Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 223
Filter
1.
Science ; 385(6704): eadm8762, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38963845

ABSTRACT

Understanding how numerous quantitative trait loci (QTL) shape phenotypic variation is an important question in genetics. To address this, we established a permanent population of 18,421 (18K) rice lines with reduced population structure. We generated reference-level genome assemblies of the founders and genotyped all 18K-rice lines through whole-genome sequencing. Through high-resolution mapping, 96 high-quality candidate genes contributing to variation in 16 traits were identified, including OsMADS22 and OsFTL1 verified as causal genes for panicle number and heading date, respectively. We identified epistatic QTL pairs and constructed a genetic interaction network with 19 genes serving as hubs. Overall, 170 masking epistasis pairs were characterized, serving as an important factor contributing to genetic background effects across diverse varieties. The work provides a basis to guide grain yield and quality improvements in rice.


Subject(s)
Epistasis, Genetic , Genome, Plant , Oryza , Quantitative Trait Loci , Oryza/genetics , Whole Genome Sequencing , Chromosome Mapping , Genes, Plant , Genotype , Gene Regulatory Networks , Phenotype
2.
PLoS Pathog ; 20(6): e1012260, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38885242

ABSTRACT

Adeno-associated virus (AAV) serotypes from primates are being developed and clinically used as vectors for human gene therapy. However, the evolutionary mechanism of AAV variants is far from being understood, except that genetic recombination plays an important role. Furthermore, little is known about the interaction between AAV and its natural hosts, human and nonhuman primates. In this study, natural AAV capsid genes were subjected to systemic evolutionary analysis with a focus on selection drives during the diversification of AAV lineages. A number of positively selected sites were identified from these AAV lineages with functional relevance implied by their localization on the AAV structures. The selection drives of the two AAV2 capsid sites were further investigated in a series of biological experiments. These observations did not support the evolution of the site 410 of the AAV2 capsid driven by selection pressure from the human CD4+ T-cell response. However, positive selection on site 548 of the AAV2 capsid was directly related to host humoral immunity because of the profound effects of mutations at this site on the immune evasion of AAV variants from human neutralizing antibodies at both the individual and population levels. Overall, this work provides a novel interpretation of the genetic diversity and evolution of AAV lineages in their natural hosts, which may contribute to their further engineering and application in human gene therapy.


Subject(s)
Capsid Proteins , Dependovirus , Evolution, Molecular , Selection, Genetic , Dependovirus/genetics , Dependovirus/immunology , Humans , Animals , Capsid Proteins/genetics , Capsid Proteins/immunology , Genetic Variation , Genetic Therapy
3.
Plant Commun ; : 101010, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918950

ABSTRACT

Genome-wide association study (GWAS) identifies trait-associated loci, but due in part to slow decay of linkage disequilibrium (LD), identifying the causal genes can be a bottleneck. Transcriptome-wide association study (TWAS) addresses this by identifying gene expression-phenotype associations or integrating gene expression quantitative trait loci (eQTLs) with GWAS results. Here, we used self-pollinated soybean (Glycine max [L.] Merr.) as a model to evaluate the application of TWAS in the genetic dissection of traits in plant species with slow LD decay. We generated RNA-Seq data of a soybean diversity panel, and identified the genetic expression regulation of 29,286 genes in soybean. Different TWAS solutions were less affected by LD and robust with source of expression that identified known genes related to traits from different development stages and tissues. A novel gene named pod color L2 was identified via TWAS and functionally validated by genome editing. By introducing the new exon proportion feature, we significantly improved the detection of expression variations resulting from structural variations and alternative splicing. As a result, the genes identified by our TWAS approach exhibited a diverse range of causal variations, including SNP, insertion/deletion, gene fusion, copy number variation, and alternative splicing. Using our TWAS approach, we identified genes associated with flowering time, including both previously known genes and novel genes that had not previously linked to this trait before, providing complementary insights with GWAS. In summary, this study supports the application of TWAS for candidate gene identification in species with low rates of LD decay.

4.
Plant Commun ; : 100975, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751121

ABSTRACT

Yield prediction is the primary goal of genomic selection (GS)-assisted crop breeding. Because yield is a complex quantitative trait, making predictions from genotypic data is challenging. Transfer learning can produce an effective model for a target task by leveraging knowledge from a different, but related, source domain and is considered a great potential method for improving yield prediction by integrating multi-trait data. However, it has not previously been applied to genotype-to-phenotype prediction owing to the lack of an efficient implementation framework. We therefore developed TrG2P, a transfer-learning-based framework. TrG2P first employs convolutional neural networks (CNN) to train models using non-yield-trait phenotypic and genotypic data, thus obtaining pre-trained models. Subsequently, the convolutional layer parameters from these pre-trained models are transferred to the yield prediction task, and the fully connected layers are retrained, thus obtaining fine-tuned models. Finally, the convolutional layer and the first fully connected layer of the fine-tuned models are fused, and the last fully connected layer is trained to enhance prediction performance. We applied TrG2P to five sets of genotypic and phenotypic data from maize (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum) and compared its model precision to that of seven other popular GS tools: ridge regression best linear unbiased prediction (rrBLUP), random forest, support vector regression, light gradient boosting machine (LightGBM), CNN, DeepGS, and deep neural network for genomic prediction (DNNGP). TrG2P improved the accuracy of yield prediction by 39.9%, 6.8%, and 1.8% in rice, maize, and wheat, respectively, compared with predictions generated by the best-performing comparison model. Our work therefore demonstrates that transfer learning is an effective strategy for improving yield prediction by integrating information from non-yield-trait data. We attribute its enhanced prediction accuracy to the valuable information available from traits associated with yield and to training dataset augmentation. The Python implementation of TrG2P is available at https://github.com/lijinlong1991/TrG2P. The web-based tool is available at http://trg2p.ebreed.cn:81.

5.
Eur J Med Chem ; 274: 116521, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38820853

ABSTRACT

Aldosterone synthase (CYP11B2) is the rate-limiting enzyme in aldosterone production. In recent years, CYP11B2 has become an appealing target for treating conditions associated with excess aldosterone, such as hypertension, heart failure, and cardiometabolic diseases. Several small-molecule inhibitors of CYP11B2 have demonstrated efficacy in both preclinical studies and clinical trials. Among them, the tetrahydroisoquinoline derivative Baxdrostat has entered clinical trial phases and demonstrated efficacy in treating patients with hypertension. However, the high homology (>93 %) between CYP11B2 and steroid-11ß-hydroxylase (CYP11B1), which catalyzes cortisol production, implies that insufficient drug specificity can lead to severe side effects. Developing selective inhibitors for CYP11B2 remains a considerable challenge that requires ongoing attention. This review summarizes recent research progress on small-molecule inhibitors targeting CYP11B2, focusing on structure-activity relationships (SAR) and structural optimization. It discusses strategies for enhancing the specificity and inhibitory activity of inhibitors, while also exploring potential applications and future prospects for CYP11B2 inhibitors, providing a theoretical foundation for developing the new generation of CYP11B2-targeted medications.


Subject(s)
Cardiovascular Diseases , Cytochrome P-450 CYP11B2 , Small Molecule Libraries , Humans , Cytochrome P-450 CYP11B2/antagonists & inhibitors , Cytochrome P-450 CYP11B2/metabolism , Structure-Activity Relationship , Cardiovascular Diseases/drug therapy , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Animals , Molecular Structure
6.
Biometrics ; 80(2)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38801257

ABSTRACT

To leverage the advancements in genome-wide association studies (GWAS) and quantitative trait loci (QTL) mapping for traits and molecular phenotypes to gain mechanistic understanding of the genetic regulation, biological researchers often investigate the expression QTLs (eQTLs) that colocalize with QTL or GWAS peaks. Our research is inspired by 2 such studies. One aims to identify the causal single nucleotide polymorphisms that are responsible for the phenotypic variation and whose effects can be explained by their impacts at the transcriptomic level in maize. The other study in mouse focuses on uncovering the cis-driver genes that induce phenotypic changes by regulating trans-regulated genes. Both studies can be formulated as mediation problems with potentially high-dimensional exposures, confounders, and mediators that seek to estimate the overall indirect effect (IE) for each exposure. In this paper, we propose MedDiC, a novel procedure to estimate the overall IE based on difference-in-coefficients approach. Our simulation studies find that MedDiC offers valid inference for the IE with higher power, shorter confidence intervals, and faster computing time than competing methods. We apply MedDiC to the 2 aforementioned motivating datasets and find that MedDiC yields reproducible outputs across the analysis of closely related traits, with results supported by external biological evidence. The code and additional information are available on our GitHub page (https://github.com/QiZhangStat/MedDiC).


Subject(s)
Computer Simulation , Genome-Wide Association Study , Mediation Analysis , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Genome-Wide Association Study/statistics & numerical data , Animals , Mice , Zea mays/genetics , Phenotype
7.
MedComm (2020) ; 5(5): e539, 2024 May.
Article in English | MEDLINE | ID: mdl-38680520

ABSTRACT

Urgent research into innovative severe acute respiratory coronavirus-2 (SARS-CoV-2) vaccines that may successfully prevent various emerging emerged variants, particularly the Omicron variant and its subvariants, is necessary. Here, we designed a chimeric adenovirus-vectored vaccine named Ad5-Beta/Delta. This vaccine was created by incorporating the receptor-binding domain from the Delta variant, which has the L452R and T478K mutations, into the complete spike protein of the Beta variant. Both intramuscular (IM) and intranasal (IN) vaccination with Ad5-Beta/Deta vaccine induced robust broad-spectrum neutralization against Omicron BA.5-included variants. IN immunization with Ad5-Beta/Delta vaccine exhibited superior mucosal immunity, manifested by higher secretory IgA antibodies and more tissue-resident memory T cells (TRM) in respiratory tract. The combination of IM and IN delivery of the Ad5-Beta/Delta vaccine was capable of synergically eliciting stronger systemic and mucosal immune responses. Furthermore, the Ad5-Beta/Delta vaccination demonstrated more effective boosting implications after two dosages of mRNA or subunit recombinant protein vaccine, indicating its capacity for utilization as a booster shot in the heterologous vaccination. These outcomes quantified Ad5-Beta/Delta vaccine as a favorable vaccine can provide protective immunity versus SARS-CoV-2 pre-Omicron variants of concern and BA.5-included Omicron subvariants.

8.
Sensors (Basel) ; 24(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38610383

ABSTRACT

Unmanned aerial vehicle (UAV)-based imagery has become widely used to collect time-series agronomic data, which are then incorporated into plant breeding programs to enhance crop improvements. To make efficient analysis possible, in this study, by leveraging an aerial photography dataset for a field trial of 233 different inbred lines from the maize diversity panel, we developed machine learning methods for obtaining automated tassel counts at the plot level. We employed both an object-based counting-by-detection (CBD) approach and a density-based counting-by-regression (CBR) approach. Using an image segmentation method that removes most of the pixels not associated with the plant tassels, the results showed a dramatic improvement in the accuracy of object-based (CBD) detection, with the cross-validation prediction accuracy (r2) peaking at 0.7033 on a detector trained with images with a filter threshold of 90. The CBR approach showed the greatest accuracy when using unfiltered images, with a mean absolute error (MAE) of 7.99. However, when using bootstrapping, images filtered at a threshold of 90 showed a slightly better MAE (8.65) than the unfiltered images (8.90). These methods will allow for accurate estimates of flowering-related traits and help to make breeding decisions for crop improvement.


Subject(s)
Inflorescence , Zea mays , Plant Breeding , Algorithms , Machine Learning
9.
Nat Plants ; 10(4): 598-617, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38514787

ABSTRACT

Beneficial interactions with microorganisms are pivotal for crop performance and resilience. However, it remains unclear how heritable the microbiome is with respect to the host plant genotype and to what extent host genetic mechanisms can modulate plant-microbiota interactions in the face of environmental stresses. Here we surveyed 3,168 root and rhizosphere microbiome samples from 129 accessions of locally adapted Zea, sourced from diverse habitats and grown under control and different stress conditions. We quantified stress treatment and host genotype effects on the microbiome. Plant genotype and source environment were predictive of microbiome abundance. Genome-wide association analysis identified host genetic variants linked to both rhizosphere microbiome abundance and source environment. We identified transposon insertions in a candidate gene linked to both the abundance of a keystone bacterium Massilia in our controlled experiments and total soil nitrogen in the source environment. Isolation and controlled inoculation of Massilia alone can contribute to root development, whole-plant biomass production and adaptation to low nitrogen availability. We conclude that locally adapted maize varieties exert patterns of genetic control on their root and rhizosphere microbiomes that follow variation in their home environments, consistent with a role in tolerance to prevailing stress.


Subject(s)
Microbiota , Plant Roots , Rhizosphere , Zea mays , Zea mays/microbiology , Zea mays/genetics , Microbiota/genetics , Plant Roots/microbiology , Plant Roots/genetics , Soil Microbiology , Genome-Wide Association Study , Genetic Variation , Adaptation, Physiological/genetics , Genotype
10.
PeerJ ; 12: e17088, 2024.
Article in English | MEDLINE | ID: mdl-38495763

ABSTRACT

Junctional adhesion molecule-A (JAM-A) is an adhesion molecule that exists on the surface of certain types of cells, including white blood cells, endothelial cells, and dendritic cells. In this study, the cDNA sequences of JAM-A-Fc were chemically synthesized with optimization for mammalian expression. Afterward, we analyzed JAM-A protein expression through transient transfection in HEK293 cell lines. Mice were immunized with JAM-A-Fc protein, and hybridoma was prepared by fusing myeloma cells and mouse spleen cells. Antibodies were purified from the hybridoma supernatant and four monoclonal strains were obtained and numbered 61H9, 70E5, 71A8, and 74H3 via enzyme-linked immunosorbent assay screening. Immunofluorescence staining assay showed 61H9 was the most suitable cell line for mAb production due to its fluorescence signal being the strongest. Flow cytometric analysis proved that 61H9 possessed high affinity. Moreover, antagonism of JAM-A mAb could attenuate the proliferative, migrative, and invasive abilities of ESCC cells and significantly inhibit tumor growth in mice. By examining hematoxylin-eosin staining mice tumor tissues, we found inflammatory cells infiltrated lightly in the anti-JAM-A group. The expression of BCL-2 and IκBα in the anti-JAM-A group were decreased in mice tumor tissues compared to the control group. Ultimately, a method for preparing high-yield JAM-A-Fc protein was created and a high affinity mAb against JAM-A with an antitumor effect was prepared.


Subject(s)
Junctional Adhesion Molecule A , Neoplasms , Humans , Mice , Animals , Junctional Adhesion Molecule A/metabolism , Endothelial Cells , HEK293 Cells , Neoplasms/metabolism , Mammals
11.
Nat Commun ; 15(1): 163, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167945

ABSTRACT

Monocarboxylate transporter 1 (MCT1) exhibits essential roles in cellular metabolism and energy supply. Although MCT1 is highly expressed in activated B cells, it is not clear how MCT1-governed monocarboxylates transportation is functionally coupled to antibody production during the glucose metabolism. Here, we report that B cell-lineage deficiency of MCT1 significantly influences the class-switch recombination (CSR), rendering impaired IgG antibody responses in Mct1f/fMb1Cre mice after immunization. Metabolic flux reveals that glucose metabolism is significantly reprogrammed from glycolysis to oxidative phosphorylation in Mct1-deficient B cells upon activation. Consistently, activation-induced cytidine deaminase (AID), is severely suppressed in Mct1-deficient B cells due to the decreased level of pyruvate metabolite. Mechanistically, MCT1 is required to maintain the optimal concentration of pyruvate to secure the sufficient acetylation of H3K27 for the elevated transcription of AID in activated B cells. Clinically, we found that MCT1 expression levels are significantly upregulated in systemic lupus erythematosus patients, and Mct1 deficiency can alleviate the symptoms of bm12-induced murine lupus model. Collectively, these results demonstrate that MCT1-mediated pyruvate metabolism is required for IgG antibody CSR through an epigenetic dependent AID transcription, revealing MCT1 as a potential target for vaccine development and SLE disease treatment.


Subject(s)
B-Lymphocytes , Immunoglobulin Class Switching , Animals , Humans , Mice , Acetylation , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Glucose/metabolism , Immunoglobulin Isotypes , Pyruvates/metabolism
12.
Int J Cancer ; 154(7): 1285-1297, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38180065

ABSTRACT

CD25, also known as the interleukin-2 receptor α chain (IL-2Rα), is highly expressed on regulatory T cells (Tregs), but relatively lower on effector T cells (Teffs). This makes it a potential target for Treg depletion, which can be used in tumor immunotherapy. However, marketed anti-CD25 antibodies (Basiliximab and Daclizumab) were originally developed as immunosuppressive drugs to prevent graft rejection, because these antibodies can block IL-2 binding to CD25 on Teffs, which in turn destroys the function of Teffs. Recent studies have shown that non-IL-2-blocking anti-CD25 antibodies have displayed exciting antitumor effects. Here, we screened out a non-IL-2-blocking anti-CD25 monoclonal antibody (mAb) 7B7 by hybridoma technology, and confirmed its antitumor activity via depleting Tregs in a CD25 humanized mouse model. Subsequently, we verified that the humanized 7B7, named as h7B7-15S, has comparable activities to 7B7, and that its Treg depletion is further increased when combined with anti-CTLA-4, leading to enhanced remodeling of the tumor immune microenvironment. Moreover, our findings reveal that the Fab form of h7B7-15S has the ability to deplete Tregs, independent of the Fc region. Taken together, our studies expand the application of anti-CD25 in tumor immunotherapy and provide insight into the underlying mechanism.


Subject(s)
Antibodies, Monoclonal , Neoplasms , Mice , Animals , Interleukin-2 Receptor alpha Subunit/metabolism , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Neoplasms/drug therapy , Neoplasms/metabolism , Immunosuppressive Agents , T-Lymphocytes, Regulatory , Tumor Microenvironment
13.
G3 (Bethesda) ; 14(3)2024 03 06.
Article in English | MEDLINE | ID: mdl-38113533

ABSTRACT

Root-associated microbiomes in the rhizosphere (rhizobiomes) are increasingly known to play an important role in nutrient acquisition, stress tolerance, and disease resistance of plants. However, it remains largely unclear to what extent these rhizobiomes contribute to trait variation for different genotypes and if their inclusion in the genomic selection protocol can enhance prediction accuracy. To address these questions, we developed a microbiome-enabled genomic selection method that incorporated host SNPs and amplicon sequence variants from plant rhizobiomes in a maize diversity panel under high and low nitrogen (N) field conditions. Our cross-validation results showed that the microbiome-enabled genomic selection model significantly outperformed the conventional genomic selection model for nearly all time-series traits related to plant growth and N responses, with an average relative improvement of 3.7%. The improvement was more pronounced under low N conditions (8.4-40.2% of relative improvement), consistent with the view that some beneficial microbes can enhance N nutrient uptake, particularly in low N fields. However, our study could not definitively rule out the possibility that the observed improvement is partially due to the amplicon sequence variants being influenced by microenvironments. Using a high-dimensional mediation analysis method, our study has also identified microbial mediators that establish a link between plant genotype and phenotype. Some of the detected mediator microbes were previously reported to promote plant growth. The enhanced prediction accuracy of the microbiome-enabled genomic selection models, demonstrated in a single environment, serves as a proof-of-concept for the potential application of microbiome-enabled plant breeding for sustainable agriculture.


Subject(s)
Microbiota , Zea mays , Zea mays/genetics , Models, Genetic , Plant Breeding , Phenotype , Genomics/methods
14.
Mol Hortic ; 3(1): 27, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38105261

ABSTRACT

Passiflora is a plant genus known for its extremely distinctive and colorful flowers and a wide range of genome size variation. However, how genome characteristics are related to flower traits among Passiflora species remains poorly understood. Here, we assembled a chromosome-scale genome of P. foetida, which belongs to the same subgenus as the commercial passionfruit P. edulis. The genome of P. foetida is smaller (424.16 Mb) and contains fewer copies of long terminal repeat retrotransposons (LTR-RTs). The disparity in LTR-RTs is one of the main contributors to the differences in genome sizes between these two species and possibly in floral traits. Additionally, we observed variation in insertion times and copy numbers of LTR-RTs across different transposable element (TE) lineages. Then, by integrating transcriptomic data from 33 samples (eight floral organs and flower buds at three developmental stages) with phylogenomic and metabolomic data, we conducted an in-depth analysis of the expression, phylogeny, and copy number of MIKC-type MADS-box genes and identified essential biosynthetic genes responsible for flower color and scent from glandular bracts and other floral organs. Our study pinpoints LRT-RTs as an important player in genome size variation in Passiflora species and provides insights into future genetic improvement.

15.
Int J Surg Case Rep ; 111: 108911, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37804678

ABSTRACT

INTRODUCTION AND IMPORTANCE: Pulmonary hernia is a rare disease caused mostly by chest trauma. Patients often present with non-specific signs and symptoms. Currently, there is no unified approach to treating it. For asymptomatic pulmonary hernias, conservative treatment has been chosen in the past. However, the increasing number of cases has shown that surgery has a more positive effect on some patients with asymptomatic pulmonary hernias. CASE PRESENTATION: A 63-year-old female patient who accidentally fell from an agricultural vehicle while doing farm work presented with back pain and lower limb paralysis. Her vital signs were stable. A chest computed tomography (CT) scan showed the patient had a pulmonary hernia, thoracic vertebra Chance fracture, rib fractures, and right hydropneumothorax. The patient received an open reduction internal fixation (ORIF) of the thoracic vertebra at the trauma emergency center. The postoperative chest CT scan showed that the pulmonary hernia had reset to the chest cavity. Subsequently, the patient got a pulmonary hernia repair at the thoracic surgery department. The patient was discharged on the 19th day after the injury. Long-term follow-up showed good recovery from the thoracic trauma. CLINICAL DISCUSSION: The patient had a pulmonary hernia combined with thoracic Chance fracture and other injuries. Surgical repair achieved satisfactory results. CONCLUSION: We lack guidelines on whether to manage pulmonary hernias surgically. Patients with asymptomatic pulmonary hernias particularly should have their long-term prognoses fully evaluated. Surgery is needed if the patient has high-risk factors and severe intercostal muscle defects.

16.
Front Pharmacol ; 14: 1228962, 2023.
Article in English | MEDLINE | ID: mdl-37484024

ABSTRACT

The "do not eat me" signaling pathway is extremely active in tumor cells, providing a means for these cells to elude macrophage phagocytosis and escape immune surveillance. Representative markers of this pathway, such as CD47 and CD24, are highly expressed in numerous tumors. The interaction of SIRPα with CD47 reduces the accumulation of non-myosin ⅡA on the cell membrane. The combination of CD24 and Siglec10 ultimately leads to the recruitment of SHP-1 or SHP-2 to reduce signal transduction. Both of them weaken the ability of macrophages to engulf tumor cells. Blocking the mutual recognition between CD47-SIRPα or CD24-Siglec10 using large molecular proteins or small molecular drugs represents a promising avenue for tumor immunotherapy. Doing so can inhibit signal transduction and enhance macrophage clearance rates of cancer cells. In this paper, we summarize the characteristics of the drugs that affect the "do not eat me" signaling pathway via classical large molecular proteins and small molecule drugs, which target the CD47-SIRPα and CD24-Siglec10 signaling pathways, which target the CD47-SIRPα and CD24-Siglec10 signaling pathways. We expect it will offer insight into the development of new drugs centered on blocking the "do not eat me" signaling pathway.

18.
Mol Biol Evol ; 40(8)2023 08 03.
Article in English | MEDLINE | ID: mdl-37494285

ABSTRACT

Future breeding is likely to involve the detection and removal of deleterious alleles, which are mutations that negatively affect crop fitness. However, little is known about the prevalence of such mutations and their effects on phenotypic traits in the context of modern crop breeding. To address this, we examined the number and frequency of deleterious mutations in 350 elite maize inbred lines developed over the past few decades in China and the United States. Our findings reveal an accumulation of weakly deleterious mutations and a decrease in strongly deleterious mutations, indicating the dominant effects of genetic drift and purifying selection for the two types of mutations, respectively. We also discovered that slightly deleterious mutations, when at lower frequencies, were more likely to be heterozygous in the developed hybrids. This is consistent with complementation as a potential explanation for heterosis. Subsequently, we found that deleterious mutations accounted for more of the variation in phenotypic traits than nondeleterious mutations with matched minor allele frequencies, especially for traits related to leaf angle and flowering time. Moreover, we detected fewer deleterious mutations in the promoter and gene body regions of differentially expressed genes across breeding eras than in nondifferentially expressed genes. Overall, our results provide a comprehensive assessment of the prevalence and impact of deleterious mutations in modern maize breeding and establish a useful baseline for future maize improvement efforts.


Subject(s)
Plant Breeding , Zea mays , Zea mays/genetics , Prevalence , Gene Frequency , Mutation
19.
Mol Cancer Ther ; 22(8): 913-925, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37196158

ABSTRACT

Overexpression of nectin cell adhesion protein 4 correlates with cancer progression and poor prognosis in many human malignancies. Enfortumab vedotin (EV) is the first nectin-4-targeting antibody-drug conjugate (ADC) approved by the FDA for the treatment of urothelial cancer. However, inadequate efficacy has limited progress in the treatment of other solid tumors with EV. Furthermore, ocular, pulmonary, and hematologic toxic side effects are common in nectin-4-targeted therapy, which frequently results in dose reduction and/or treatment termination. Thus, we designed a second generation nectin-4-specific drug, 9MW2821, based on interchain-disulfide drug conjugate technology. This novel drug contained a site specifically conjugated humanized antibody and the cytotoxic moiety monomethyl auristatin E. The homogenous drug-antibody ratio and novel linker chemistry of 9MW2821 increased the stability of conjugate in the systemic circulation, enabling highly efficient drug delivery and avoiding off-target toxicity. In preclinical evaluation, 9MW2821 exhibited nectin-4-specific cell binding, efficient internalization, bystander killing, and equivalent or superior antitumor activity compared with EV in both cell line-derived xenograft and patient-derived xenograft (PDX) models. In addition, 9MW2821 demonstrated a favorable safety profile; the highest nonseverely toxic dose in monkey toxicologic studies was 6 mg/kg, with milder adverse events compared with EV. Overall, 9MW2821 is a nectin-4-directed, investigational ADC based on innovative technology that endowed the drug with compelling preclinical antitumor activity and a favorable therapeutic index. The 9MW2821 ADC is being investigated in a phase I/II clinical trial (NCT05216965 and NCT05773937) in patients with advanced solid tumors.


Subject(s)
Immunoconjugates , Neoplasms , Humans , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Nectins , Xenograft Model Antitumor Assays , Neoplasms/drug therapy , Cell Adhesion Molecules , Cell Line, Tumor
20.
Genome Biol ; 24(1): 108, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37158941

ABSTRACT

BACKGROUND: Genetic variation in regulatory sequences that alter transcription factor (TF) binding is a major cause of phenotypic diversity. Brassinosteroid is a growth hormone that has major effects on plant phenotypes. Genetic variation in brassinosteroid-responsive cis-elements likely contributes to trait variation. Pinpointing such regulatory variations and quantitative genomic analysis of the variation in TF-target binding, however, remains challenging. How variation in transcriptional targets of signaling pathways such as the brassinosteroid pathway contributes to phenotypic variation is an important question to be investigated with innovative approaches. RESULTS: Here, we use a hybrid allele-specific chromatin binding sequencing (HASCh-seq) approach and identify variations in target binding of the brassinosteroid-responsive TF ZmBZR1 in maize. HASCh-seq in the B73xMo17 F1s identifies thousands of target genes of ZmBZR1. Allele-specific ZmBZR1 binding (ASB) has been observed for 18.3% of target genes and is enriched in promoter and enhancer regions. About a quarter of the ASB sites correlate with sequence variation in BZR1-binding motifs and another quarter correlate with haplotype-specific DNA methylation, suggesting that both genetic and epigenetic variations contribute to the high level of variation in ZmBZR1 occupancy. Comparison with GWAS data shows linkage of hundreds of ASB loci to important yield and disease-related traits. CONCLUSION: Our study provides a robust method for analyzing genome-wide variations of TF occupancy and identifies genetic and epigenetic variations of the brassinosteroid response transcription network in maize.


Subject(s)
Brassinosteroids , Zea mays , Zea mays/genetics , Alleles , Chromatin Immunoprecipitation Sequencing , Phenotype , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...