Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 837
Filter
1.
Food Chem ; 463(Pt 2): 141202, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39303474

ABSTRACT

Crystallization degrades the physicochemical properties of honey and reduces consumer acceptance. To address this issue, radiofrequency was developed to investigate the decrystallization efficiency and quality impact mechanism of rape honey. The results showed that radiofrequency significantly decreased the number and size of crystals, leading to shortening the decrystallization time to less than 10 min. The response surface optimization methodology further indicated that the highest decrystallization rate (98.72 ± 0.34 %) and lower 5-Hydroxymethylfurfural (2.45 ± 0.12 mg/kg) contents were obtained. Furthermore, radiofrequency changed the honey from a pseudoplastic into a Newtonian fluid efficiently due to the volumetric heating feature. It is worth noting that the inactivation of glucose oxidase reduced the antibacterial capacity, while the increase in total phenolic and flavonoid contents improved the antioxidant capacity of rape honey. In summary, current findings indicated that radiofrequency is a potential alternative decrystallization technology for water baths.

2.
Biol Sex Differ ; 15(1): 73, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285472

ABSTRACT

PURPOSE: 46,XY disorders of sex development (46,XY DSD) are characterized by incomplete masculinization of genitalia with reduced androgenization. Accurate clinical management remains challenging, especially based solely on physical examination. Targeted next-generation sequencing (NGS) with known pathogenic genes provides a powerful tool for diagnosis efficiency. This study aims to identify the prevalent genetic variants by targeted NGS technology and investigate the diagnostic rate in a large cohort of 46,XY DSD patients, with most of them presenting atypical phenotypes. METHODS: Two different DSD panels were developed for sequencing purposes, targeting a cohort of 402 patients diagnosed with 46,XY DSD, who were recruited from the Department of Urology at Children's Hospital, Zhejiang University School of Medicine (Hangzhou, China). The detailed clinical characteristics were evaluated, and peripheral blood was collected for targeted panels to find the patients' variants. The clinical significance of these variants was annotated according to American College of Medical Genetics and Genomics (ACMG) guidelines. RESULTS: A total of 108 variants across 42 genes were found in 107 patients, including 46 pathogenic or likely pathogenic variants, with 45.7%(21/46) being novel. Among these genes, SRD5A2, AR, FGFR1, LHCGR, NR5A1, CHD7 were the most frequently observed. Besides, we also detected some uncommon causative genes like SOS1, and GNAS. Oligogenic variants were also identified in 9 patients, including several combinations PROKR2/FGFR1/CYP11B1, PROKR2/ATRX, PROKR2/AR, FGFR1/LHCGR/POR, FGFR1/NR5A1, GATA4/NR5A1, WNT4/AR, MAP3K1/FOXL2, WNT4/AR, and SOS1/FOXL2. CONCLUSION: The overall genetic diagnostic rate was 11.2%(45/402), with an additional 15.4% (62/402) having variants of uncertain significance. Additionally, trio/duo patients had a higher genetic diagnostic rate (13.4%) compared to singletons (8.6%), with a higher proportion of singletons (15.1%) presenting variants of uncertain significance. In conclusion, targeted gene panels identified pathogenic variants in a Chinese 46,XY DSD cohort, expanding the genetic understanding and providing evidence for known pathogenic genes' involvement.


46,XY disorders of sex development (46,XY DSD) are conditions where individuals don't fully develop male genitalia due to reduced androgen hormones. Diagnosing these conditions based only on physical exams is difficult. This study used advanced genetic testing called targeted next-generation sequencing (NGS) to identify common genetic variations in a large group of 46,XY DSD patients, many of whom had unusual symptoms. We examined 402 patients with DSD and a 46,XY karyotype, focusing on 142 candidate genes related to sex development. We found genetic variations in 107 patients, including 45 that were likely responsible for their condition. Some of these variations were new discoveries. The most commonly affected genes were SRD5A2, AR, FGFR1, LHCGR, NR5A1, CHD7. We also found that some patients had variations in multiple genes, suggesting complex genetic causes. Overall, we were able to diagnose 11.2% of patients based on our genetic testing, with another15.4% having uncertain results. Patients tested as a trio or duo (with their parents) had a higher diagnosis rate than those tested alone. This study helps expand our understanding of the genetic factors behind 46,XY DSD in the Chinese population.


Subject(s)
Disorder of Sex Development, 46,XY , High-Throughput Nucleotide Sequencing , Humans , Male , Disorder of Sex Development, 46,XY/genetics , Female , Child , Child, Preschool , Adolescent , Cohort Studies , Infant , Asian People/genetics , China , Young Adult , Adult , East Asian People
3.
Dalton Trans ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39253864

ABSTRACT

This review summarizes the progress in the research on polyoxometalate (POM)-decorated gold (Au) and silver (Ag) core-shell structures (Au/Ag@POMs), emphasizing their substantial application potential in catalysis, medicine, and biology. It outlines the central strategies for fabricating Au/Ag@POMs with diverse morphologies and dimensions, leveraging POMs as protective ligands and reducing agents as well as for ligand exchange. Of particular note is the focus on the analysis of the nanoparticle size, shape, and intricate architecture of POM shells using cryo-electron microscopy techniques. By integrating recent findings on atomically precise POM-stabilized nanoclusters, this review delves deeper into understanding surface interface structures, intrinsic atomic architectures, and electronic interactions between POM shells and metallic cores. Collectively, advancements in this field underscore significant strides in the controllable synthesis and precise structural manipulation of Au/Ag@POM architectures, thus paving the way for engineering high-performance metal catalysts.

4.
Acta Biomater ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39278301

ABSTRACT

The regulation of intracellular ionic homeostasis to trigger antigen-specific immune responses has attracted extensive interest in tumor therapy. In this study, we developed a dual-pathway nanoreactor, Au-Cu2-xSe@ZIF-8@P18 NPs (ACS-Z-P NPs), which targets danger-associated molecular patterns (DAMPs) and releases Zn2+ and reactive oxygen species (ROS) within the tumor microenvironment (TME). Zn2+ released from the metal-organic frameworks (MOFs) was deposited in the cytoplasm, leading to aberrant transcription levels of intracellular zinc-regulated proteins and DNA damage, thereby inducing pyroptosis and immunogenic cell death (ICD) dependent on caspase1/gasdermin D (GSDMD) pathway. Furthermore, upon laser irradiation, ACS-Z-P NPs could break through the limitations of inherent defects of immunosuppression in TME, enhance ROS generation through a Fenton-like reaction cascade, which subsequently triggered the activation of inflammatory vesicles and the release of damage-associated molecular patterns (DAMPs). This cascade effect led to the amplification of pyroptosis and immunogenic cell death (ICD), thereby remodeling the immunosuppressed TME. Consequently, this process improved dendritic cell (DC) antigen presentation and augmented anti-tumor T-cell responses, effectively initiating antigen-specific immune responses and further enhancing pyroptosis and ICD. This study explores the therapeutic properties of these mechanisms in detail. STATEMENT OF SIGNIFICANCE: : The synthesized Au-Cu2-xSe@ZIF-8@P18 nanoparticles (ACS-Z-Ps) can effectively enhance the body's immune response by regulating zinc ion levels within cells. This regulation leads to abnormal levels of zinc-regulated protein transcription and DNA damage, which induces cellular pyroptosis. As a result, antigen presentation to dendritic cells (DCs) is improved, and anti-tumor T-cell responses are enhanced. The ACS-Z-P NPs overcome the limitations of ROS deficiency and immunosuppression in the tumor microenvironment by using H2O2 in the tumor microenvironment through a Fenton-like reaction. This leads to an increased production of ROS and O2, remodeling of the immunosuppressed tumor microenvironment, and enhanced induction of cell pyroptosis and immunogenic cell death. ACS-Z-P NPs targeted B16 cells using the photosensitizer P18 in combination with PDT treatment. This approach significantly inhibited the proliferation of B16 cells and effectively inhibited tumor growth.

5.
Front Microbiol ; 15: 1418817, 2024.
Article in English | MEDLINE | ID: mdl-39228379

ABSTRACT

Introduction: Antimicrobial therapy plays a crucial role in the management of CDI patients. However, the standard agent for treating CDIs is limited to oral fidaxomicin or vancomycin. For patients made nil by mouth, there is a clinically urgent and essential need to develop an intravenous antibiotic. Methods: For C. difficile with the lowest MIC of nemonoxacin and vancomycin, the inhibitory effects were tested using the kinetic time-kill assay and ex vivo co-culture model. The effectiveness of nemonoxacin and vancomycin in inhibiting spore germination, the sporicidal activity, and the treatment of mice with CDIs were compared. Results: For clinical isolates and laboratory strains, lower MICs of nemonoxacin against C. difficile than levofloxacin and ciprofloxacin were observed, even in those harboring point mutations in the quinolone-resistance determining region. Although nemonoxacin failed to suppress spore outgrowth and germination in C. difficile, it exhibited an effective inhibitory effect against C. difficile in the kinetic time-kill assay and the ex vivo co-culture model. Mice receiving intraperitoneal nemonoxacin had less weight loss, higher cecum weight, a longer colon length, and lower expression of the tcdB gene, compared with untreated mice. Notably, there were no significant differences observed in weight loss, cecum weight, colon length, or tcdB gene expression between mice treated with vancomycin and those treated with any dose of nemonoxacin. Similarly, no significant differences were found between mice receiving combination therapy of intraperitoneal nemonoxacin plus oral vancomycin and those treated with intraperitoneal nemonoxacin or oral vancomycin alone. Discussion: The potential role of nemonoxacin, which can be administered parenterally, for treating CDIs was evidenced through the in vitro, ex vivo, and mouse models.

6.
Cell Death Discov ; 10(1): 391, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223162

ABSTRACT

Bladder cancer (BC) represents a prevalent and formidable malignancy necessitating innovative diagnostic and therapeutic strategies. Circular RNAs (circRNAs) have emerged as crucial regulators in cancer biology. In this study, we comprehensively evaluated ferroptosis levels in BC cells utilizing techniques encompassing lipid peroxidation assessment, transmission electron microscopy, and malondialdehyde (MDA) measurement. Additionally, we probed into the mechanistic intricacies by which circRNAs govern BC, employing RNA pull-down, RNA immunoprecipitation (RIP), and immunoprecipitation (IP) assays. Our investigation unveiled circSIRT5, which displayed significant downregulation in BC. Notably, circSIRT5 emerged as a promising prognostic marker, with diminished expression correlating with unfavorable clinical outcomes. Functionally, circSIRT5 was identified as an inhibitor of BC progression both in vitro and in vivo. Mechanistically, circSIRT5 exerted its tumor-suppressive activities through the formation of a ternary complex involving circSIRT5, SYVN1, and PHGDH. This complex enhanced the ubiquitination and subsequent degradation of PHGDH, ultimately promoting ferroptosis in BC cells. This ferroptotic process contributed significantly to the inhibition of tumor growth and metastasis in BC. In addition, FUS was found to accelerate the biogenesis of circSIRT5 in BC. These findings provide valuable insights into the pivotal role of circSIRT5 in BC pathogenesis, underscoring its potential as a diagnostic biomarker and therapeutic target for this malignancy.

7.
Opt Lett ; 49(18): 5163-5166, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39270255

ABSTRACT

Temperature distribution can be acquired through non-contact temperature measurement using multispectral imaging. However, the challenge lies in radiometric temperature inversion owing to the unknown emissivity. Despite the promising results demonstrated by traditional algorithms and neural networks, enhancing the precision and reliability of temperature inversion remains a challenge. To tackle these challenges, in this work, we propose the use of ensemble learning for temperature distribution inversion in infrared multispectral imaging. The network comprises a base-learner and a meta-learner, trained to establish the nonlinear relationship between temperature and multispectral distribution measurements. Moreover, the network architecture exhibits high robustness against noise arising in the testing environment. Simulations and real experiments on multispectral imaging measurements illustrate that ensemble learning can be a potent tool for multispectral imaging radiation temperature distribution measurement, achieving superior inversion performance compared to other neural networks. The reproducible code will be available at https://github.com/shuowenyang/Temperature-Inversion.

8.
Heliyon ; 10(15): e35160, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170419

ABSTRACT

Background: Previous observational studies have investigated the correlation between calcium homeostasis modulator levels and endometriosis risk. Yet, the genetic association between body calcium homeostasis and endometriosis risk remains to be elucidated. Methods: Four tiers of Mendelian randomization (MR) analysis were conducted, as follows: (1) single univariate MR and (2) multivariate MR to evaluate the correlation between calcium homeostasis regulators and endometriosis; (3) inverse MR to probe the influence of endometriosis on body calcium homeostasis; (4) two-sample MR to scrutinize the connection between calcium levels and endometriosis categories. Results: The two-sample MR analysis unveiled a robust positive correlation between genetically inferred calcium levels and endometriosis risk (IVW: OR = 1.15, 95 % CI: 1.02-1.29, p = 0.018). The MVMR analysis corroborated that the positive correlation of calcium levels with endometriosis persisted after adjusting for 25(OH)D and PTH. The inverse MR analysis disclosed a significant association between endometriosis and 25(OH)D (ß = 0.01, 95 % CI: 0.00-0.02, p = 0.007) and calcium (ß = 0.02, 95 % CI: 0.00-0.04, p = 0.035). The two-sample MR analysis further demonstrated that calcium levels were positively linked solely to endometriosis of uterus (i.e. adenomyosis, IVW: OR = 1.23, 95 % CI: 1.01-1.49, p = 0.038), with no evidence of a influence on other endometriosis categories. Conclusions: This study, employing various types of MR, offers some genetic evidence for the relationship between calcium homeostasis and endometriosis, augmenting the current comprehension of the complex association between the two and suggesting that calcium levels are a risk factor for endometriosis. These findings provide a unique genetic perspective that may spur further investigation and may inform future strategies for managing patients with endometriosis.

9.
Cardiovasc Diabetol ; 23(1): 307, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175051

ABSTRACT

BACKGROUND: The triglyceride-glucose (TyG) index and estimated glucose disposal rate (eGDR), which are calculated using different parameters, are widely used as markers of insulin resistance and are associated with cardiovascular diseases and prognosis. However, whether they have an additive effect on the risk of mortality remains unclear. This study aimed to explore whether the combined assessment of the TyG index and eGDR improved the prediction of long-term mortality in individuals with and without diabetes. METHODS: In this cross-sectional and cohort study, data were derived from the National Health and Nutrition Examination Survey (NHANES) 2001-2018, and death record information was obtained from the National Death Index. The associations of the TyG index and eGDR with all-cause and cardiovascular mortality were determined by multivariate Cox regression analysis and restricted cubic splines. RESULTS: Among the 17,787 individuals included in the analysis, there were 1946 (10.9%) all-cause deaths and 649 (3.6%) cardiovascular deaths during a median follow-up of 8.92 years. In individuals with diabetes, the restricted cubic spline curves for the associations of the TyG index and eGDR with mortality followed a J-shape and an L-shape, respectively. The risk of mortality significantly increased after the TyG index was > 9.04 (all-cause mortality) or > 9.30 (cardiovascular mortality), and after eGDR was < 4 mg/kg/min (both all-cause and cardiovascular mortality). In individuals without diabetes, the association between eGDR and mortality followed a negative linear relationship. However, there was no association between the TyG index and mortality. Compared with individuals in the low TyG and high eGDR group, those in the high TyG and low eGDR group (TyG > 9.04 and eGDR < 4) showed the highest risk for all-cause mortality (hazard ratio [HR] = 1.592, 95% confidence interval [CI] 1.284-1.975) and cardiovascular mortality (HR = 1.683, 95% CI 1.179-2.400) in the overall population. Similar results were observed in individuals with and without diabetes. CONCLUSIONS: There was a potential additive effect of the TyG index and eGDR on the risk of long-term mortality in individuals with and without diabetes, which provided additional information for prognostic prediction and contributed to improving risk stratification.


Subject(s)
Biomarkers , Blood Glucose , Cardiovascular Diseases , Cause of Death , Diabetes Mellitus , Insulin Resistance , Nutrition Surveys , Triglycerides , Humans , Male , Female , Middle Aged , Blood Glucose/metabolism , Risk Assessment , Triglycerides/blood , Biomarkers/blood , Cross-Sectional Studies , Cardiovascular Diseases/mortality , Cardiovascular Diseases/blood , Cardiovascular Diseases/diagnosis , Diabetes Mellitus/mortality , Diabetes Mellitus/blood , Diabetes Mellitus/diagnosis , Time Factors , Prognosis , Aged , Adult , United States/epidemiology , Predictive Value of Tests , Risk Factors
10.
Pediatr Res ; 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39179877

ABSTRACT

BACKGROUND: We aimed to explore the differences and relationships in body composition, social function, and comorbidities between children with attention-deficit/hyperactivity disorder (ADHD) and subthreshold ADHD. METHODS: A case-control study was conducted to analyze the differences between children with ADHD and subthreshold ADHD. Logistic regression models were used to analyze the factors influencing social functional impairments and comorbidities. RESULTS: Children with ADHD and subthreshold ADHD had a higher fat mass index than healthy children (p < 0.05). The scores of all six social functional domains were higher in the subthreshold ADHD and ADHD groups than in the control group (p < 0.05). The prevalence of comorbidity was higher in children with subthreshold ADHD and ADHD compared to the control group (p < 0.05). Inattention and comorbid anxiety/depression increased the risk of functional impairments in children with ADHD (full syndrome/subthreshold), whereas a higher fat-free mass index reduced the risk. The severity of hyperactivity was associated with a higher risk of comorbidity in children with ADHD (full syndrome/subthreshold). CONCLUSION: Children with subthreshold ADHD and ADHD had more fat mass and higher rates of social functional impairments and comorbidities than healthy children. There were clinical correlations between body composition, social functional impairments, and comorbidities in ADHD. IMPACT: 1. Children with subthreshold ADHD and ADHD had higher fat mass levels than normal children. 2. The social function impairments and comorbidities of children with subthreshold ADHD were similar to those with ADHD. 3. Inattentiveness and anxiety/depression increased the risk of functional impairments in children with ADHD (full syndrome/subthreshold), while a higher fat-free mass index and skeletal muscle-to-body fat ratio reduced the risk.

11.
J Nanobiotechnology ; 22(1): 526, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217372

ABSTRACT

The programmed cell death (PCD) pathway removes functionally insignificant, infection-prone, or potentially tumorigenic cells, underscoring its important role in maintaining the stability of the internal environment and warding off cancer and a host of other diseases. PCD includes various forms, such as apoptosis, copper death, iron death, and cellular pyroptosis. However, emerging solid-state electron-mediated Z-scheme heterostructured semiconductor nanomaterials with high electron-hole (e-h+) separation as a new method for inducing PCD have not been well studied. We synthesize the Bi2S3-Bi2O3-Au-PEG nanorods (BB-A-P NRs) Z-scheme heterostructured semiconductor has a higher redox capacity and biocompatibility. Firstly, the BB-A-P NRs are excited by near-infrared (NIR) light, which mimics the action of catalase by supplying oxygen (O2) and converting it to a single-linear state of oxygen (1O2) via e-h+ transfer. Secondly, they react with hydrogen peroxide (H2O2) and water (H2O) in tumor to produce hydroxyl radicals (•OH), inducing apoptosis. Intriguingly, the Caspase-1/Gasdermin D (GSDMD)-dependent conventional pyroptosis pathway induced cellular pyroptosis activated by apoptosis and reactive oxygen species (ROS) which causes the intense release of damage associated molecular patterns (DAMPs), leading to the inflammatory death of tumor cells. This, in turn, activates the immunological environment to achieve immunogenic cell death (ICD). BB-A-P enables computed tomography imaging, which allows for visualization of the treatment. BB-A-P activated dual PCD can be viewed as an effective mode of cell death that coordinates the intracellular environment, and the various pathways are interrelated and mutually reinforcing which shows promising therapeutic effects and provides a new strategy for eliminating anoxic tumors.


Subject(s)
Apoptosis , Semiconductors , Animals , Apoptosis/drug effects , Mice , Cell Line, Tumor , Electrons , Humans , Melanoma/pathology , Nanotubes/chemistry , Nanostructures/chemistry , Reactive Oxygen Species/metabolism , Hydrogen Peroxide , Bismuth/chemistry , Pyroptosis/drug effects , Gold/chemistry
12.
Lancet Reg Health West Pac ; 47: 101101, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948164

ABSTRACT

Background: Type 2 diabetes (T2DM) remains a challenge to treat despite the expansion of various therapeutic classes. Visepegenatide (PB-119) is a once a week, subcutaneous, glucagon-like peptide-1 receptor agonist (GLP-1 RA) injection without the requirement of dose titration that has shown glycaemic control and safety profile in two phase 2 studies conducted in China and the United States, respectively. The aim of this study was to evaluate the efficacy and safety of visepegenatide as a monotherapy in treatment-naïve patients with T2DM. Methods: This was a multicentre, double-blind, parallel, placebo-controlled, phase 3 trial conducted in 30 centres in China. Adult participants (aged 18-75 years) with T2DM, glycated haemoglobin (HbA1c) of 7.5%-11.0% [58.47-96.73 mmol/mol], body mass index (BMI) of 18-40 kg/m2, and who had been treated with diet and exercise alone for at least 8 weeks before the screening visit were eligible for enrolment. After a 4-week placebo injection run-in period, participants with HbA1c of 7.0%-10.5% [53.0-91.3 mmol/mol] and fasting plasma glucose (FPG) < 15 mmol/L were randomised in a ratio of 1:1 to receive visepegenatide (150 µg) or placebo subcutaneous injections once a week for 24 weeks. The treatment was extended to another 28 weeks during which all participants received visepegenatide. The primary outcome was a change in HbA1c from baseline to week 24. This study was registered with ClinicalTrials.gov, as NCT04504370. Findings: Between November 2, 2020, and November 2, 2022, we randomly assigned 273 adult participants to the visepegenatide (n = 137) and placebo (n = 136) groups. In total, 257 (94.12%) participants, 131 (95.6%) on visepegenatide, and 126 (92.6%) on placebo, completed the double-blinded treatment period. At baseline, the mean (SD) HbA1c was 8.47% (0.81) [69.07 [8.81] mmol/mol], which rapidly decreased to 7.63% (0.80) [59.94 [8.70] mmol/mol] with visepegenatide by week 4 of treatment, and the change from baseline was significantly greater than that in the placebo group (-0.82% [-0.90 to -0.74]; [-8.99 [-9.89 to -8.10] mmol/mol] vs -0.30% [-0.41 to -0.19]; [-3.30 [-4.50 to -2.09] mmol/mol]). At week 24, when evaluating the effects of treatment with treatment policy estimand, the least square mean (LSM change in HbA1c from baseline was -1.36 (95% confidence interval [CI] -1.52 to -1.20) [-14.84 [-16.60 to -13.08] mmol/mol] in the visepegenatide group vs -0.63 (-0.79 to -0.46) [-6.84 [-8.61 to -5.07] mmol/mol] in the placebo group. The reduction in HbA1c was significantly greater with visepegenatide than placebo (LSM difference -0.73, 95% CI -0.96 to -0.50; p < 0.001). When evaluating the treatment estimand with hypothetic policy, the LSM change in HbA1c from baseline in the visepegenatide group (-1.37 [-1.53 to -1.20]) [-14.95 [-16.76 to -13.14] mmol/mol] was significantly greater than the placebo group (-0.63 [-0.81 to -0.45]) [6.90 (-8.89 to -4.90) mmol/mol]. The LSM difference was (-0.74, 95% CI -0.98 to -0.49; [-8.00 [-10.50 to -5.50] mmol/mol]; p < 0.001]. A significantly greater proportion of the visepegenatide group achieved a target HbA1c level of <7% (<53 mmol/mol) than the placebo (50.4% vs 14.2%; p < 0.05) and stringent HbA1c level of ≤6.5% (≤48 mmol/mol) (26.7% vs 7.9%), respectively. There was also a significantly greater improvement in FPG, 2-h postprandial glucose, homeostasis model assessment (HOMA) of beta cell function, post-prandial insulin, fasting, and post-prandial C-peptide level (p < 0.05) with visepegenatide treatment. The number (3 [2.2%]) of participants who received rescue therapy in the visepegenatide group was remarkably lower compared with those (17 [12.5%]) in the placebo group (p < 0.05). During the extended treatment period, visepegenatide consistently maintained the efficacy till week 52 confirmed by all the above endpoints. The reduction in HbA1c at week 52 was -1.39% (-1.58 to -1.19) [-15.14 [-17.28 to -13.01] mmol/mol], which was even greater than that at week 24. There was also a significant improvement in HOMA-insulin resistance (p = 0.004) at week 52 compared with the baseline value. For the placebo→visepegenatide group, which received visepegenatide in the extended treatment period, a notable decrease in HbA1c at week 52 compared to baseline was observed. The change from baseline in HbA1c was -1.49% (-1.68 to -1.30) [-16.27 [-18.37 to -14.16] mmol/mol]. The outcome was in the same direction as the visepegenatide group from the double-blind treatment period. Comprehensive benefits of visepegenatide including weight loss, improvement in lipid profile, and reduction in blood pressure have been demonstrated in this study. Visepegenatide reduced the body weight in a BMI-dependent manner that was prominent in BMI ˃32 kg/m2 with a mean (SD) reduction of -4.77 (13.94) kg at week 52 (p < 0.05). Incidences of gastrointestinal adverse events were less common than other weekly GLP-1 RA in the market, and most of the adverse events were mild and moderate in nature, occurring in the first weeks of the treatment, and were transient. No serious hypoglycaemia or grade 2 hypoglycaemia (blood glucose: ≤3 mmol/L) was reported during the study. Interpretation: As a monotherapy, visepegenatide provided rapid without the risk of hypoglycaemia, significant, and sustainable glycaemic control by improving islet ß-cell function and insulin resistance. Treatment with visepegenatide induced early treatment response in reducing HbA1c and maintaining glycaemic control for 52 weeks. Meanwhile, visepegenatide provided a comprehensive benefit in body weight loss, lipids, and blood pressure reduction. Visepegenatide had a better safety profile than other weekly GLP-1 RA in participants with T2DM even without the requirement of dose titration. Visepegenatide would provide an optimal treatment approach with its high benefit and low-risk balance. Funding: PegBio Co., Ltd.

13.
J Am Chem Soc ; 146(29): 20414-20424, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38982611

ABSTRACT

The structural dynamics of artificial assemblies, in aspects such as molecular recognition and structural transformation, provide us with a blueprint to achieve bioinspired applications. Here, we describe the assembly of redox-switchable chiral metal-organic cages Λ8/Δ8-[Pd6(CoIIL3)8]28+ and Λ8/Δ8-[Pd6(CoIIIL3)8]36+. These isomeric cages demonstrate an on-off chirality logic gate controlled by their chemical and stereostructural dynamics tunable through redox transitions between the labile CoII-state and static CoIII-state with a distinct Cotton effect. The transition between different states is enabled by a reversible redox process and chiral recognition originating in the tris-chelate Co-centers. All cages in two states are thoroughly characterized by NMR, ESI-MS, CV, CD, and X-ray crystallographic analysis, which clarify their redox-switching behaviors upon chemical reduction/oxidation. The stereochemical lability of the CoII-center endows the Λ8/Δ8-CoII-cages with efficient chiral-induction by enantiomeric guests, leading to enantiomeric isomerization to switch between Λ8/Δ8-CoII-cages, which can be stabilized by oxidation to their chemically inert forms of Λ8/Δ8-CoIII-cages. Kinetic studies reveal that the isomerization rate of the Δ8-CoIII-cage is at least an order of magnitude slower than that of the Δ8-CoII-cage even at an elevated temperature, while its activation energy is 16 kcal mol-1 higher than that of the CoII-cage.

14.
World J Gastrointest Oncol ; 16(6): 2404-2418, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38994138

ABSTRACT

BACKGROUND: Research on gastrointestinal mucosal adenocarcinoma (GMA) is limited and controversial, and there is no reference tool for predicting postoperative survival. AIM: To investigate the prognosis of GMA and develop predictive model. METHODS: From the Surveillance, Epidemiology, and End Results database, we collected clinical information on patients with GMA. After random sampling, the patients were divided into the discovery (70% of the total, for model training), validation (20%, for model evaluation), and completely blind test cohorts (10%, for further model evaluation). The main assessment metric was the area under the receiver operating characteristic curve (AUC). All collected clinical features were used for Cox proportional hazard regression analysis to determine factors influencing GMA's prognosis. RESULTS: This model had an AUC of 0.7433 [95% confidence intervals (95%CI): 0.7424-0.7442] in the discovery cohort, 0.7244 (GMA: 0.7234-0.7254) in the validation cohort, and 0.7388 (95%CI: 0.7378-0.7398) in the test cohort. We packaged it into Windows software for doctors' use and uploaded it. Mucinous gastric adenocarcinoma had the worst prognosis, and these were protective factors of GMA: Regional nodes examined [hazard ratio (HR): 0.98, 95%CI: 0.97-0.98, P < 0.001)] and chemotherapy (HR: 0.62, 95%CI: 0.58-0.66, P < 0.001). CONCLUSION: The deep learning-based tool developed can accurately predict the overall survival of patients with GMA postoperatively. Combining surgery, chemotherapy, and adequate lymph node dissection during surgery can improve patient outcomes.

15.
J Agric Food Chem ; 72(30): 16624-16637, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39018060

ABSTRACT

Selenium (Se) has been widely reported to affect plant growth, nutrient cycling, and the rhizobiome. However, how Se shapes the rhizobiome and interacts with plants remains largely elusive. Pot and hydroponic experiments were employed to elucidate the regulatory mechanism of Se in the citrus rhizobiome. Compared to the control, soil Se application significantly increased the root biomass (34.7%) and markedly reduced rhizosphere HCl-P, H2O-P, NaHCO3-IP, and residual-P of citrus, which were related to the variation of citrus rhizobiome. Se primarily enriched Proteobacteria and Actinobacteria as well as the phosphorus (P) functional genes phod and pqqc. Further study revealed that Se altered the metabolite profile of root exudate, particularly enhancing the abundance of l-cyclopentylglycine, cycloleucine, l-proline, l-pipecolic acid, and inositol, which played a key role in reshaping the citrus rhizobiome. These metabolites could serve as both nutrient sources and signaling molecules, thus supporting the growth or chemotaxis of the functional microbes. These bacterial taxa have the potential to solubilize P or stimulate plant growth. These findings provide a novel mechanistic understanding of the intriguing interactions between Se, root exudate, and rhizosphere microbiomes, and demonstrate the potential for utilizing Se to regulate rhizobiome function and enhance soil P utilization in citrus cultivation.


Subject(s)
Citrus , Phosphorus , Plant Roots , Rhizosphere , Selenium , Soil Microbiology , Soil , Citrus/metabolism , Citrus/growth & development , Citrus/chemistry , Citrus/microbiology , Phosphorus/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Plant Roots/chemistry , Soil/chemistry , Selenium/metabolism , Selenium/analysis , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/growth & development , Bacteria/isolation & purification , Microbiota
16.
Int Immunopharmacol ; 139: 112615, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39032475

ABSTRACT

BACKGROUND AND PURPOSE: Liver cancer is the fourth leading cause of cancer-related death worldwide, with hepatocellular carcinoma (HCC) being the most common type of primary liver cancer. APG-1252 is a small molecule inhibitor targeting Bcl-2 and Bcl-xl. However, its anti-tumor effects in HCC, alone or in combination with Cabozantinib, have not been extensively studied. EXPERIMENTAL: Approach: TCGA database analysis was used to analysis the gene expression levels of Bcl-2 and Bcl-xl in HCC tissues. Western blot was employed to detect the protein expression levels. And the inhibitory effects of APG-1252 and Cabozantinib on the proliferation of HCC cell lines was detected by CCK-8. The effect on the migration and invasion of HCC cells was verified by transwell assay. Huh7 xenograft model in nude mice was used to investigate the combination antitumor effect in vivo. KEY RESULTS: Our study demonstrated that APG-1252 monotherapy inhibited the proliferation and migration ability of HCC cells, and induced HCC cells apoptosis. The combination of APG-1252 and Cabozantinib showed significant synergistic antitumor effects. Furthermore, the in vivo experiment demonstrated that the combination therapy exerted a synergistic effect in delaying tumor growth, notably downregulating MEK/ERK phosphorylation levels. In terms of mechanism, Cabozantinib treatment caused an increase in the phosphorylation levels of CREB and Bcl-xl proteins, while the combination with APG-1252 mitigated this effect, thereby enhanced the antitumor effect of Cabozantinib. CONCLUSION AND IMPLICATIONS: Our findings suggest that APG-1252 in combination with Cabozantinib offers a more effective treatment strategy for HCC patients, warranting further clinical investigation.


Subject(s)
Anilides , Carcinoma, Hepatocellular , Cell Proliferation , Liver Neoplasms , Mice, Nude , Pyridines , Xenograft Model Antitumor Assays , bcl-X Protein , Animals , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Anilides/pharmacology , Anilides/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , bcl-X Protein/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Mice , Apoptosis/drug effects , Cell Movement/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Mice, Inbred BALB C , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Male
17.
J Nanobiotechnology ; 22(1): 455, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085921

ABSTRACT

The female reproductive system comprises the internal and external genitalia, which communicate through intricate endocrine pathways. Besides secreting hormones that maintain the female secondary sexual characteristics, it also produces follicles and offspring. However, the in vitro systems have been very limited in recapitulating the specific anatomy and pathophysiology of women. Organ-on-a-chip technology, based on microfluidics, can better simulate the cellular microenvironment in vivo, opening a new field for the basic and clinical research of female reproductive system diseases. This technology can not only reconstruct the organ structure but also emulate the organ function as much as possible. The precisely controlled fluidic microenvironment provided by microfluidics vividly mimics the complex endocrine hormone crosstalk among various organs of the female reproductive system, making it a powerful preclinical tool and the future of pathophysiological models of the female reproductive system. Here, we review the research on the application of organ-on-a-chip platforms in the female reproductive systems, focusing on the latest progress in developing models that reproduce the physiological functions or disease features of female reproductive organs and tissues, and highlighting the challenges and future directions in this field.


Subject(s)
Genitalia, Female , Lab-On-A-Chip Devices , Female , Humans , Animals , Microfluidics/methods , Reproduction , Models, Biological , Microphysiological Systems
18.
Inflamm Res ; 73(9): 1435-1444, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39020021

ABSTRACT

OBJECTIVE: A coagulation factor called fibrinogen is produced by the liver and is proteolyzed by thrombin to become fibrin. The latest studies have revealed that fibrin(ogen) palys an essential role in the regulation of cardiovascular disease. Understanding the relationship and mechanism between fibrin(ogen) and cardiovascular disease is of great significance for maintaining overall health. The objective of this review is to discuss the specific involvement and underlying mechanisms of fibrin(ogen) in cardiovascular disease. METHODS: A review was conducted using the PubMed database to identify and analyze the emerging role of fibrinogen in cardiovascular disease. RESULTS: The literature review revealed that fibrin(ogen) plays a pivotal role in maintaining cardiovascular disease and are involved in the pathogenesis of cardiovascular disease. Fibrin(ogen) mainly influence various pathophysiological processes, such as participating in thrombosis formation, stimulating the inflammatory response, and other molecular pathways. CONCLUSION: This review focuses on the involvement of fibrin(ogen) in cardiovascular disease, with a particular emphasis on the main functions and underlying mechanisms by which fibrin(ogen) influence the pathogenesis and progression of these conditions. This review underscores the potential of fibrin(ogen) as therapeutic targets in managing cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Fibrinogen , Humans , Cardiovascular Diseases/metabolism , Animals , Fibrinogen/metabolism , Inflammation/metabolism , Thrombosis/metabolism
19.
Dalton Trans ; 53(25): 10626-10636, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38859681

ABSTRACT

A photorechargeable supercapacitor was constructed using vanadium pentoxide (V2O5), reduced graphene oxide hydrogel (rGH), and zinc trifluoromethanesulfonate (Zn(CF3SO3)2) as the photoanode, cathode, and electrolyte, respectively. The phase composition, microstructure, chemical structure, light absorption, and specific surface area of the synthesized products and the electrochemical performance of the rGH/V2O5 supercapacitor were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, UV-Vis spectroscopy, the Brunauer-Emmett-Teller (BET) method, and an electrochemical workstation, respectively. The results show that the device has a specific capacity of 164 F g-1 at 0.5 A g-1 under illumination with 95 mW cm-2 light intensity, which is 20.5% higher than that under normal electrical charging. The supercapacitor has a 75% capacity retention rate and 100% coulombic efficiency, respectively, after 10 000 testing cycles under photoelectric synergistic charging and discharging. The as-constructed rGH/V2O5 photorechargeable supercapacitor exhibits promising application potential in electric vehicles and wearable electronics.

20.
Int J Biochem Cell Biol ; 173: 106610, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38879152

ABSTRACT

Colorectal cancer (CRC) is the third most common type of cancer in the world. It is characterized by complex crosstalk between various signaling pathways, as a result of which it is highly challenging to identify optimal therapeutic targets and design treatment strategies. In this study, we tested the effect of 700 compounds on the CRC cell line HT-29 by using the sulforhodamine B assay and screened out 17 compounds that exhibited high toxicity (indicated by an inhibition rate of ≥75 % when applied at a concentration of 10 µM) against the HT-29 cell line. Next, we investigated the mechanisms underlying the effects of these 17 highly toxic compounds. The results of ferroptosis analysis and electron microscopy showed that compounds 575 and 578 were able to significantly reverse RSL3-induced increase in ferroptosis, while compound 580 had a less pronounced ferroptosis-regulating effect. In subsequent experiments, western blotting showed that compounds 575, 578, and 580, which belong to a class of meroterpene-like compounds that affect ferroptosis, do not induce autophagy or apoptosis in the CRC cell line. Instead, Fe2+ chelation experiments showed that these three compounds can serve as iron chelators by chelating Fe2+ at a 1:1 (chelator: Fe2+) ratio. Specifically, the aldehyde and hydroxyl groups of the benzene ring in these compounds may chelate Fe2+, thus reducing Fe2+ levels in cells and inhibiting ferroptosis. These results indicate that these novel meroterpene-like compounds are potential therapeutic small-molecule candidates for targeting ferroptosis in tumors.


Subject(s)
Ferroptosis , Iron Chelating Agents , Iron , Ferroptosis/drug effects , Humans , Iron Chelating Agents/pharmacology , Iron Chelating Agents/chemistry , HT29 Cells , Iron/metabolism , Terpenes/pharmacology , Terpenes/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Apoptosis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL