Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.308
Filter
1.
Discov Oncol ; 15(1): 327, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090431

ABSTRACT

Small cell lung cancer (SCLC) is an extremely aggressive cancer with a relatively low median survival rate after diagnosis. Treatment options such as chemotherapy or combination immunotherapy have shown clinical benefits, but resistance and relapse can occur. Antibody-drug conjugates (ADCs), as a novel class of biopharmaceutical compounds, have broad application prospects in the treatment of SCLC. ADCs consist of monoclonal antibodies that specifically target cancer cells and are attached to cytotoxic drugs, allowing for targeted killing of cancer cells while sparing healthy tissues. Current clinical studies focus on Delta-like protein 3 (DLL3), CD56, Trophoblast cell surface antigen 2 (Trop-2), B7-H3, and SEZ6. Although toxicities exceeding expectations have been observed with Rova-T, drugs targeting TROP-2 (Sacituzumab Govitecan), B7-H3 (DS-7300), and SEZ6 (ABBV-011) have shown exciting clinical benefits. In this review, we collect the latest clinical evidence to describe the therapeutic efficacy and safety of ADCs in SCLC and discuss prospects and challenges.

2.
Front Endocrinol (Lausanne) ; 15: 1380885, 2024.
Article in English | MEDLINE | ID: mdl-39099670

ABSTRACT

Introduction: In vitro fertilization (IVF) is a technology that assists couples experiencing infertility to conceive children. However, unsuccessful attempts can lead to significant physical and financial strain. Some individuals opt for electro-acupuncture (EA) during IVF, even though there is limited evidence regarding the efficacy of this practice. Thus, this pilot study aims to explore the effectiveness and safety of EA during IVF on pregnancy outcomes. Methods and analysis: This clinical trial is a parallel, randomized, sham-controlled study. It aims to include a total of 118 infertile women who intend to undergo IVF. The participants will be randomly divided into three groups in a 1:1:1 ratio: the EA + IVF group, the placebo electro-acupuncture (pEA) +IVF group, and the IVF control group. All of the patients will be required to use ovarian stimulation drugs, while those in the EA + IVF and pEA + IVF groups will receive acupuncture treatment at three sessions per week (every other day) until trigger day with a minimum five session. The primary outcome of this trial will focus on the clinical pregnancy rate (CPR). CPR is defined as the rate of achieving clinical pregnancy from the first fresh/frozen embryo transfer cycle with an ultrasound-confirmed gestational sac in the uterine cavity. The secondary outcomes will assess embryology data, biochemical pregnancy rate, early miscarriage rate, Self-rating Anxiety Scale (SAS), Self-rating Depression Scale (SDS), Pittsburgh Sleep Quality Index (PSQI), Fertile Quality of Life (FertiQoL), patient retention rate, treatment adherence, and safety outcomes. Ethics and dissemination: Ethics approval was obtained from the Ethics Committee of Sichuan Jinxin Xi'nan Women and Children Hospital (number 2021-007). The results will be disseminated through peer-reviewed publications. The participants gave informed consent to participate in the study before taking part in it. Clinical trial registration: https://www.chictr.org.cn, identifier ChiCTR2300074455.


Subject(s)
Electroacupuncture , Fertilization in Vitro , Pregnancy Outcome , Pregnancy Rate , Humans , Female , Pregnancy , Fertilization in Vitro/methods , Electroacupuncture/methods , Pilot Projects , Adult , Infertility, Female/therapy , Ovulation Induction/methods , Randomized Controlled Trials as Topic , Treatment Outcome
3.
Angew Chem Int Ed Engl ; : e202408873, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113072

ABSTRACT

The acidic electrocatalytic conversion of CO2 to multi-carbon (C2+) oxygenates is of great importance in view of enhancing carbon utilization efficiency and generating products with high energy densities, but suffering from low selectivity and activity. Herein, we synthesized Ag-Cu alloy catalyst with highly rough surface, by which the selectivity to C2+ oxygenates can be greatly improved. In a strongly acidic condition (pH=0.75), the maximum C2+ products Faradaic efficiency (FE) and C2+ oxygenates FE reach 80.4% and 56.5% at -1.9 V versus reversible hydrogen electrode, respectively, with a ratio of FEC2+ oxygenates to FEethylene up to 2.36. At this condition, the C2+ oxygenates partial current density is as high as 480 mA cm-2. The in situ Raman measurements and control experiments indicate that the high generation of C2+ oxygenates over the catalyst originates from its large surface roughness and Ag alloying.

4.
Drug Chem Toxicol ; : 1-11, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39113645

ABSTRACT

Perfluorooctane sulfonate (PFOS), widely used in various industrial and commercial materials, can accumulate in the human body due to its high environmental stability, and thus potentially has cardiotoxicity. We assess cardiotoxicity through rat exposure to PFOS by intraperitoneal injection. Untargeted metabolomic analysis was used to explore the potential cardiotoxicity mechanism of PFOS. In vivo, PFOS exposure increases pro-inflammatory factors TNF-α and IL-1ß and decreases anti-inflammatory factors IL-10 and TGF-ß. PFOS exposure causes pathological changes in cardiac tissue and increases cardiac injury markers brain natriuretic peptide (BNP), lactate dehydrogenase (LDH), C-reactive protein (CRP) in serum and triglyceride (TG), total cholesterol (TC) and ox-LDL in plasma. Increased expression of plasminogen activator inhibitor-1 (PAI-1) and CD36 indicates that PFOS exacerbates cardiac fibrosis. Untargeted metabolites analysis revealed 414 small molecule metabolites and 33 metabolites that differed after PFOS exposure, and identified 3 potential metabolic pathways. In conclusion, our study shows the inflammatory reactions involved in PFOS cardiotoxicity, and identifies potential pathways and differential metabolites involved in PFOS toxicity.

5.
Front Physiol ; 15: 1330171, 2024.
Article in English | MEDLINE | ID: mdl-39100278

ABSTRACT

Objective: This meta-analysis aims to examine differences in biochemical markers of bone metabolism between individuals with type 2 diabetes (T2DM) and non-T2DM control groups. Materials and methods: Two independent evaluators searched five databases: PubMed, EMBASE, EBSCOhost, Web of Science, and the Cochrane Library. We aimed to identify observational studies investigating the impact of T2DM on biochemical markers of bone metabolism. Literature retrieval covered the period from the establishment of the databases up to November 2022. Studies were included if they assessed differences in biochemical markers of bone metabolism between T2DM patients and non-T2DM control groups using cross-sectional, cohort, or case-control study designs. Results: Fourteen studies were included in the analysis, comprising 12 cross-sectional studies and 2 cohort studies. Compared to the non-T2DM control group, T2DM patients showed reduced levels of Osteocalcin and P1NP, which are markers of bone formation. Conversely, levels of Alkaline phosphatase and Bone-specific alkaline phosphatase, other bone formation markers, increased. The bone resorption marker CTX showed decreased levels, while TRACP showed no significant difference. Conclusion: In individuals with T2DM, most bone turnover markers indicated a reduced rate of bone turnover. This reduction can lead to increased bone fragility despite higher bone mineral density, potentially increasing the risk of osteoporosis.Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php? identifier CRD42022366430.

6.
iScience ; 27(8): 110496, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39100694

ABSTRACT

Pancreatic cancer is highly lethal with limited effective treatments. This study explores the therapeutic effects of eupalinolide B (EB) from Eupatorium lindleyanum DC on pancreatic cancer cells. Through cellular functional assays, we observed that EB effectively inhibits cell viability, proliferation, migration, and invasion. In a xenograft mouse model, EB treatment resulted in reduced pancreatic cancer tumor growth and decreased expression of Ki-67. Mechanistically, EB induces apoptosis, elevates reactive oxygen species (ROS) levels, and disrupts copper homeostasis. RNA sequencing (RNA-seq) and gene set enrichment analysis (GSEA) identified copper ion binding pathways and potential involvement in cuproptosis. Furthermore, EB enhances the cytotoxic effects of elesclomol (ES), increasing ROS levels in a copper-dependent manner and exhibiting synergistic cytotoxicity. These findings suggest that EB, either alone or in combination with ES, represents a promising strategy for targeting metal ion dysregulation and inducing potential cuproptosis in pancreatic cancer, offering a potential improvement in therapeutic outcomes.

7.
Hortic Res ; 11(8): uhae159, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39108589

ABSTRACT

Glomerella leaf spot (GLS) is a fungal disease caused by Colletotrichum fructicola, which severely restricts the yield and quality of apples. Valine-glutamine (VQ) proteins are transcriptional regulators involved in the regulation of plant growth and stress responses. However, little is known about the role of VQ proteins in the biotic stress response in apple. Here, a VQ gene, MdVQ17, that was highly induced by C. fructicola infection was identified. Overexpression of MdVQ17 in apple increased susceptibility to C. fructicola and significantly reduced the salicylic acid content and ß-1,3-glucanase and chitinase activities. Based on yeast two-hybrid screening, MdWRKY17, which promotes susceptibility to C. fructicola, was identified as an MdVQ17-interacting protein. Co-expression of MdVQ17 can promote the binding and transcriptional activation activity of MdWRKY17 on the promoter of Downy Mildew Resistant 6 (MdDMR6), thereby promoting MdWRKY17-mediated salicylic acid degradation. Based on DNA affinity purification sequencing, the pectin lyase-encoding gene MdPL-like was identified as a direct target of MdWRKY17. MdWRKY17 can directly bind to the promoter of MdPL-like and activate its transcription, and the binding and activation of MdWRKY17 on the MdPL-like promoter were significantly enhanced by MdVQ17 co-expression. Functional identification showed that MdPL-like promoted pectin lyase activity and susceptibility to C. fructicola. In sum, these results demonstrate that the MdVQ17-MdWRKY17 module mediates the response to C. fructicola infection by regulating salicylic acid accumulation and pectin lyase activity. Our findings provide novel insights into the mechanisms by which the VQ-WRKY complex modulates plant pathogen defense responses.

8.
J Adv Res ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39097090

ABSTRACT

INTRODUCTION: Fluorosis is a global public health disease affecting more than 50 countries and 500 million people. Excessive fluoride damages the liver and intestines, yet the mechanisms and therapeutic approaches remain unclear. OBJECTIVES: To explore the mechanisms by which fluoride-induced intestinal-hepatic damage and vitamin B2 alleviation. METHODS: Fluoride and/or vitamin B2-treated IL-17A knockout and wild-type mouse models were established, the morphological and functional changes of liver and gut, total bile acid biosynthesis, metabolism, transport, and regulation of FXR-FGF15 signaling pathways were evaluated, the ileal microbiome was further analyzed by 16S rDNA sequence. Finally, Bifidobacterium supplementation mouse model was designed and re-examined the above indicators. RESULTS: The results demonstrated that fluoride induced hepatointestinal injury and enterohepatic circulation disorder by altering the synthesis, transporters, and FXR-FGF15 pathway regulation of total bile acid. Importantly, the ileum was found to be the most sensitive and fluoride changed ileal microbiome particularly by reducing abundance of Bifidobacterium. While vitamin B2 supplementation attenuated fluoride-induced enterohepatic circulation dysfunction through IL-17A and ileal microbiome, Bifidobacterium supplementation also reversed fluoride-induced hepatointestinal injury. CONCLUSION: Fluoride induces morphological and functional impairment of liver and gut tissues, as well as enterohepatic circulation disorder by altering total bile acid (TBA) synthesis, transporters, and FXR-FGF15 signaling regulation. Vitamin B2 attenuated fluoride-induced enterohepatic circulation disorder through IL-17A knockout and ileal microbiome regulation. The ileum was found to be the most sensitive to fluoride, leading to changes in ileal microbiome, particularly the reduction of Bifidobacterium. Furthermore, Bifidobacterium supplementation reversed fluoride-induced hepatointestinal injury. This study not only elucidates a novel mechanism by which fluoride causes hepatointestinal toxicity, but also provides a new physiological function of vitamin B2, which will be useful in the therapy of fluorosis and other hepatoenterological diseases.

9.
Lipids ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107247

ABSTRACT

Investigate the predictive value of TyG and lipid ratios on the development of complications and HUA in patients with T2DM. A retrospective cross-sectional study involving 9488 T2DM patients was conducted. They were divided into HUA and NUA group base on SUA level and divided into with and without complications groups according to the diagnosis of the endocrinologist. Necessary information and biochemical parameters were recorded during outpatient visit. TyG index and lipid ratios were calculated, and statistical analysis was carried out to correlate the calculated values and HUA using SPSS version 26.0 for Windows. TyG and lipid ratios were significantly higher in T2DM with HUA or with complications than those with NUA or without complications (p < 0.05). Regression analysis adjusting for confounding factors found TyG (adjusted OR = 1.54; 95% CI: 1.31-1.82; p < 0.05), TG/HDL-C (adjusted OR = 1.21; 95% CI: 1.04-1.40; p < 0.05) and TC/HDL (adjusted OR = 1.36; 95% CI: 1.17-1.57; p < 0.05) was risk factor of HUA in T2DM patients. TyG (adjusted OR = 1.21; 95% CI: 1.02-1.44; p < 0.05), TG/HDL (adjusted OR = 1.19; 95% CI: 1.03-1.38; p < 0.05) and Apo A/Apo B (adjusted OR = 1.41; 95% CI: 1.26-1.58; p < 0.05) was risk factor of complications in T2DM patients. TyG, TG/HDL-C, and TC/HDL can be used as early sensitive target in the occurrence of HUA in T2DM patients and TyG was the most influential risk factor. TyG, TG/HDL-C, and Apo A/Apo B can be used as early sensitive target in the occurrence of complications in T2DM patients and Apo A/Apo B was the most influential risk factor.

10.
Heliyon ; 10(14): e34528, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39114045

ABSTRACT

Background: 5-Fluorouracil (5-Fu), a prominent chemotherapeutic agent for colorectal cancer (CRC) treatment, is often associated with gastrointestinal toxicities, particularly diarrhea. Our previous study demonstrated that berberine (BBR) ameliorates 5-Fu-induced intestinal mucosal injury by modulating the gut microbiota in rats. Nevertheless, the precise molecular mechanism underlying BBR's protective effect on intestinal mucosa remains elusive, and its impact on the anti-tumor efficacy of 5-Fu warrants further investigation. Methods: The effect of BBR on 5-Fu-induced intestinal mucosal injury was investigated using a tumor-bearing murine model, employing H&E staining, 16 S rDNA sequencing, transcriptome sequencing, Western blot analysis, cell experiments and constructing a pseudo-germ-free tumor xenograft model. Result: Our findings demonstrate that BBR alleviates intestinal mucosal damage, reduces the levels of inflammatory factors (IL-6, TNF-α, and IL-1ß), and inhibits epithelial cell apoptosis in 5-Fu-treated mice without compromising 5-Fu's anti-tumor efficacy. Moreover, 16 S rDNA sequencing indicated that BBR significantly increases the abundance of Akkermansia and decreases the abundance of pathogenic bacteria Escherichia/Shigella at the genus level. Mechanistically, transcriptome sequencing and Western blot analysis confirmed that BBR upregulates PI3K/AKT/mTOR expression in the intestinal mucosa. However, this effect was not observed in tumor tissues. Notably, BBR did not demonstrate a direct protective effect on 5-Fu-treated CCD841 and SW480 cells. Additionally, BBR had no effect on the PI3K/AKT/mTOR pathway in the intestinal tissue of the 5-Fu-treated mouse model with a depleted gut microbiota. Conclusion: This study indicates that BBR alleviates 5-Fu-induced intestinal mucosal injury by modulating the gut microbiota and regulating the PI3K/AKT/mTOR signaling pathway without compromising the anti-tumor efficacy of 5-Fu.

11.
Front Oncol ; 14: 1409329, 2024.
Article in English | MEDLINE | ID: mdl-39114307

ABSTRACT

Background: Metastasis remains the leading cause of mortality among colorectal cancer (CRC) patients. Identification of new metastasis-related genes are critical to improve colorectal cancer prognosis. Methods: Data on mRNA expression in metastatic and primary CRC was obtained from the Gene Expression Omnibus (GEO) database, including GSE81986, GSE41568, GSE71222, GSE21510, and GSE14333. Additionally, data concerning mRNA expression in colon cancer (COAD) and adjacent normal tissues were acquired from The Cancer Genome Atlas (TCGA) database. Hub genes were identified by weighted gene co-expression network analysis (WGCNA) and differential gene expression analysis. Moreover, we assessed the impact of hub gene expression on both overall survival (OS) and disease-free survival (DFS) in patients and identified ZG16 as a potential target. We generated CRC cell lines transfected with lentivirus OE-ZG16 to investigate proliferation, invasion, and migration in vitro. To further elucidate the involvement of ZG16, we utilized gene set enrichment analysis (GSEA) to identify enriched pathways, which were subsequently validated via Western blot analysis. Results: Five datasets containing primary and metastatic CRC samples from GEO database and CRC samples from TCGA database were included in this study and 29 hub genes were identified by WGCNA and differentially expressed gene (DEG) analysis. Low expression of the hub genes (CLCA1 and ZG16) was associated with poor DFS and OS. We confirmed the low expression of ZG16 in CRC using external database and IHC analysis at both transcriptional and protein levels. In addition, the expression of ZG16 was notably elevated in NCM460 cells in comparison to CRC cell lines. The overexpression of ZG16 in CRC cells has been shown to inhibit the proliferation, invasion, and migration of CRC cells. Furthermore, the overexpression of ZG16 has been found to suppress the activation of the epithelial-mesenchymal transition (EMT) and Wnt/ß-catenin signaling pathways in CRC. Conclusion: ZG16 may serve as a promising therapeutic target for metastatic CRC treatment.

12.
Nano Lett ; 24(32): 9906-9915, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39087644

ABSTRACT

Rectifying the aberrant microenvironment of a disease through maintenance of redox homeostasis has emerged as a promising perspective with significant therapeutic potential for Alzheimer's disease (AD). Herein, we design and construct a novel nanozyme-boosted MOF-CRISPR platform (CMOPKP), which can maintain redox homeostasis and rescue the impaired microenvironment of AD. By modifying the targeted peptides KLVFFAED, CMOPKP can traverse the blood-brain barrier and deliver the CRISPR activation system for precise activation of the Nrf2 signaling pathway and downstream redox proteins in regions characterized by oxidative stress, thereby reinstating neuronal antioxidant capacity and preserving redox homeostasis. Furthermore, cerium dioxide possessing catalase enzyme-like activity can synergistically alleviate oxidative stress. Further in vivo studies demonstrate that CMOPKP can effectively alleviate cognitive impairment in 3xTg-AD mouse models. Therefore, our design presents an effective way for regulating redox homeostasis in AD, which shows promise as a therapeutic strategy for mitigating oxidative stress in AD.


Subject(s)
Alzheimer Disease , Oxidative Stress , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Animals , Mice , Oxidative Stress/drug effects , Humans , NF-E2-Related Factor 2/metabolism , Metal-Organic Frameworks/chemistry , Disease Models, Animal , CRISPR-Cas Systems/genetics , Cerium/chemistry , Cerium/therapeutic use , Cerium/pharmacology , Blood-Brain Barrier/metabolism , Oxidation-Reduction , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use
13.
Sci Rep ; 14(1): 18625, 2024 08 11.
Article in English | MEDLINE | ID: mdl-39128903

ABSTRACT

The COVID-19 pandemic has imposed significant challenges on global health, emphasizing the persistent threat of large-scale infectious diseases in the future. This study addresses the need to enhance pooled testing efficiency for large populations. The common approach in pooled testing involves consolidating multiple test samples into a single tube to efficiently detect positivity at a lower cost. However, what is the optimal number of samples to be grouped together in order to minimize costs? i.e. allocating ten individuals per group may not be the most cost-effective strategy. In response, this paper introduces the hierarchical quotient space, an extension of fuzzy equivalence relations, as a method to optimize group allocations. In this study, we propose a cost-sensitive multi-granularity intelligent decision model to further minimize testing costs. This model considers both testing and collection costs, aiming to achieve the lowest total cost through optimal grouping at a single layer. Building upon this foundation, two multi-granularity models are proposed, exploring hierarchical group optimization. The experimental simulations were conducted using MATLAB R2022a on a desktop with Intel i5-10500 CPU and 8G RAM, considering scenarios with a fixed number of individuals and fixed positive probability. The main findings from our simulations demonstrate that the proposed models significantly enhance the efficiency and reduce the overall costs associated with pooled testing. For example, testing costs were reduced by nearly half when the optimal grouping strategy was applied, compared to the traditional method of grouping ten individuals. Additionally, the multi-granularity approach further optimized the hierarchical groupings, leading to substantial cost savings and improved testing efficiency.


Subject(s)
COVID-19 , Cost-Benefit Analysis , Humans , COVID-19/epidemiology , COVID-19/diagnosis , COVID-19/economics , COVID-19/virology , SARS-CoV-2/isolation & purification , COVID-19 Testing/methods , COVID-19 Testing/economics , Pandemics/economics , Decision Support Techniques
14.
Alzheimers Dement ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39132849

ABSTRACT

INTRODUCTION: The spatial and temporal patterns of cortical mean diffusivity (cMD), as well as its association with Alzheimer's disease (AD) and suspected non-Alzheimer's pathophysiology (SNAP), are not yet fully understood. METHODS: We compared baseline (n = 617) and longitudinal changes (n = 421) of cMD, cortical thickness, and gray matter volume and their relations to vascular risk factors, amyloid beta (Aß), and tau positron emission tomography (PET), and longitudinal cognitive decline in Aß PET negative and positive older adults. RESULTS: cMD increases were more sensitive to detecting brain structural alterations than cortical thinning and gray matter atrophy. Tau-related cMD increases partially mediated Aß-related cognitive decline in AD, whereas vascular disease-related increased cMD levels substantially mediated age-related cognitive decline in SNAP. DISCUSSION: These findings revealed the dynamic changes of microstructural and macrostructural indicators and their associations with AD and SNAP, providing novel insights into understanding upstream and downstream events of cMD in neurodegenerative disease. HIGHLIGHTS: Cortical mean diffusivity (cMD) was more sensitive to detecting structural changes than macrostructural factors. Tau-related cMD increases partially mediated amyloid beta-related cognitive decline in Alzheimer's disease (AD). White matter hyperintensity-related higher cMD mainly explained the age-related cognitive decline in suspected non-Alzheimer's pathophysiology (SNAP). cMD may assist in tracking earlier neurodegenerative signs in AD and SNAP.

15.
Surg Endosc ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134720

ABSTRACT

BACKGROUND: Patients with acute cholecystitis (AC) presenting with unfavorable systemic or local conditions are often managed with percutaneous cholecystostomy (PC) as a temporary measure. The clinical outcomes of interval cholecystectomy following PC remain unclear. The aim of the study was to identify the association between the timing of cholecystectomy following PC for AC and perioperative complication rates at interval cholecystectomy. We hypothesized that there would be a specific time interval to cholecystectomy associated with lower risk for adverse events. METHODS: This was a retrospective (2018-2020) multicenter study at 8 participating hospital systems of adult patients with AC, managed with PC and interval cholecystectomy. Demographics, comorbidities, treatment details, and outcomes were examined. Patients were grouped based on quartiles for timing of surgery after PC (< 7, 7-9, 10-13, > 13 weeks). The primary outcome was a composite endpoint of bile duct injury, reoperation, readmission, image-guided intervention, endoscopic intervention, conversion to open surgery, or death. RESULTS: There were 188 patients with a median age of 66 years with AC classified as mild (41%), moderate (47%), and severe (12%). Median days from PC to surgery were 65 (Q1 = 48, Q3 = 91). Laparoscopic cholecystectomy (89.9%) was the most commonly planned approach (robotic 6.4%, 3.7% open) and 28 (14.9%) were converted to open. The composite endpoint was reported in 51 patients (27.1%). A biliary injury occurred in 7 (3.7%) patients. Time to surgery and intraoperative drain placement were independently associated with the composite outcome. Cholecystectomy within 7 weeks of PC was associated with decreased risk (OR = 0.36, 95% CI 0.13-0.97) of the composite endpoint, compared to patients undergoing surgery > 13 weeks after PC. CONCLUSION: Timing of surgery following PC was associated with procedural outcomes. Patients undergoing surgery before 7 weeks experienced significantly less morbidity than patients having delayed cholecystectomy. These results should be considered in patient selection and management after PC.

16.
Article in English | MEDLINE | ID: mdl-39134871

ABSTRACT

The balance between oxidation and antioxidation is crucial for the development of embryo. It is harmful to the early embryonic development if embryonic stem cells (ESCs) encounter the serious oxidative stress in vivo. Induced pluripotent stem cells (iPSCs) are very similar to ESCs and are the important cell source to replace ESCs for research and therapy. Studies show that iPSCs have better resistant ability to oxidative stress, but the involved mechanism remains unclear. In this study, we predicted that the NF-κB pathway might be involved in H2O2-induced developmental damage by network toxicology analysis. Then, the oxidative stress model was established with different concentrations of H2O2 to investigate the mechanism of NF-κB pathway in oxidative stress of human induced pluripotent stem cells (hiPSCs). The results showed as follows: With the increase of H2O2 concentration, the ROS level gradually went up leading to an increasing damage degree of hiPSCs; however, the MDA content was obviously high only in the 400 µM H2O2 group; the activities of some antioxidant indexes such as SOD2 and T-AOC were significantly upregulated in the 100 µM group, while most of antioxidant indexes showed downregulated tendency to different degrees with the increase of H2O2 concentration. The expression levels of P65, P50, IκB, SOD2, and FHC mRNA were upregulated in most H2O2-treated groups, showing a dose-dependent relationship. In subsequent experiments, the inhibitor of IκB-α phosphorylation, Bay11-7082, reversed the upregulation of P65, IκB, and FHC mRNA expression induced by 400 µM H2O2. The protein levels of P65, p-P65, P50, p-P50, IκB, p-IκB, SOD2, and FHC were upregulated in most H2O2-treated groups. However, the upregulation induced by 400 µM H2O2 could be reversed by BAY 11-7082, except for IκB and SOD2. In conclusion, H2O2 could promote the expressions and phosphorylations of NF-κB that could upregulate the expressions of its downstream antioxidant genes to minimize the damage of hiPSCs caused by oxidative stress. These results contribute to a fundamental understanding of the antioxidant mechanism of iPSCs and will further facilitate the application of iPSCs, as well as provide a reference for controlling the oxidative stress encountered in the early development stage of embryo.

17.
BMC Bioinformatics ; 25(1): 262, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118026

ABSTRACT

BACKGROUND: In complex agricultural environments, the presence of shadows, leaf debris, and uneven illumination can hinder the performance of leaf segmentation models for cucumber disease detection. This is further exacerbated by the imbalance in pixel ratios between background and lesion areas, which affects the accuracy of lesion extraction. RESULTS: An original image segmentation framework, the LS-ASPP model, which utilizes a two-stage Atrous Spatial Pyramid Pooling (ASPP) approach combined with adaptive loss to address these challenges has been proposed. The Leaf-ASPP stage employs attention modules and residual structures to capture multi-scale semantic information and enhance edge perception, allowing for precise extraction of leaf contours from complex backgrounds. In the Spot-ASPP stage, we adjust the dilation rate of ASPP and introduce a Convolutional Attention Block Module (CABM) to accurately segment lesion areas. CONCLUSIONS: The LS-ASPP model demonstrates improved performance in semantic segmentation accuracy under complex conditions, providing a robust solution for precise cucumber lesion segmentation. By focusing on challenging pixels and adapting to the specific requirements of agricultural image analysis, our framework has the potential to enhance disease detection accuracy and facilitate timely and effective crop management decisions.


Subject(s)
Cucumis sativus , Image Processing, Computer-Assisted , Plant Diseases , Image Processing, Computer-Assisted/methods , Plant Leaves , Algorithms
18.
BMC Vet Res ; 20(1): 353, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118061

ABSTRACT

In recent years, dental implants have become a trend in the treatment of human patients with missing teeth, which may also be an acceptable method for companion animal dentistry. However, there is a gap challenge in determining appropriate implant sizes for different dog breeds and human. In this study, we utilized skull computed tomography data to create three-dimensional models of the mandibles of dogs in different sizes. Subsequently, implants of various sizes were designed and subjected to biomechanical finite element analysis to determine the optimal implant size. Regression models were developed, exploring the relationship between the average weight of dogs and the size of premolar implants. Our results illustrated that the regression equations for mean body weight (x, kg) and second premolar (PM2), third premolar (PM3), and fourth premolar (PM4) implant length (y, mm) in dogs were: y = 0.2785x + 7.8209, y = 0.2544x + 8.9285, and y = 0.2668x + 10.652, respectively; the premolar implant diameter (mm) y = 0.0454x + 3.3506, which may provide a reference for determine suitable clinical implant sizes for dogs.


Subject(s)
Bicuspid , Dental Implants , Finite Element Analysis , Mandible , Animals , Dogs , Tomography, X-Ray Computed/veterinary , Dental Implantation/methods , Dental Implantation/veterinary , Male , Female , Forecasting
19.
Sci Adv ; 10(32): eadn0367, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39121219

ABSTRACT

The development of noninvasive approaches to precisely control neural activity in mammals is highly desirable. Here, we used the ion channel transient receptor potential ankyrin-repeat 1 (TRPA1) as a proof of principle, demonstrating remote near-infrared (NIR) activation of endogenous neuronal channels in mice through an engineered nanoagonist. This achievement enables specific neurostimulation in nongenetically modified mice. Initially, target-based screening identified flavins as photopharmacological agonists, allowing for the photoactivation of TRPA1 in sensory neurons upon ultraviolet A/blue light illumination. Subsequently, upconversion nanoparticles (UCNPs) were customized with an emission spectrum aligned to flavin absorption and conjugated with flavin adenine dinucleotide, creating a nanoagonist capable of NIR activation of TRPA1. Following the intrathecal injection of the nanoagonist, noninvasive NIR stimulation allows precise bidirectional control of nociception in mice through remote activation of spinal TRPA1. This study demonstrates a noninvasive NIR neurostimulation method with the potential for adaptation to various endogenous ion channels and neural processes by combining photochemical toolboxes with customized UCNPs.


Subject(s)
Infrared Rays , Nanoparticles , TRPA1 Cation Channel , Animals , TRPA1 Cation Channel/metabolism , TRPA1 Cation Channel/agonists , Mice , Nanoparticles/chemistry , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology , Sensory Receptor Cells/drug effects , Ion Channels/metabolism , Nociception/drug effects
20.
Biochem Biophys Res Commun ; 737: 150523, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39133985

ABSTRACT

Rosacea, a prevalent chronic facial inflammatory condition, afflicts millions worldwide. Its multifaceted pathogenesis poses challenges for effective treatment. Tranilast (TR), an analog of a tryptophan metabolite, has demonstrated anti-inflammatory and anti-fibrotic properties across various diseases. Yet, its potential in rosacea treatment remains understudied. Here, we induced rosacea-like symptoms in mice via prolonged LL-37 injections and administered TR intervention. Our findings reveal that TR mitigated skin lesions, reduced skin thickness, and suppressed inflammatory cell infiltration within the dermis of LL-37 mice. Notably, TR downregulated the expression of rosacea-associated inflammatory cytokines (TNF-α, IL-6, IL-1ß, and IL-18) and the antimicrobial peptide CAMP, while also inhibiting NLRP3 inflammasome activation and the TLR4 signaling pathway. Furthermore, TR attenuated LL-37-induced fibrosis and hindered the transforming growth factor-ß1 (TGF-ß1)/Smad2/3 pathway. In summary, our study underscores TR's therapeutic potential in rosacea by mitigating both skin inflammation and fibrosis, thereby offering a promising treatment avenue for this condition.

SELECTION OF CITATIONS
SEARCH DETAIL