal addition ratio in practical application.


Subject(s)
Microbiota , Wetlands , Charcoal , Eutrophication , Extracellular Polymeric Substance Matrix , Microcystins , Waste Disposal, Fluid
14.
J Environ Manage ; 309: 114669, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35168133

ABSTRACT

Microcystins (MCs) pollution caused by cyanobacteria harmful blooms (CHBs) has posed short- and long-term risks to aquatic ecosystems and public health. Constructed wetlands (CWs) have been verified as an effective technology for eutrophication but the removal performance for MCs did not achieve an acceptable level. CWs integrated with microbial fuel cell (MFC-CWs) were developed to intensify the nutrient and Microcystin-LR (MC-LR) removal efficiencies in this study. The results indicated that closed-circuit MFC-CWs (T1) exhibited a better NO3--N, NH4+-N, TP and MC-LR removal efficiency compared to that of open-circuit MFC-CWs (CK, i.e., traditional CWs). Therein, a MC-LR removal efficiency of greater than 95% was observed in both trials in T1. The addition of sponge iron to the anode layer of MFC-CWs (T2) improved only the NO3--N removal and efficiency bioelectricity generation performance compared to T1, and the average effluent MC-LR concentration of T2 (1.14 µg/L) was still higher than the provisional limit concentration (1.0 µg/L). The microbial community diversity of T1 and T2 was simplified compared to CK. The relative abundance of Sphingomonadaceae possessing the degradation capability for MCs increased in T1, which contributed to the higher MC-LR removal efficiency compared to CK and T2. While the relative abundance of electrochemically active bacteria (EAB) (i.e., Desulfuromonadaceae and Desulfomicrobiaceae) in the anode of T2 was promoted by the addition of sponge iron. Overall, this study suggests that integrating MFC into CWs provides a feasible intensification strategy for eutrophication and MCs pollution control.


Subject(s)
Bioelectric Energy Sources , Cyanobacteria , Microbiota , Microcystins , Wetlands
15.
Article in English | MEDLINE | ID: mdl-35162498

ABSTRACT

A group of microcosm-scale unplanted constructed wetlands (CWs) were established to evaluate the effectiveness of exogenous Fe2+ addition on ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N), and total phosphorus (TP) removal. The addition of Fe2+ concentrations were 5 mg/L (CW-Fe5), 10 mg/L (CW-Fe10), 20 mg/L (CW-Fe20), 30 mg/L (CW-Fe30), and 0 mg/L (CW-CK). The microbial community in CWs was also analyzed to reveal the enhancement mechanism of pollutant removal. The results showed that the addition of Fe2+ could significantly (p < 0.05) reduce the NO3--N concentration in the CWs. When 10 mg/L Fe2+ was added and the hydraulic retention time (HRT) was 8 h, the highest removal rate of NO3--N was 88.66%. For NH4+-N, when the HRT was 8-24 h, the removal rate of CW-Fe5 was the highest (35.23% at 8 h and 59.24% at 24 h). When the HRT was 48-72 h, the removal rate of NH4+-N in CWs with 10 mg/L Fe2+ addition was the highest (85.19% at 48 h and 88.66% and 72 h). The removal rate of TP in all CWs was higher than 57.06%, compared with CW-CK, it increased 0.63-31.62% in CWs with Fe2+ addition; the final effluent TP concentration in CW-Fe5 (0.13 mg/L) and CW-Fe10 (0.16 mg/L) met the class III water standards in Surface Water Environmental Quality Standards of China (GB3838-2002). Microbical diversity indexes, including Shannon and Chao1, were significantly lower (p < 0.05) in Fe2+ amended treatment than that in CW-CK treatment. Furthermore, phylum Firmicutes, family Carnobacteriaceae, and genus Trichococcus in Fe2+ amended treatments was significantly (p < 0.05) higher than that in CW-CK treatment. Fe3+ reducing bacteria, such as Trichococcus genus, belonging to the Carnobacteriaceae in family-level, and Lactobacillales order affiliated to Firmicutes in the phylum-level, can reduce the oxidized Fe3+ to Fe2+ and continue to provide electrons for nitrate. It is recommended to consider adding an appropriate amount of iron into the water to strengthen its purifying capacity effect for constructed artificial wetlands in the future.


Subject(s)
Ammonium Compounds , Wetlands , Nitrogen/analysis , Nutrients , Waste Disposal, Fluid/methods , Wastewater
16.
J Environ Sci (China) ; 113: 356-364, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34963543

ABSTRACT

Considerable research efforts have been devoted to increase phosphorus (P) availability during aerobic composting. However, there is little discussion weather the dissolved organic carbon (DOC) controls the transformation among P-fractions. Thus, we investigated the changes in DOC compositions and P-fractions during biochar-amended composting (wet weight basis, 5% and 10%). TP content continuously increased since the 'concentration effect' during aerobic composting. NaHCO3-Pi, NaOH-Pi and HCl-Pi were main P-fractions, and biochar can improve P-bioavailability by transforming NaOH-Pi and HCl-Pi into NaHCO3-Pi. Structure equation models (SEMs) indicated that biochar enhanced the P-bioavailability through regulating the decomposition of DOC. Our results at least hint that the activation mechanism on P under the influence of DOC during biochar-amended composting.


Subject(s)
Composting , Biological Availability , Charcoal , Dissolved Organic Matter , Phosphorus , Soil
17.
Chemosphere ; 289: 133159, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34871611

ABSTRACT

Available information that whether antibiotics affect the succession in microbial communities during aerobic composting remains limited. Thus, this work investigated the dynamic changes in bacterial and fungal structures during aerobic composting amended with tetracycline hydrochloride (TCH: 0, 50, 150 and 300 mg kg-1). Composting phases significantly affected bacterial and fungal communities, but only fungi strongly responded to antibiotics, while bacteria did not. Firmicutes, Proteobacteria, Bacteroidota and Actinobacteriota were primary bacterial phylum. Neocallimastigomycota was dominant fungal phylum at temperature-heating phase, then Basidiomycota and Ascomycota became main fungal phylum at thermophilic and temperature-colling phases. Low TCH concentration promoted Chytridiomycota growth, while high TCH concentration inhibited mostly fungal activity in TCH-amended composting. Nitrogen species were critical factors controlling the succession in bacterial and fungal communities during composting process. These results cast a new light on understanding about microbial function during aerobic composting.


Subject(s)
Ascomycota , Composting , Microbiota , Bacteria/genetics , Fungal Structures , Manure , Soil , Tetracycline
18.
Sci Total Environ ; 806(Pt 1): 150220, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34560453

ABSTRACT

Using microbial fuel cells with constructed wetlands (MFC-CWs) for eliminating antibiotics has recently attracted extensive attention. However, antibiotic removal efficiencies in MFC-CWs must be enhanced, and the accumulation of antibiotic resistant genes (ARGs) remains an unmanageable issue. This study tries to enhance the antibiotic removal in synthetic wastewater and reduce ARGs by adding sponge iron (s-Fe0) and calcium peroxide to the anode and cathode of MFC-CWs, respectively, and/or simultaneously. The results demonstrated that adding s-Fe0 and calcium peroxide to MFC-CWs could improve the removal efficiencies of sulfamethoxazole (SMX) and tetracycline (TC) by 0.8-1.3% and 6.0-8.7%. Therein, s-Fe0 also significantly reduced 84.10-94.11% and 49.61-60.63% of total sul and tet genes, respectively. Furthermore, s-Fe0 improved the voltage output, power density, columbic efficiency, and reduced the internal resistance of reactors. The intensification to the electrode layers posed a significant effect on the microbial community composition and functions, which motivated the shift of antibiotic removal, accumulation of ARGs and bioelectricity generation in MFC-CWs. Given the overall performance of MFC-CWs, adding s-Fe0 to the anode region of MFC-CWs was found to be an effective strategy for removing antibiotics and reducing the accumulation of ARGs.


Subject(s)
Bioelectric Energy Sources , Wetlands , Anti-Bacterial Agents , Electrodes , Iron , Wastewater/analysis
19.
Environ Pollut ; 287: 117592, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34171725

ABSTRACT

Constructed wetlands (CWs) inoculated with exogenous microbes have great potential for removing pollutants in adverse environments. The rapid loss of functional bacteria and the high cost of repeated additions of inoculum, however, limit the practical application of this technology. In this study, C-F2 immobilized bacteria (i.e., immobilized salt-tolerant bacterium Alishewanella sp. F2 incorporated with a carbon source) were developed and utilized in CWs for solving the above problems. A 60-day experiment demonstrated that bioaugmented CWs (Bio-CWs) with the addition of C-F2 immobilized bacteria into the bottom gravel layer of CW microcosms (B-CF2 treatment) exhibited high nitrogen removal efficiency under a saline condition (electrical conductivity of 15 mS/cm). We measured mean nitrate nitrogen (NO3--N) and total nitrogen (TN) removal percentages of 97.8% and 88.1%, respectively, which were significantly (p < 0.05) higher than those in Bio-CWs with microbial inoculum (MI-F2 treatment, 63.5% and 78.2%) and unbioaugmented CWs (CK, 48.7% and 67.2%). The TN content of the entire plant was significantly (p < 0.05) increased in B-CF2 (636.06 mg/microcosm) compared with CK (372.06 mg/microcosm). The relative abundances of the genera Alishewanella (i.e., the exogenous bacterium, 5.5%), Clostridium-XlVa (8.8%) and Bacteroides (21.1%) in B-CF2 were significantly (p < 0.05) higher than in MI-F2 and CK, which improved the denitrification capacity of CWs. Overall, a high denitrification efficiency and durability were achieved in the newly developed Bio-CWs (i.e., B-CF2 treatment) with immobilized bacteria under saline conditions, which provides an alternative technology for the rapid removal of nitrogen from saline wastewater.


Subject(s)
Denitrification , Wetlands , Bacteria , Nitrogen , Waste Disposal, Fluid , Wastewater
20.
J Environ Manage ; 292: 112768, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33984644

ABSTRACT

Considerable researches have been devoted to ascertain the transformation among heavy metal (HM) or phosphorus (P) fractions during aerobic composting. However, available information that additives with different grain-sizes regulate the activation mechanism on P through influencing the passivation effect on HMs remains limited. Thus, this work aimed to investigate the dynamic changes in HM-fractions and P-fractions, and ascertain the interaction pathway between HMs and P during aerobic composting amended with medical stone (Coarse medical stone, 3-5 mm; Fine medical stone, < 0.1 mm). Medical stone, especially for coarse-grained medical stone, significantly enhanced the HM-passivation and P-activation during the composting (P < 0.05). The bioavailability factor of HMs decreased by 48.05% (Cu), 20.65% (Pb), 15.58% (Cd) and 6.10% (Zn), and the content of labile available P (LAP) increased by 6.45%. HMs, with the explanatory capacity of 65.9%-84.9%, was important parameter superior to temperature (0.8%-5.4%), moisture content (MC, 0.1%-1.7%), pH (0.1%-8.7%), electric conductivity (EC, 0.8%-9.8%), carbon-to-nitrogen (C:N, 0.3%-2.3%) ratio and dissolved organic carbon (DOC, 0.4%-3.1%), to evaluate the transformation among P-fractions. Our results cast a new light on P-activation with respect to HM-passivation during aerobic composting.


Subject(s)
Composting , Metals, Heavy , Metals, Heavy/analysis , Nitrogen , Phosphorus , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...