Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 244
Filter
1.
Phytomedicine ; 132: 155839, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38943694

ABSTRACT

BACKGROUND: Hyperlipidemia, inadequate diet, and excessive medication increase the risk of cardiovascular disease. Paeonl (Pae), a phenolic compound found in Peony and Angelica dahurica, can alleviate lipid metabolism disorders and lipotoxicity. However, the molecular mechanism of Pae alleviating hyperlipidemia remains unclear and needs to be further explored. PURPOSE: In this study, we explored whether Pae can prevent hyperlipidemia and investigated the molecular mechanisms. METHODS: The effects of Pae (30, 45, 60mg·kg-1) on hyperlipidemia in Tyloapol-induced WT mice and Nrf2 knockout mice (Pae: 60mg·kg-1) were detected by oil red O staining, HE staining, TG, TC and other indexes. The expression levels of proinflammatory mediators, key lipid proteins and autophagy signaling pathway proteins were analyzed by enzyme-linked immunosorbent assay, western blot and immunofluorescence. The molecular mechanism of Pae alleviating hyperlipidemia was explored through molecular docking technique and in vivo and in vitro experiments. RESULTS: Several studies indicated that Pae effectively improved tyloxapol (Ty)-induced lipid metabolism disorder, as evidenced by decreased triglyceride content, increased carnitine palmitoyltransferase 1 (CPT1), and Sirtuin 1 (Sirt1) protein expression. In addition, Pae ameliorated hyperlipidemia by activating the AMPK/ACC and PI3K/mTOR pathways. Interestingly, the therapeutic effect of Pae on hyperlipidemia was markedly reduced in Nrf2-/- mice. Molecular docking results indicated that Pae and Nrf2 exhibited good binding ability, suggesting that Nrf2 is a core target mediating the effects of Pae in the treatment of hyperlipidemia. Taken together, Pae alleviated hyperlipidemia in vivo and ameliorated lipid accumulation in vitro by activating AMPK/ACC and PI3K/mTOR signaling pathways via Nrf2 binding. CONCLUSION: Our data suggest that paeonol can ameliorate hyperlipidemia and autophagy in mice by regulating Nrf2 and AMPK/mTOR pathways, and it has potential therapeutic value in the occurrence and development of hyperlipidemia.

2.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189142, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914240

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) presents a significant therapeutic challenge as it is frequently diagnosed at advanced inoperable stages. Therefore, the development of a reliable screening tool for PDAC is crucial for effective prevention and treatment. Extracellular vesicles (EVs), characterized by their cup-shaped lipid bilayer structure and ubiquitous release from various cell types, offer notable advantages as an emerging liquid biopsy technique that is rapid, minimally invasive, easily sampled, and cost-effective. While EVs play a substantial role in cancer progression, EV proteins serve as direct mediators of diverse cellular behaviors and have immense potential as biomarkers for PDAC diagnosis and prognostication. This review provides an overview of EV proteins regarding PDAC diagnosis and prognostic implications as well as disease progression.

3.
J Mater Chem B ; 12(26): 6442-6451, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38860876

ABSTRACT

Self-assembled DNA nanostructures hold great promise in biosensing, drug delivery and nanomedicine. Nevertheless, challenges like instability and inefficiency in cellular uptake of DNA nanostructures under physiological conditions limit their practical use. To tackle these obstacles, this study proposes a novel approach that integrates the cationic polymer polyethyleneimine (PEI) with DNA self-assembly. The hypothesis is that the positively charged linear PEI can facilitate the self-assembly of DNA nanostructures, safeguard them against harsh conditions and impart them with the cellular penetration characteristic of PEI. As a demonstration, a DNA nanotube (PNT) was successfully synthesized through PEI mediation, and it exhibited significantly enhanced stability and cellular uptake efficiency compared to conventional Mg2+-assembled DNA nanotubes. The internalization mechanism was further found to be both clathrin-mediated and caveolin-mediated endocytosis, influenced by both PEI and DNA. To showcase the applicability of this hybrid nanostructure for biomedical settings, the KRAS siRNA-loaded PNT was efficiently delivered into lung adenocarcinoma cells, leading to excellent anticancer effects in vitro. These findings suggest that the PEI-mediated DNA assembly could become a valuable tool for future biomedical applications.


Subject(s)
Adenocarcinoma of Lung , DNA , Lung Neoplasms , Nanotubes , Polyethyleneimine , Proto-Oncogene Proteins p21(ras) , RNA, Small Interfering , Polyethyleneimine/chemistry , Humans , Nanotubes/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , DNA/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , A549 Cells , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Particle Size , Cell Proliferation/drug effects , Drug Carriers/chemistry
4.
J Org Chem ; 89(12): 9103-9109, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38842047

ABSTRACT

A brief, practical catalytic process for the production of optically active γ-functionalized alcohols from relevant alkenes has been developed by using a robust Mn(III)/air/(Me2SiH)2O catalytic system combined with lipase-catalyzed kinetic resolution. This approach demonstrates exceptional tolerance toward proximal functional groups present on alkenes, enabling the achievement of high yields and exclusive enantioselectivity. Under this sequential catalytic system, the chiral alkene precursors can also be converted into γ-functionalized alcohols and related acetates as separable single enantiomers.

5.
Opt Express ; 32(11): 20242-20255, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859139

ABSTRACT

Perfect optical vortex beams (POVBs) carrying orbital angular momentum (OAM) possess annular intensity profiles that are independent of the topological charge. Unlike POVBs, perfect vectorial vortex beams (PVVBs) not only carry orbital angular momentum but also exhibit spin angular momentum (SAM). By incorporating a Dammann vortex grating (DVG) on an all-dielectric metasurface, we demonstrate an approach to create a pair of PVVBs on a hybrid-order Poincaré sphere. Benefiting flexible phase modulation, by engineering the DVG and changing the input-beam state we are able to freely tailor the topological OAM and polarization eigenstates of the output PVVBs. This work demonstrates a versatile flat-optics platform for high-quality PVVB generation and may pave the way for applications in optical communication and quantum information processing.

6.
Nat Mater ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906993

ABSTRACT

Moiré superlattices have emerged as a new platform for studying strongly correlated quantum phenomena, but these systems have been largely limited to van der Waals layer two-dimensional materials. Here we introduce moiré superlattices leveraging ultrathin, ligand-free halide perovskites, facilitated by ionic interactions. Square moiré superlattices with varying periodic lengths are clearly visualized through high-resolution transmission electron microscopy. Twist-angle-dependent transient photoluminescence microscopy and electrical characterizations indicate the emergence of localized bright excitons and trapped charge carriers near a twist angle of ~10°. The localized excitons are accompanied by enhanced exciton emission, attributed to an increased oscillator strength by a theoretically predicted flat band. This research showcases the promise of two-dimensional perovskites as unique room-temperature moiré materials.

7.
Nutrients ; 16(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38931200

ABSTRACT

Pulses, as an important part of the human diet, can act as a source of high-quality plant proteins. Pulse proteins and their hydrolysates have shown promising results in alleviating metabolic syndrome and modulating the gut microbiome. Their bioactivities have become a focus of research, with many new findings added in recent studies. This paper comprehensively reviews the anti-hypertension, anti-hyperglycemia, anti-dyslipidemia and anti-obesity bioactivities of pulse proteins and their hydrolysates in recent in vitro and in vivo studies, which show great potential for the prevention and treatment of metabolic syndrome. In addition, pulse proteins and their hydrolysates can regulate the gut microbiome, which in turn can have a positive impact on the treatment of metabolic syndrome. Furthermore, the beneficial effects of some pulse proteins and their hydrolysates on metabolic syndrome have been supported by clinical studies. This review might provide a reference for the application of pulse proteins and their hydrolysates in functional foods or nutritional supplements for people with metabolic syndrome.


Subject(s)
Gastrointestinal Microbiome , Metabolic Syndrome , Protein Hydrolysates , Metabolic Syndrome/microbiology , Metabolic Syndrome/diet therapy , Humans , Gastrointestinal Microbiome/drug effects , Protein Hydrolysates/pharmacology , Protein Hydrolysates/administration & dosage , Animals , Plant Proteins
8.
Bioresour Technol ; 402: 130820, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729583

ABSTRACT

This study investigated the effects of enhanced biological phosphorus removal (EBPR) on rapid sludge bulking control and fast aerobic granular sludge (AGS) formation by adding 20 % of EBPR activated sludge to the bulking activated sludge (BAS) reactor. The results indicate that activating EBPR activity swiftly improved BAS settleability within 16 days, thus resolving sludge bulking issues. Subsequently, a settling time-based selection was employed, resulting in the BAS granulation within another 16 days. The rapid achievement of EBPR activity improved the BAS settleability and facilitated the formation of sludge aggregates, thereby expediting BAS granulation. Inhibition of filamentous bacteria and enrichment of slow-growing organisms contributed to both sludge bulking control and aerobic granulation. Furthermore, the increase in proteins/polysaccharides ratio facilitated the granulation process. Additionally, total nitrogen removal increased from 59.4 % to 71.7 % because of the mature AGS formation. This study provided an approach to simultaneously control sludge bulking and promote aerobic granulation.


Subject(s)
Bioreactors , Phosphorus , Sewage , Sewage/microbiology , Aerobiosis , Biodegradation, Environmental , Nitrogen , Waste Disposal, Fluid/methods
9.
Adv Sci (Weinh) ; : e2401845, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757623

ABSTRACT

The limited success of current targeted therapies for pancreatic cancer underscores an urgent demand for novel treatment modalities. The challenge in mitigating this malignancy can be attributed to the digestive organ expansion factor (DEF), a pivotal yet underexplored factor in pancreatic tumorigenesis. The study uses a blend of in vitro and in vivo approaches, complemented by the theoretical analyses, to propose DEF as a promising anti-tumor target. Analysis of clinical samples reveals that high expression of DEF is correlated with diminished survival in pancreatic cancer patients. Crucially, the depletion of DEF significantly impedes tumor growth. The study further discovers that DEF binds to p65, shielding it from degradation mediated by the ubiquitin-proteasome pathway in cancer cells. Based on these findings and computational approaches, the study formulates a DEF-mimicking peptide, peptide-031, designed to disrupt the DEF-p65 interaction. The effectiveness of peptide-031 in inhibiting tumor proliferation has been demonstrated both in vitro and in vivo. This study unveils the oncogenic role of DEF while highlighting its prognostic value and therapeutic potential in pancreatic cancer. In addition, peptide-031 is a promising therapeutic agent with potent anti-tumor effects.

10.
BMC Biol ; 22(1): 106, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715001

ABSTRACT

BACKGROUND: The significance of A-to-I RNA editing in nervous system development is widely recognized; however, its influence on retina development remains to be thoroughly understood. RESULTS: In this study, we performed RNA sequencing and ribosome profiling experiments on developing mouse retinas to characterize the temporal landscape of A-to-I editing. Our findings revealed temporal changes in A-to-I editing, with distinct editing patterns observed across different developmental stages. Further analysis showed the interplay between A-to-I editing and alternative splicing, with A-to-I editing influencing splicing efficiency and the quantity of splicing events. A-to-I editing held the potential to enhance translation diversity, but this came at the expense of reduced translational efficiency. When coupled with splicing, it could produce a coordinated effect on gene translation. CONCLUSIONS: Overall, this study presents a temporally resolved atlas of A-to-I editing, connecting its changes with the impact on alternative splicing and gene translation in retina development.


Subject(s)
Protein Biosynthesis , RNA Editing , Retina , Animals , Mice , Retina/metabolism , Retina/embryology , Alternative Splicing , Inosine/metabolism , Inosine/genetics , Adenosine/metabolism
11.
Cell Death Discov ; 10(1): 249, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782895

ABSTRACT

Multiple gene abnormalities are major drivers of tumorigenesis. NF-κB p65 overactivation and cGAS silencing are important triggers and genetic defects that accelerate tumorigenesis. However, the simultaneous correction of NF-κB p65 and cGAS abnormalities remains to be further explored. Here, we propose a novel Induced Dual-Target Rebalance (IDTR) strategy for simultaneously correcting defects in cGAS and NF-κB p65. By using our IDTR approach, we showed for the first time that oncolytic adenovirus H101 could reactivate silenced cGAS, while silencing GAU1 long noncoding RNA (lncRNA) inhibited NF-κB p65 overactivation, resulting in efficient in vitro and in vivo antitumor efficacy in colorectal tumors. Intriguingly, we further demonstrated that oncolytic adenoviruses reactivated cGAS by promoting H3K4 trimethylation of the cGAS promoter. In addition, silencing GAU1 using antisense oligonucleotides significantly reduced H3K27 acetylation at the NF-κB p65 promoter and inhibited NF-κB p65 transcription. Our study revealed an aberrant therapeutic mechanism underlying two tumor defects, cGAS and NF-κB p65, and provided an alternative IDTR approach based on oncolytic adenovirus and antisense oligonucleotides for efficient therapeutic efficacy in tumors.

12.
Sci Rep ; 14(1): 11528, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773317

ABSTRACT

As an autoimmune disease, up to 73% of patients with primary biliary cholangitis (PBC) have a combination of extrahepatic autoimmune diseases (EHAIDs); however, the causal relationship between PBC and EHAIDs is unclear. The genome-wide association analyses provided 14 GWAS data for PBC and EHAIDs, and bidirectional, two-sample MR analyses were performed to examine the relationship between PBC and EHAIDs. The analysis using MR provides a strong and meaningful estimation of the bidirectional correlation between PBC and 7 EHAIDs: rheumatoid arthritis, systemic lupus erythematosus, Sjögren's syndrome, systemic sclerosis, autoimmune hypothyroidism, inflammatory bowel disease and ulcerative colitis of its types. In addition, PBC increases the risk of autoimmune thyroid diseases such as autoimmune hyperthyroidism and Graves' disease, as well as multiple sclerosis and psoriasis. Additionally, PBC is identified as a risk factor for Crohn's disease and Celiac disease. Based on genetic evidence, there may be connections between PBC and specific EHAIDs: not all coexisting EHAIDs induce PBC, and vice versa. This underscores the significance of prioritizing PBC in clinical practice. Additionally, if any liver function abnormalities are observed during treatment or with EHAIDs, it is crucial to consider the possibility of comorbid PBC.


Subject(s)
Autoimmune Diseases , Genome-Wide Association Study , Liver Cirrhosis, Biliary , Mendelian Randomization Analysis , Humans , Liver Cirrhosis, Biliary/genetics , Autoimmune Diseases/genetics , Autoimmune Diseases/complications , Colitis, Ulcerative/genetics , Colitis, Ulcerative/complications , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/complications , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/complications , Sjogren's Syndrome/genetics , Sjogren's Syndrome/complications , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/complications , Genetic Predisposition to Disease , Celiac Disease/genetics , Celiac Disease/complications , Graves Disease/genetics , Risk Factors , Crohn Disease/genetics , Crohn Disease/complications , Scleroderma, Systemic/genetics , Multiple Sclerosis/genetics , Polymorphism, Single Nucleotide , Psoriasis/genetics , Psoriasis/complications
13.
BMC Pulm Med ; 24(1): 220, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702679

ABSTRACT

BACKGROUND: Recent research suggests that periodontitis can increase the risk of chronic obstructive pulmonary disease (COPD). In this study, we performed two-sample Mendelian randomization (MR) and investigated the causal effect of periodontitis (PD) on the genetic prediction of COPD. The study aimed to estimate how exposures affected outcomes. METHODS: Published data from the Gene-Lifestyle Interaction in the Dental Endpoints (GLIDE) Consortium's genome-wide association studies (GWAS) for periodontitis (17,353 cases and 28,210 controls) and COPD (16,488 cases and 169,688 controls) from European ancestry were utilized. This study employed a two-sample MR analysis approach and applied several complementary methods, including weighted median, inverse variance weighted (IVW), and MR-Egger regression. Multivariable Mendelian randomization (MVMR) analysis was further conducted to mitigate the influence of smoking on COPD. RESULTS: We chose five single-nucleotide polymorphisms (SNPs) as instrumental variables for periodontitis. A strong genetically predicted causal link between periodontitis and COPD, that is, periodontitis as an independent risk factor for COPD was detected. PD (OR = 1.102951, 95% CI: 1.005-1.211, p = 0.039) MR-Egger regression and weighted median analysis results were coincident with those of the IVW method. According to the sensitivity analysis, horizontal pleiotropy's effect on causal estimations seemed unlikely. However, reverse MR analysis revealed no significant genetic causal association between COPD and periodontitis. IVW (OR = 1.048 > 1, 95%CI: 0.973-1.128, p = 0.2082) MR Egger (OR = 0.826, 95%CI:0.658-1.037, p = 0.1104) and weighted median (OR = 1.043, 95%CI: 0.941-1.156, p = 0.4239). The results of multivariable Mendelian randomization (MVMR) analysis, after adjusting for the confounding effect of smoking, suggest a potential causal relationship between periodontitis and COPD (P = 0.035). CONCLUSION: In this study, periodontitis was found to be independent of COPD and a significant risk factor, providing new insights into periodontitis-mediated mechanisms underlying COPD development.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive , Smoking , Humans , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/epidemiology , Risk Factors , Smoking/epidemiology , Smoking/adverse effects , Periodontitis/genetics , Periodontitis/epidemiology , Severity of Illness Index , Genetic Predisposition to Disease , Periodontal Diseases/genetics , Periodontal Diseases/epidemiology
14.
Shock ; 62(1): 51-62, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38662604

ABSTRACT

ABSTRACT: Objectives: Sepsis is defined as a life-threatening disease associated with a dysfunctional host immune response. Stratified identification of critically ill patients might significantly improve the survival rate. The present study sought to probe molecular markers associated with cuproptosis in septic patients to aid in stratification and improve prognosis. Methods: We studied expression of cuproptosis-related genes (CRGs) using peripheral blood samples from septic patients. Further classification was made by examining levels of expression of these potential CRGs in patients. Coexpression networks were constructed using the Weighted Gene Coexpression Network Analysis (WGCNA) method to identify crucial prognostic CRGs. Additionally, we utilized immune cell infiltration analysis to further examine the immune status of septic patients with different subtypes and its association with the CRGs. scRNA-seq data were also analyzed to verify expression of key CRGs among specific immune cells. Finally, immunoblotting, flow cytometry, immunofluorescence, and CFSE analysis were used to investigate possible regulatory mechanisms. Results: We classified septic patients based on CRG expression levels and found significant differences in prognosis and gene expression patterns. Three key CRGs that may influence the prognosis of septic patients were identified. A decrease in GLS expression was subsequently verified in Jurkat cells, accompanied by a reduction in O-GlcNAc levels, and chelation of copper by tetrathiomolybdate could not rescue the reduction in GLS and O-GLcNAc levels. Moreover, immoderate chelation of copper was detrimental to mitochondrial function, cell viability, and cell proliferation, as well as the immune status of the host. Conclusion: We have identified novel molecular markers associated with cuproptosis, which could potentially function as diagnostic indicators for septic patients. The reversible nature of the observed alterations in FDX1 and LIAS was demonstrated through copper chelation, whereas the correlation between copper and the observed changes in GLS requires further investigation.


Subject(s)
CD4-Positive T-Lymphocytes , Sepsis , Humans , Sepsis/metabolism , Prognosis , Male , Female , Middle Aged , CD4-Positive T-Lymphocytes/metabolism , Aged , Copper , Biomarkers/blood , Biomarkers/metabolism
15.
Neurotoxicology ; 102: 81-95, 2024 May.
Article in English | MEDLINE | ID: mdl-38599287

ABSTRACT

BACKGROUND: Propofol can increase neurotoxicity in infants but the precise mechanism is still unknown. Our previous study revealed that nuclear FMR1 interacting protein 1 (NUFIP1), a specific ribophagy receptor, can alleviate T cell apoptosis in sepsis. Yet, the effect of NUFIP1-engineered exosomes elicited from human umbilical cord blood mesenchymal stem cells (hUMSCs) on nerve injury induced by propofol remains unclear. This study intended to investigate the effect of NUFIP1-engineered exosomes on propofol-induced nerve damage in neonatal rats. METHODS: Firstly, NUFIP1-engineered exosomes were extracted from hUMSCs serum and their identification was conducted using transmission electron microscopy (TEM), Flow NanoAnalyzer, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot (WB). Subsequently, the optimal exposure duration and concentration of propofol induced apoptosis were determined in SH-SY5Y cell line using WB. Following this, we co-cultured the NUFIP1-engineered exosomes in the knockdown group (NUFIP1-KD) and overexpression group (NUFIP1-OE) with SH-SY5Y cells and assessed their effects on the apoptosis of SH-SY5Y cells using terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) assay, Hoechst 33258 staining, WB, and flow cytometry, respectively. Finally, NUFIP1-engineered exosomes were intraperitoneally injected into neonatal rats, and their effects on the learning and memory ability of neonatal rats were observed through the righting reflex and Morris water maze (MWM) test. Hippocampi were extracted from different groups for hematoxylin-eosin (HE) staining, immunohistochemistry, immunofluorescence, and WB to observe their effects on apoptosis in neonatal rats. RESULTS: TEM, Flow NanoAnalyzer, qRT-PCR, and WB analyses confirmed that the exosomes extracted from hUMSCs serum exhibited the expected morphology, diameter, surface markers, and expression of target genes. This confirmed the successful construction of NUFIP1-KD and NUFIP1-OE-engineered exosomes. Optimal exposure duration and concentration of propofol were determined to be 24 hours and 100 µg/ml, respectively. Co-culture of NUFIP1 engineered exosomes and SH-SY5Y cells resulted in significant up-regulation of pro-apoptotic proteins Bax and c-Caspase-3 in the KD group, while anti-apoptotic protein Bcl-2 was significantly decreased. The OE group showed the opposite trend. TUNEL apoptosis assay, Hoechst 33258 staining, and flow cytometry yielded consistent results. Animal experiments demonstrated that intraperitoneal injection of NUFIP1-KD engineered exosomes prolonged the righting reflex recovery time of newborn rats, and MWM tests revealed a significant diminution in the time and number of newborn rats entering the platform. HE staining, immunohistochemistry, immunofluorescence, and WB results also indicated a significant enhancement in apoptosis in this group. Conversely, the experimental results of neonatal rats in the OE group revealed a certain degree of anti-apoptotic effect. CONCLUSIONS: NUFIP1-engineered exosomes from hUMSCs have the potential to regulate nerve cell apoptosis and mitigate neurological injury induced by propofol in neonatal rats. Targeting NUFIP1 may hold great significance in ameliorating propofol-induced nerve injury.


Subject(s)
Animals, Newborn , Apoptosis , Exosomes , Mesenchymal Stem Cells , Propofol , Rats, Sprague-Dawley , Animals , Propofol/toxicity , Exosomes/metabolism , Exosomes/drug effects , Apoptosis/drug effects , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Rats , Cell Line, Tumor , Fetal Blood
16.
Sci Total Environ ; 930: 172365, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38641118

ABSTRACT

Mining tailings containing large amounts of Pb and Cd cause severe regional ecosystem pollution. Soil microorganisms play a regulatory role in the restoration of degraded ecosystems. The remediation of heavy metal-contaminated tailings with amendments and economically valuable Eucalyptus camaldulensis is a research hotspot due to its cost-effectiveness and sustainability. However, the succession and co-occurrence patterns of these microbial communities in this context remain unclear. Tailing samples of five kinds of Cd and Pb were collected in E. camaldulensis restoration models. Physicochemical properties, the proportions of different Cd and Pb forms, microbial community structure, and the co-occurrence network of rhizosphere tailings during different restoration process (organic bacterial manure, organic manure, inorganic fertilizer, bacterial agent) were considered. Organic and organic bacterial manures significantly increased pH, cation exchange capacity, and the proportion of residual Pb. Still, there was a significant decrease in the proportion of reducible Pb. The changes in microbial communities were related to physicochemical properties and the types of amendments. Organic and organic bacterium manures decreased the relative abundance of oligotrophic groups and increased the relative abundance of syntrophic groups. Inorganic fertilizers and bacterial agents decreased the relative abundance of saprophytic fungi. B. subtilis would play a better role in the environment improved by organic manure, increasing the relative abundance of beneficial microorganism and reducing the relative abundance of pathogenic microorganism. pH, cation exchange capacity, and the proportion of different forms of Pb were the main factors affecting the bacterial and fungi variation. All four amendments transformed the main critical groups of the microbial network structure from acidophilus and pathogenic microorganisms to beneficial microorganisms. Heavy metal-resistant microorganisms, stress-resistant microorganisms, beneficial microorganisms that promote nutrient cycling, and copiotrophic groups have become critical to building stable rhizosphere microbial communities. The topological properties and stability of the rhizosphere co-occurrence network were also enhanced. Adding organic and organic bacterium manures combined with E. camaldulensis to repair Cd and Pb tailings improved (1) pH and cation exchange capacity, (2) reduced the biological toxicity of Pb, (3) enhanced the stability of microbial networks, and (4) improved ecological network relationships. These positive changes are conducive to the restoration of the ecological functions of tailings.


Subject(s)
Cadmium , Eucalyptus , Lead , Mining , Rhizosphere , Soil Microbiology , Soil Pollutants , Lead/analysis , Soil Pollutants/analysis , Cadmium/analysis , Microbiota , Fertilizers , Bacteria , Environmental Restoration and Remediation/methods , Biodegradation, Environmental
17.
Eco Environ Health ; 3(2): 117-130, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38638172

ABSTRACT

Polyethylene terephthalate (PET), one of the most ubiquitous engineering plastics, presents both environmental challenges and opportunities for carbon neutrality and a circular economy. This review comprehensively addressed the latest developments in biotic and abiotic approaches for PET recycling/upcycling. Biotically, microbial depolymerization of PET, along with the biosynthesis of reclaimed monomers [terephthalic acid (TPA), ethylene glycol (EG)] to value-added products, presents an alternative for managing PET waste and enables CO2 reduction. Abiotically, thermal treatments (i.e., hydrolysis, glycolysis, methanolysis, etc.) and photo/electrocatalysis, enabled by catalysis advances, can depolymerize or convert PET/PET monomers in a more flexible, simple, fast, and controllable manner. Tandem abiotic/biotic catalysis offers great potential for PET upcycling to generate commodity chemicals and alternative materials, ideally at lower energy inputs, greenhouse gas emissions, and costs, compared to virgin polymer fabrication. Remarkably, over 25 types of upgraded PET products (e.g., adipic acid, muconic acid, catechol, vanillin, and glycolic acid, etc.) have been identified, underscoring the potential of PET upcycling in diverse applications. Efforts can be made to develop chemo-catalytic depolymerization of PET, improve microbial depolymerization of PET (e.g., hydrolysis efficiency, enzymatic activity, thermal and pH level stability, etc.), as well as identify new microorganisms or hydrolases capable of degrading PET through computational and machine learning algorithms. Consequently, this review provides a roadmap for advancing PET recycling and upcycling technologies, which hold the potential to shape the future of PET waste management and contribute to the preservation of our ecosystems.

18.
J Environ Manage ; 356: 120613, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38547824

ABSTRACT

The disintegration and instability of aerobic granular sludge (AGS) systems during long-term operation pose significant challenges to its practical implementation, and rapid recovery strategies for disintegrated AGS are gaining more attention. In this study, the recovery and re-stabilization of disintegrated AGS was investigated by adding chitosan to a sequencing batch reactor and simultaneously adjusting the pH to slightly acidic condition. Within 7 days, chitosan addition under slight acidity led to the re-aggregation of disintegrated granules, increasing the average particle size from 166.4 µm to 485.9 µm. Notably, sludge volume indexes at 5 min (SVI5) and 30 min (SVI30) decreased remarkably from 404.6 mL/g and 215.1 mL/g (SVI30/SVI5 = 0.53) to 49.1 mL/g and 47.6 mL/g (SVI30/SVI5 = 0.97), respectively. Subsequent operation for 43 days successfully re-stabilized previous collapsed AGS system, resulting in an average particle size of 750.2 µm. These mature and re-stabilized granules exhibited characteristics of large particle size, excellent settleability, compact structure, and high biomass retention. Furthermore, chitosan facilitated the recovery of COD and nitrogen removal performances within 17-23 days of operation. It effectively facilitated the rapid aggregation of disintegrated granules by charge neutralization and bridging effects under a slightly acidic environment. Moreover, the precipitated chitosan acted as carriers, promoting the adhesion of microorganisms once pH control was discontinued. The results of batch tests and microbial community analysis confirmed that chitosan addition increased sludge retention time, enriching slow-growing microorganisms and enhancing the stability and pollutant removal efficiency of the AGS system.


Subject(s)
Chitosan , Sewage , Sewage/chemistry , Waste Disposal, Fluid/methods , Bioreactors , Aerobiosis , Nitrogen/chemistry
19.
Environ Sci Pollut Res Int ; 31(17): 25202-25215, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38466381

ABSTRACT

Laccase immobilized and cross-linked on Fe3S4/earthworm-like mesoporous SiO2 (Fe3S4/EW-mSiO2) was used to degrade methoxychlor (MXC) in aqueous environments. The effects of various parameters on the degradation of MXC were determined using free and immobilized laccase. Immobilization improved the thermal stability and reuse of laccase significantly. Under the conditions of pH 4.5, temperature 40 °C, and reaction time 8 h, the degradation rate of MXC by immobilized laccase reached a maximum value of 40.99% and remained at 1/3 of the original after six cycles. The excellent degradation performance of Fe3S4/EW-mSiO2 was attributable to the pyrite (FeS2) impurity in Fe3S4, which could act as an electron donor in reductive dehalogenation. Sulfide groups and Fe2+ reduced the activation energy of the system resulting in pyrite-assisted degradation of MXC. The degradation mechanism of MXC in aqueous environments by laccase immobilized on Fe3S4/EW-mSiO2 was determined via mass spectroscopy of the degradation products. This study is a new attempt to use pyrite to support immobilized laccase degradation.


Subject(s)
Iron , Methoxychlor , Oligochaeta , Animals , Methoxychlor/chemistry , Enzymes, Immobilized/chemistry , Laccase/metabolism , Silicon Dioxide/chemistry , Oligochaeta/metabolism , Sulfides
20.
Front Med (Lausanne) ; 11: 1346165, 2024.
Article in English | MEDLINE | ID: mdl-38487027

ABSTRACT

Background: Sarcopenia adversely affects the treatment outcomes in Cirrhosis and NAFLD. However, such research is limited in primary biliary cholangitis (PBC) patients. This study was performed to examine the prevalence of sarcopenia and its impact on PBC patients' prognoses. Methods: This study enrolled confirmed PBC patients who had an abdominal CT scan. Sarcopenia was determined by the L3-skeletal muscle index with a Chinese population-based cut-off value. Laboratory test values and liver stiffness measurements values were obtained from the electronic medical records. Results: In total, 174 PBC patients with a median age of 54 (IQR, 48, 62) years old, were enrolled. 45 (25.9%) patients among them were diagnosed with sarcopenia. Univariate and multivariate logistic regression results illustrated that male gender (OR = 9.152, 95%CI = 3.131-26.751, p < 0.001) and LSM ≥ 12.8 kPa (OR = 4.539, 95%CI = 1.651, 12.478, p = 0.003) were the independent risk factors of sarcopenia in PBC patients. In the prognosis analysis, sarcopenia was determined as a risk factor for indicating adverse events in PBC patients (HR = 4.058, 95%CI = 1.955-8.424, p < 0.001) by Cox proportional hazards regression. Conclusion: The current findings illustrate that comprehensive evaluation and management of sarcopenia may contribute to the improvement of treatment outcomes and life quality of PBC patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...