Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 272(Pt 2): 132930, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38848843

ABSTRACT

The rapid absorption of water from the blood to concentrate erythrocytes and platelets, thus triggering quick closure, is important for hemostasis. Herein, expansion-clotting chitosan fabrics are designed and fabricated by ring spinning of polylactic acid (PLA) filaments as the core layer and highly hydrophilic carboxyethyl chitosan (CECS) fibers as the sheath layer, and subsequent knitting of obtained PLA@CECS core spun yarns. Due to the unidirectional fast-absorption capacity of CECS fibers, the chitosan fabrics can achieve erythrocytes and platelets aggregate quickly by concentrating blood, thus promoting the formation of blood clots. Furthermore, the loop structure of coils formed in the knitted fabric can help them to expand by absorbing water to close their pores, providing effective sealing for bleeding. Besides, They have enough mechanical properties, anti-penetrating ability, and good tissue-adhesion ability in wet conditions, which can form a physical barrier to resist blood pressure during hemostasis and prevent them from falling off the wound, thus enhancing hemostasis synergistically. Therefore, the fabrics exhibit superior hemostatic performance in the rabbit liver, spleen, and femoral artery puncture injury model compared to the gauze group. This chitosan fabric is a promising hemostatic material for hemorrhage control.


Subject(s)
Chitosan , Hemorrhage , Hemostatics , Chitosan/chemistry , Animals , Hemorrhage/drug therapy , Hemorrhage/prevention & control , Rabbits , Hemostatics/chemistry , Hemostatics/pharmacology , Polyesters/chemistry , Textiles , Blood Coagulation/drug effects , Hemostasis/drug effects
2.
Int J Biol Macromol ; 267(Pt 1): 131235, 2024 May.
Article in English | MEDLINE | ID: mdl-38554919

ABSTRACT

A continuously stable moist healing environment is immensely beneficial for wound healing, which can be availably achieved by providing an in situ hydrogel with enough strength resembling skin tissue and self-healing ability. Herein, through a dual-crosslinking strategy, hyaluronic acid-based hydrogels with excellent self-healing capacity and enhanced mechanical properties are fabricated via the acylhydrazone linkages and subsequent photocrosslinking based on hydrazide-modified sodium hyaluronate and aldehyde-modified maleic sodium hyaluronate. The hydrogels demonstrate the fast gelation process (< 1 min), the controlled swelling behaviors, and the good biocompatibility. Notably, they possess enhanced mechanical strength similar to the human dermis (∼ 2.2 kPa). Also, they can self-heal rapidly with a self-healing efficiency of ∼90 % at 6 h. Based on this, the hyaluronic acid-based hydrogels, without any biological factors involved, can facilitate the full-thickness skin wound reconstruction process by accelerating the three phases of the wound repair, including reducing wound inflammation in the inflammatory phase, promoting angiogenesis in the proliferative phase, and promoting the deposition and reconstruction of collagen in the remodeling phase. The produced hyaluronic acid hydrogel can serve as an ideal candidate for wound healing.


Subject(s)
Hyaluronic Acid , Hydrogels , Wound Healing , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Wound Healing/drug effects , Humans , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Mice , Skin/drug effects , Mechanical Phenomena
3.
Int J Biol Macromol ; 263(Pt 2): 130333, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408580

ABSTRACT

The cystic cavity that develops following spinal cord injury is a major obstacle for repairing spinal cord injury (SCI). The injectable self-healing biomaterials treatment is a promising strategy to enhance tissue repair after traumatic spinal cord injury. Herein, a natural extracellular matrix (ECM) biopolymer hyaluronic acid-based hydrogel was developed based on multiple dynamic covalent bonds. The hydrogels exhibited excellent injectable and self-healing properties, could be effectively injected into the injury site, and filled the lesion cavity to accelerate the tissue repair of traumatic SCI. Moreover, the hydrogels were compatible with cells and various tissues and possessed proper stiffness matched with nervous tissue. Additionally, when implanted into the injured spinal cord site, the hyaluronic acid-based hydrogel promoted axonal regeneration and functional recovery by accelerating remyelination, axon regeneration, and angiogenesis. Overall, the injectable self-healing hyaluronic acid-based hydrogels are ideal biomaterials for treating traumatic SCI.


Subject(s)
Spinal Cord Injuries , Spinal Cord Regeneration , Humans , Hyaluronic Acid/pharmacology , Hyaluronic Acid/chemistry , Axons/pathology , Hydrogels/chemistry , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Biocompatible Materials/pharmacology
4.
Int J Biol Macromol ; 256(Pt 2): 128320, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38040167

ABSTRACT

The self-healing hydrogel offering intrinsic antibacterial activity is often required for the treatment of wounds because it can provide effective wound protection and prevent wound infection. Herein, antibacterial hyaluronic acid hydrogels with enhanced self-healing performances are prepared by multiple dynamic-bond crosslinking between aldehyde hyaluronic acid, 3, 3'- dithiobis (propionyl hydrazide) and fungal-sourced quaternized chitosan. Due to the formation of these different types of reversible interactions e.g. hydrazone bonds, disulfide bonds, and electrostatic interactions, the hyaluronic acid hydrogels can gel rapidly and exhibit excellent self-healing ability, which can heal completely within 1 h. Furthermore, the hydrogels show good antibacterial activity against E. coli and S. aureus with an inhibition ratio of ~100 % and above 75 %, respectively. Additionally, the hydrogels are cytocompatible, which makes them the potential for biomedical applications e.g. cell culture, tissue engineering, and wound dressing.


Subject(s)
Chitosan , Hyaluronic Acid , Hyaluronic Acid/chemistry , Hydrogels/pharmacology , Hydrogels/chemistry , Escherichia coli , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Chitosan/chemistry
5.
Carbohydr Polym ; 301(Pt B): 120372, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36446503

ABSTRACT

Self-healing hydrogels can repair their cracks, and restore their original properties. However, self-healing hydrogels usually face low mechanical strength and poor stability. By the dual crosslinking strategy, a self-healing hyaluronic acid-based hydrogel with enhanced strength was fabricated by dynamic acylhydrazone linkages between aldehyde-modified maleic sodium hyaluronate and 3,3'-dithiobis (propionylhydrazide) and subsequent photopolymerization among maleic groups in the hydrogel network. The hydrogels exhibit fast gelation and excellent self-healing capability due to the dynamic and reversible characteristics of acylhydrazone and disulfide linkages. Furthermore, the dual crosslinking increase the mechanical strength of the hydrogels and prolong their stabilization time. Swelling behaviors, morphology, and mechanical properties could be adjusted by altering the molar ratio of -NH-NH2/-CHO. Besides, the hydrogels displayed interesting pH-responsiveness and cytocompatibility. The hydrogels have potential applications in cell culture, drug delivery, and 3D bioprinting.


Subject(s)
Bioprinting , Prunella , Hyaluronic Acid , Hydrogels , Drug Delivery Systems , Cell Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...