Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.341
Filter
1.
Small ; : e2405051, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092657

ABSTRACT

Metal-organic frameworks (MOFs)-related Cu materials are promising candidates for promoting electrochemical CO2 reduction to produce valuable chemical feedstocks. However, many MOF materials inevitable undergo reconstruction under reduction conditions; therefore, exploiting the restructuring of MOF materials is of importance for the rational design of high-performance catalyst targeting multi-carbon products (C2). Herein, a facile solvent process is choosed to fabricate HKUST-1 with an anionic framework (a-HKUST-1) and utilize it as a pre-catalyst for alkaline CO2RR. The a-HKUST-1 catalyst can be electrochemically reduced into Cu with significant structural reconstruction under operating reaction conditions. The anionic HKUST-1 derived Cu catalyst (aHD-Cu) delivers a FEC2H4 of 56% and FEC2 of ≈80% at -150 mA cm-2 in alkaline electrolyte. The resulting aHD-Cu catalyst has a high electrochemically active surface area and low coordinated sites. In situ Raman spectroscopy indicates that the aHD-Cu surface displays higher coverage of *CO intermediates, which favors the production of hydrocarbons.

2.
Exp Ther Med ; 28(4): 371, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39091632

ABSTRACT

Although telitacicept is a promising drug for treating systemic lupus erythematosus, there are limited studies on its efficacy and safety in patients with lupus nephritis in China. This lack of research data restricts its potential for broader application and acceptance on a global scale. The present study aimed to determine the efficacy and safety of telitacicept in patients with lupus nephritis (LN) in China. Using a self-controlled before-after comparison method, patients with LN were recruited at Lishui Central Hospital between February 2022 and April 2023, who received telitacicept weekly as part of the standard treatment. Data on the systemic lupus erythematosus disease activity index 2000 (SLEDAI-2K), glucocorticoid dosing and the quantity of immunosuppressive medicines prescribed was collected. Additionally, serum complements, erythrocyte sedimentation rate (ESR), urinary protein levels, immunoglobulin concentrations, serum creatinine levels, plasma albumin concentrations, platelet counts and renal function parameters were documented throughout the study. A total of 13 patients were enrolled in the trial, comprising 11 women and two men. Following 12-48 weeks of treatment with telitacicept (80 or 160 mg per week), 84.6% (n=11) of all patients experienced symptom relief and their SLEDAI-2K score was reduced by more than four points. By the observation endpoint, the median glucocorticoid dosage of the 13 patients was decreased from 15 to 2.5 mg/d, and six patients discontinued their glucocorticoids. Furthermore, 46.1% of patients (n=6) reduced their dose and number of immunosuppressive medicines, while 15.4% (n=2) stopped their immunosuppressive medicines. Minimal changes were observed in serum creatinine, platelet count, C3 levels and C4 levels among patients. Immunoglobulin levels (IgG, IgA and IgM) remained stable or showed an upward trend. Plasma albumin levels remained within the normal range in three patients and increased in ten patients. It increased to the normal range in three of these ten patients. At the endpoint, ESR levels decreased in all patients. Additionally, three patients displayed varying degrees of renal function improvement, and their estimated glomerular filtration rate (ml/min/l.73 m2) increased from 127.8 to 134.2, 95.1 to 123.1 and 61.5 to 67.3, respectively. Urinary protein levels decreased in all patients. It decreased >0.5 g/l in seven patients and reached the normal levels in three patients. The adverse events of telitacicept were manageable. Among the patients infected with COVID-19, three patients had fever, 10 patients remained asymptomatic and none of them exhibited severe respiratory syndromes. In this study, telitacicept effectively stabilized LN activity and alleviated the clinical symptoms of most patients. Furthermore, it reduced the dose of glucocorticoid and immunosuppressive medicines. Therefore, telitacicept may be a promising treatment option for individuals with lupus nephritis.

3.
Adv Healthc Mater ; : e2402216, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109966

ABSTRACT

The treatment of breast cancer bone metastasis is an unresolved clinical challenge, mostly because currently therapeutic approaches cannot simultaneously block the tumor growth and repair the osteolytic bone injuries at the metastatic site. Herein, the study develops a novel nanomedicine to treat breast cancer bone metastasis. The nanomedicine is based on phosphate ion-responsive and calcium peroxide-based nanoparticles carrying the bone-targeting agent zoledronic acid on the surface and loaded with the photosensitizer indocyanine green. Following intravenous administration to a mouse model of breast cancer bone metastasis, the nanoparticles efficiently accumulate at the bone metastasis site, react with free phosphate ions, and form hydroxyapatite nanoaggregates and O2, while releasing the photosensitizer. Hydroxyapatite nanoaggregates elicit the remineralization of the collagenous bone matrix and trigger tumor cell apoptosis. Upon irradiating tumor-bearing legs with an 808 nm laser source, the O2 and free photosensitizer produced 1O2 by the reaction of the nanoparticles with phosphate ions, further boosting the anti-tumor effect. Tumor killing hampers the vicious cycle at the site of bone metastasis, translating to osteolysis blockade and further encouraging the remineralization of bone matrix. This work sheds light on the development of a novel, safe, and efficient approach for the treatment of breast cancer bone metastasis.

4.
Angew Chem Int Ed Engl ; : e202411217, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103975

ABSTRACT

Hole-transporting materials (HTMs) are crucial for obtaining the stability and high efficiency of perovskite solar cells (PSCs). However, the current state-of-the-art n-i-p PSCs relied on the use of 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) exhibit inferior intrinsic and ambient stability due to the p-dopant and hydrophilic Li-TFSI additive. In this study, a new spiro-type HTM with a critical quasi-planar core (Z-W-03) is developed to improve both the thermal and ambient stability of PSCs. The results suggest that the planar carbazole structure effectively passivates the trap states compared to the triphenylamine with a propeller-like conformation in spiro-OMeTAD. This passivation effect leads to the shallower trap states when the quasi-planar HTMs interact with the Pb-dimer. Consequently, the device using Z-W-03 achieves a higher Voc of 1.178 V compared to the spiro-OMeTAD's 1.155 V, resulting in an enhanced efficiency of 24.02%. In addition, the double-column π-π stacking of Z-W-03 results in high hole mobility (~10-4 cm2 V-1 s-1) even without p-dopant. Moreover, when the surface interface is modified, the undoped Z-W-03 device can achieve an efficiency of nearly 23%. Compared to the PSCs using spiro-OMeTAD, those with Z-W-03 exhibit enhanced stability under N2 and ambient conditions.

5.
Neural Regen Res ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39104164

ABSTRACT

Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition; this phenomenon is known as cerebral ischemia-reperfusion injury. Current studies have elucidated the neuroprotective role of the sirtuin protein family (Sirtuins) in modulating cerebral ischemia-reperfusion injury. However, the potential of utilizing it as a novel intervention target to influence the prognosis of cerebral ischemia-reperfusion injury requires additional exploration. In this review, the origin and research progress of Sirtuins are summarized, suggesting the involvement of Sirtuins in diverse mechanisms that affect cerebral ischemia-reperfusion injury, including inflammation, oxidative stress, blood-brain barrier damage, apoptosis, pyroptosis, and autophagy. The therapeutic avenues related to Sirtuins that may improve the prognosis of cerebral ischemia-reperfusion injury were also investigated by modulating Sirtuins expression and affecting representative pathways, such as nuclear factor-kappa B signaling, oxidative stress mediated by adenosine monophosphate-activated protein kinase, and the forkhead box O. This review also summarizes the potential of endogenous substances, such as RNA and hormones, drugs, dietary supplements, and emerging therapies that regulate Sirtuins expression. This review also reveals that regulating Sirtuins mitigates cerebral ischemia-reperfusion injury when combined with other risk factors. While Sirtuins show promise as a potential target for the treatment of cerebral ischemia-reperfusion injury, most recent studies are based on rodent models with circadian rhythms that are distinct from those of humans, potentially influencing the efficacy of Sirtuins-targeting drug therapies. Overall, this review provides new insights into the role of Sirtuins in the pathology and treatment of cerebral ischemia-reperfusion injury.

6.
Shanghai Kou Qiang Yi Xue ; 33(3): 245-249, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39104337

ABSTRACT

PURPOSE: To investigate the effects of erbium laser pretreatment on the bond strength of dentin and enamel,as well as microleakage at the edge of tooth defects repaired with computer-aided design (CAD) and computer-assisted manufacturing (CAM) glass-ceramic restorations for repairing dental defects. METHODS: A total of 62 fresh, nondecayed, nondiscoloration and noncracked wisdom teeth were collected from the Oral Surgery Clinic between January 2020 and January 2023. According to different pretreatment methods, they were randomly divided into two groups, erbium laser group and phosphoric acid group, with 31 teeth in each group. Each group was further divided into two subsets for bond strength testing (16 teeth) and microleakage testing (15 teeth).The shear bond strength between enamel and dentin of both groups was compared, as well as the degree and distribution of microleakage.Statistical analysis was performed with SPSS 17.0 software package. RESULTS: The shear bond strength between enamel and dentin of the erbium laser group was significantly higher than that of the phosphoric acid group (P<0.05); the degree and distribution of microleakage at the lateral walls and gumline of the erbium laser group were significantly lower than those of the phosphoric acid group (P<0.05). The scores of microleakage at the lateral walls of the erbium laser group mainly concentrated in grade 1 and 2, whereas those of the phosphoric acid group mainly concentrated in grade 2. There was significant difference in the distribution of lateral wall microleakage scores between the two groups (P<0.05). The scores of microleakage at the gumline of the erbium laser group mainly concentrated in grade 1 and 2, whereas those of the phosphoric acid group mainly concentrated in grade 2 and 3. There was significant difference in the distribution of gumline microleakage scores between the two groups (P<0.05). CONCLUSIONS: Erbium laser pretreatment can improve bonding strength between glass ionomer cement and dentin and enamel, reduce microleakage at the edge of CAD/CAM glass ionomer cement restorations, and enhance marginal fit.


Subject(s)
Computer-Aided Design , Dental Bonding , Dental Enamel , Dentin , Glass Ionomer Cements , Dental Enamel/radiation effects , Humans , Dentin/chemistry , Glass Ionomer Cements/chemistry , Dental Bonding/methods , Phosphoric Acids/chemistry , Lasers, Solid-State/therapeutic use , Shear Strength , Dental Leakage/etiology , Dental Restoration, Permanent/methods , Erbium/chemistry
7.
J Org Chem ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39159404

ABSTRACT

Nickel/photoredox catalysis has emerged as a powerful platform for exploring nontraditional and challenging cross-couplings. Herein, a metallaphotoredox catalytic protocol has been developed on the basis of a tertiary amine-ligated boryl radical-induced halogen atom transfer process under blue-light irradiation. A wide variety of aryl and heteroaryl bromides featuring different functional groups and pharmaceutical moieties were facilely coupled to rapidly install C(sp3)-enriched aromatic scaffolds. The compatibility of Lewis base-ligated borane with nickel catalysis was well exemplified to extend the chemical space for Ni-catalyzed cross-electrophile coupling.

8.
J Biol Chem ; : 107691, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39159814

ABSTRACT

The Triggering Receptor Expressed on Myeloid Cells-2 (TREM2), a pivotal innate immune receptor, orchestrates functions such as inflammatory responses, phagocytosis, cell survival, and neuroprotection. TREM2 variants R47H and R62H have been associated with Alzheimer's disease, yet the underlying mechanisms remain elusive. Our previous research established that TREM2 binds to heparan sulfate (HS) and variants R47H and R62H exhibit reduced affinity for HS. Building upon this groundwork, our current study delves into the interplay between TREM2 and HS and its impact on microglial function. We confirm TREM2's binding to cell surface HS and demonstrate that TREM2 interacts with HS, forming HS-TREM2 binary complexes on microglia cell surfaces. Employing various biochemical techniques, including Surface Plasmon Resonance, low molecular weight HS microarray screening, and serial HS mutant cell surface binding assays, we demonstrate TREM2's robust affinity for HS, and the effective binding requires a minimum HS size of approximately 10 saccharide units. Notably, TREM2 selectively binds specific HS structures, with 6-O-sulfation and, to a lesser extent, the iduronic acid residue playing crucial roles. N-sulfation and 2-O-sulfation are dispensable for this interaction. Furthermore, we reveal that 6-O-sulfation is essential for HS-TREM2 ternary complex formation on the microglial cell surface, and HS and its 6-O-sulfation are necessary for TREM2-mediated ApoE3 uptake in microglia. By delineating the interaction between HS and TREM2 on the microglial cell surface and demonstrating its role in facilitating TREM2-mediated ApoE uptake by microglia, our findings provide valuable insights that can inform targeted interventions for modulating microglial functions in Alzheimer's disease.

10.
Imeta ; 3(4): e198, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39135685

ABSTRACT

The duck gastrointestinal tract (GIT) harbors an abundance of microorganisms that play an important role in duck health and production. Here, we constructed the first relatively comprehensive duck gut microbial gene catalog (24 million genes) and 4437 metagenome-assembled genomes using 375 GIT metagenomic samples from four different duck breeds across five intestinal segments under two distinct rearing conditions. We further characterized the intestinal region-specific microbial taxonomy and their assigned functions, as well as the temporal development and maturation of the duck gut microbiome. Our metagenomic analysis revealed the similarity within the microbiota of the foregut and hindgut compartments, but distinctive taxonomic and functional differences between distinct intestinal segments. In addition, we found a significant shift in the microbiota composition of newly hatched ducks (3 days), followed by increased diversity and enhanced stability across growth stages (14, 42, and 70 days), indicating that the intestinal microbiota develops into a relatively mature and stable community as the host duck matures. Comparing the impact of different rearing conditions (with and without water) on duck cecal microbiota communities and functions, we found that the bacterial capacity for lipopolysaccharide biosynthesis was significantly increased in ducks that had free access to water, leading to the accumulation of pathogenic bacteria and antibiotic-resistance genes. Taken together, our findings expand the understanding of the microbiome signatures linked to intestinal regional, temporal development, and rearing conditions in ducks, which highlight the significant impact of microbiota on poultry health and production.

11.
Food Chem ; 460(Pt 3): 140797, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39128367

ABSTRACT

The spoilage of refrigerated pork involves nutrient depletion and the production of spoilage metabolites by spoilage bacteria, yet the microbe-metabolite interactions during this process remain unclear. This study employed 16S rRNA high-throughput sequencing and non-targeted metabolomics based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to reveal the core microbiota and metabolite profiles of pork during refrigeration. A total of 45 potential biomarkers were screened through random forest model analysis. Metabolic pathway analysis indicated that eleven pathways, including biogenic amine metabolism, pentose metabolism, purine metabolism, pyrimidine metabolism, phospholipid metabolism, and fatty acid degradation, were potential mechanisms of pork spoilage. Correlation analysis revealed nine metabolites-histamine, tyramine, tryptamine, D-gluconic acid, UDP-d-glucose, xanthine, glutamine, phosphatidylcholine, and hexadecanoic acid-as spoilage biomarkers, with Pseudomonas, Serratia, and Photobacterium playing significant roles. This study provides new insights into the changes in microbial and metabolic characteristics during the spoilage of refrigerated pork.

12.
Ecotoxicol Environ Saf ; 284: 116892, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39153279

ABSTRACT

Citrobacter sp. XT1-2-2, a functional microorganism with potential utilization, has the ability to immobilize soil cadmium. In this study, the regulatory gene cysH, as a rate-limiting enzyme in the sulfur metabolic pathway, was selected for functional analysis affecting cadmium immobilization in soil. To verify the effect of APS reductase on CdS formation, the ΔAPS and ΔAPS-com strains were constructed by conjugation transfer. Through TEM analysis, it was found that the adsorption of Cd2+ was affected by the absence of APS reductase in XT1-2-2 strain. The difference analysis of biofilm formation indicated that APS reductase was necessary for cell aggregation and biofilm formation. The p-XRD, XPS and FT-IR analysis revealed that APS reductase played an important role in the cadmium immobilization process of XT1-2-2 strain and promoting the formation of CdS. According to the pot experiments, the cadmium concentration of roots, culms, leaves and grains inoculated with ΔAPS strain was significantly higher than that of wild-type and ΔAPS-com strains, and the cadmium removal ability of ΔAPS strain was significantly lower than that of wild-type strain. The study provided insights into the exploration of new bacterial assisted technique for the remediation and safe production of rice in cadmium-contaminated paddy soils.

13.
Nucl Med Biol ; 138-139: 108944, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39154412

ABSTRACT

BACKGROUND: Targeted alpha therapy (TAT) of somatostatin receptor-2 (SSTR2) positive neuroendocrine tumors (NETs) involving Ac-225 ([225Ac]Ac-DOTA-TATE) has previously demonstrated improved therapeutic efficacy over conventional beta particle-emitting peptide receptor radionuclide therapy agents. DOTA-TATE requires harsh radiolabeling conditions for chelation of [225Ac]Ac3+, which can limit the achievable molar activities and thus therapeutic efficacy of such TAT treatments. Macropa-TATE was recently highlighted as a potential alternative to DOTA-TATE, owing to the mild radiolabeling conditions and high affinity toward [225Ac]Ac3+; however, elevated liver and kidney uptake were noted as a major limitation and a suitable imaging radionuclide is yet to be reported, which will be required for patient dosimetry studies and assessment of therapeutic benefit. Previously, [155Tb]Tb-crown-TATE has shown highly effective imaging of NETs in preclinical SPECT/CT studies, with high tumor uptake and low non-target accumulation; these favourable properties and the versatile coordination behavior of the crown chelator may therefore show promise for combination with Ac-225 for TAT. METHODS: Crown-TATE was labeled with Ac-225, and radiochemical yield was analyzed as the function of crown-TATE concentration. LogD7.4 was measured as the indication of hydrophilicity. Free [225Ac]Ac3+ release from [225Ac]Ac-crown-TATE in human serum was studied. Biodistribution studies of [225Ac]Ac-crown-TATE in mice bearing AR42J tumors was evaluated at 1, 4, 24, 48, and 120 h, and the absorbed dose to major organs calculated. Therapy-monitoring studies with AR42J tumor bearing mice were undertaken using 30 kBq and 55 kBq doses of [225Ac]Ac-crown-TATE and compared to controls treated with PBS or crown-TATE. RESULTS: [225Ac]Ac-crown-TATE was successfully prepared with high molar activity (640 kBq/nmol), and characterized as a moderately hydrophilic radioligand (LogD7.4 = -1.355 ± 0.135). No release of bound Ac-225 was observed over 9 days in human serum. Biodistribution studies of [225Ac]Ac-crown-TATE showed good initial tumor uptake (11.1 ± 1.7% IA/g at 4 h) which was sustained up to 120 h p.i. (6.92 ± 2.03% IA/g). Dosimetry calculations showed the highest absorbed dose was delivered to the tumors. Therapy monitoring studies demonstrated significant (log-rank test, P < 0.005) improved survival in both treatment groups compared to controls. CONCLUSIONS: This preclinical study demonstrated the therapeutic efficacy of [225Ac]Ac-crown-TATE for treatment of NETs, and highlights the potential of using crown chelator for stable chelation of Ac-225 under mild conditions.

14.
Int J Biol Macromol ; 277(Pt 3): 134296, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094888

ABSTRACT

Anthocyanidins and anthocyanins are one subclass of flavonoids in plants with diverse biological functions and have health-promoting effects. Dihydroflavonol 4-reductase (DFR) is one of the important enzymes involved in the biosynthesis of anthocyanidins and other flavonoids. Here, a new MOF-based nano-immobilized DFR enzyme acting as a nano-biocatalyst for the production of anthocyanidins in vitro was designed. We prepared UiO-66-NH2 MOF nano-carrier and recombinant DFR enzyme from genetic engineering. DFR@UiO-66-NH2 nano-immobilized enzyme was constructed based on covalent bonding under the optimum immobilization conditions of the enzyme/carrier ratio of 250 mg/g, 37 °C, pH 6.5 and fixation time of 10 min. DFR@UiO-66-NH2 was characterized and its catalytic function for the synthesis of anthocyanidins in vitro was testified using UPLC-QQQ-MS analysis. Compared with free DFR enzyme, the enzymatic reaction catalyzed by DFR@UiO-66-NH2 was more easily for manipulation in a wide range of reaction temperatures and pH values. DFR@UiO-66-NH2 had better thermal stability, enhanced adaptability, longer-term storage, outstanding tolerances to the influences of several organic reagents and Zn2+, Cu2+ and Fe2+ ions, and relatively good reusability. This work developed a new MOF-based nano-immobilized biocatalyst that had a good prospect of application in the green synthesis of anthocyanins in the future.

15.
Prev Med Rep ; 45: 102830, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39132580

ABSTRACT

Objective: To explore the associations between dietary zinc intake and cardiovascular diseases (CVDs), including congestive heart failure (CHF), coronary heart disease (CHD), angina, heart attack, and cerebrovascular accident (CVA), this study was performed. Setting: Data from the National Health and Nutrition Examination Survey (2005-2018) were used in this study. Dietary zinc intake was stratified into quartiles. Restricted cubic splines were constructed to assess nonlinear associations and identify cut-off values based on the type of nonlinearity. Binary logistic regressions were performed using the cut-offs. Results: Positive associations were detected between the second, third, and fourth quantiles of dietary zinc intake and decreased risks of overall CVDs (Q2: OR = 0.83, 95 % CI = 0.72-0.96; Q3: OR = 0.83, 95 % CI = 0.71-0.96; Q4: OR = 0.79, 95 % CI = 0.67-0.93). The second, third, and fourth quantiles were significantly associated with decreased risks of various CVDs (all P < 0.05), except for CHD and angina (all P > 0.05). Restricted cubic spline regression revealed significant nonlinear trends for associations of dietary zinc intake with the risk of developing CVDs and CHF (both P for nonlinear <0.05), whereas those for heart attack and CVA were marginally significant (P for nonlinear = 0.072, and 0.075, respectively). Conclusions: This study revealed that high dietary zinc intake is associated with reduced risks of developing CVDs, CHF, heart attack, and CVA, but not CHD or angina.

16.
Adv Mater ; : e2408045, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177118

ABSTRACT

Inefficient active site utilization of oxygen evolution reaction (OER) catalysts have limited the energy efficiency of proton exchange membrane (PEM) water electrolysis. Here, an atomic grid structure is demonstrated composed of high-density Ir sites (≈10 atoms per nm2) on reactive MnO2-x support which mediates oxygen coverage-enhanced OER process. Experimental characterizations verify the low-valent Mn species with decreased oxygen coordination in MnO2-x exert a pivotal impact in the enriched oxygen coverage on the surface during OER process, and the distributed Ir atomic grids, where highly electrophilic Ir─O(II-δ)- bonds proceed rapidly, render intense nucleophilic attack of oxygen radicals. Thereby, this metal-support cooperation achieves ultra-low overpotentials of 166 mV at 10 mA cm-2 and 283 mV at 500 mA cm-2, together with a striking mass activity which is 380 times higher than commercial IrO2 at 1.53 V. Moreover, its high OER performance also markedly surpasses the commercial Ir black catalyst in PEM electrolyzers with long-term stability.

17.
Poult Sci ; 103(10): 104099, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39096833

ABSTRACT

This study was performed to investigate the effects of potassium diformate (KDF) on growth performance, apparent digestibility of nutrients, serum biochemical indices, and intestinal microflora of Cherry Valley ducks. In total, 144 female healthy 1-day-old Cherry Valley ducks were divided into 3 groups with 6 replicates per group and 8 ducks per replicate according to the principle of similar body weight. The control group was fed a basic diet. In the 2 experimental groups, 0.8% and 1.2% KDF was added to the basic diet, respectively. The trial period was 6 wk and the pretrial period was 3 wk. The final weight and ADG were significantly higher in the 0.8% KDF group than in the control group (P < 0.05). The feed-to-gain ratio was significantly lower in both KDF groups than in the control group (P < 0.05). The apparent digestibility of CP was significantly higher in both KDF groups than in the control group (P < 0.05). The apparent digestibility of calcium was also significantly higher in the 0.8% KDF group (P < 0.05). The serum levels of alkaline phosphatase, cholesterol, and total protein were significantly lower in the 0.8% KDF group than in the control group (P < 0.05), the IgM content was significantly higher (P < 0.05), the low-density lipoprotein cholesterol, triglyceride, and urea levels were significantly lower (P < 0.01), and the glucose level was significantly higher (P < 0.01). The serum total protein level was significantly higher in the 1.2% KDF group than in the control group (P < 0.05). The relative abundance of Firmicutes and Patescibacteria in the gut of ducks was significantly higher in the 0.8% KDF group than in the control group (P < 0.05), the relative abundance of unclassified Erysipelotrichaceae and Lactobacillus was significantly higher (P < 0.01), and the relative abundance of Fusobacteriota was significantly lower (P < 0.05). However, the relative abundance of Firmicutes in the gut of ducks was significantly higher in the 1.2% KDF group than in the control group (P < 0.05). The relative abundance of unclassified Erysipelotrichaceae and Clostridium sensu stricto 1 was significantly higher (P < 0.01), as was the relative abundance of Fusobacteriota and Proteobacteria (P < 0.05). These findings indicate that the addition of 0.8% KDF to the diet can improve the growth performance of Cherry Valley ducks, promote the absorption of nutrients, change the structure of the microflora in the cecum, and increase the relative abundance of dominant bacteria. It was also shown that there was a significant difference between the 0.8% and 1.2% KDF levels which suggest that the safety margin for overdosing is quite low.

19.
Int J Surg ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39166944

ABSTRACT

BACKGROUND: Abdominal perfusion pressure (APP) is a salient feature in the design of a prognostic model for patients with intra-abdominal hypertension (IAH). However, incomplete data significantly limits the size of the beneficiary patient population in clinical practice. Using advanced artificial intelligence methods, we developed a robust mortality prediction model with APP from incomplete data. METHODS: We retrospectively evaluated the patients with IAH from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Incomplete data were filled in using generative adversarial imputation nets (GAIN). Lastly, demographic, clinical, and laboratory findings were combined to build a 7-day mortality prediction model. RESULTS: We included 1354 patients in this study, of which 63 features were extracted. Data imputation with GAIN achieved the best performance. Patients with an APP< 60 mmHg had significantly higher all-cause mortality within 7 to 90 days. The difference remained significant in long-term survival even after propensity score matching (PSM) eliminated other mortality risks between groups. Lastly, the built machine learning model for 7-day modality prediction achieved the best results with an AUC of 0.80 in patients with confirmed IAH outperforming the other four traditional clinical scoring systems. CONCLUSIONS: APP reduction is an important survival predictor affecting the survival prognosis of patients with IAH. We constructed a robust model to predict the 7-day mortality probability of patients with IAH, which is superior to the commonly used clinical scoring systems.

20.
Fitoterapia ; 178: 106171, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111719

ABSTRACT

Euphorbiabietane F (1), a novel abietane diterpenoid with the unprecedented 6/6/5/6/5 carbon skeleton, one new strobane diterpenoid (2), together with one new pimarane diterpenoid (3) were isolated from the roots of Euphorbia fischeriana. The structures were elucidated by the extensive spectroscopic data, gauge-independent atomic orbital (GIAO) NMR calculations, the comparison of experimental and calculated ECD spectra, as well as single crystal X-ray diffraction. The cytotoxicity result suggested the moderate inhibition rate of 1 on the cell lines of HepG2 and A549.

SELECTION OF CITATIONS
SEARCH DETAIL