Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Mikrochim Acta ; 191(7): 424, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38922365

ABSTRACT

The enumeration of circulating tumor cells (CTCs) in peripheral blood plays a crucial role in the early diagnosis, recurrence monitoring, and prognosis assessment of cancer patients. There is a compelling need to develop an efficient technique for the capture and identification of these rare CTCs. However, the exclusive reliance on a single criterion, such as the epithelial cell adhesion molecule (EpCAM) antibody or aptamer, for the specific recognition of epithelial CTCs is not universally suitable for clinical applications, as it usually falls short in identifying EpCAM-negative CTCs. To address this limitation, we propose a straightforward and cost-effective method involving triplex fluorescently labelled aptamers (FAM-EpCAM, Cy5-PTK7, and Texas Red-CSV) to modify Fe3O4-loaded dendritic SiO2 nanocomposite (dmSiO2@Fe3O4/Apt). This multi-recognition-based strategy not only enhanced the efficiency in capturing heterogeneous CTCs, but also facilitated the rapid and accurate identification of CTCs. The capture efficiency of heterogenous CTCs reached up to 93.33%, with a detection limit as low as 5 cells/mL. Notably, the developed dmSiO2@Fe3O4/Apt nanoprobe enabled the swift identification of captured cells in just 30 min, relying solely on the fluorescently modified aptamers, which reduced the identification time by approximately 90% compared with the conventional immunocytochemistry (ICC) technique. Finally, these nanoprobe characteristics were validated using blood samples from patients with various types of cancers.


Subject(s)
Aptamers, Nucleotide , Fluorescent Dyes , Nanocomposites , Neoplastic Cells, Circulating , Silicon Dioxide , Humans , Neoplastic Cells, Circulating/pathology , Silicon Dioxide/chemistry , Aptamers, Nucleotide/chemistry , Nanocomposites/chemistry , Fluorescent Dyes/chemistry , Immunomagnetic Separation/methods , Epithelial Cell Adhesion Molecule/immunology , Limit of Detection , Cell Line, Tumor , Ferrosoferric Oxide/chemistry
2.
Oncotarget ; 8(8): 13312-13319, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28076324

ABSTRACT

Oxaliplatin (L-OHP) is standard treatment for colorectal cancer. However, resistance to L-OHP often leads to treatment failure or cancer relapse. Understanding of the mechanism underlying L-OHP resistance is important to overcome the resistance and improve colorectal cancer treatment. This study aimed to identify new proteins that mediates L-OHP resistance in colorectal cancer and elucidate their mode of function. HT-29 cells were exposed to gradually increased concentration of L-OHP to select L-OHP resistant HT-29/L-OHP cell line. Proteomic analysis of HT-29 and HT-29/L-OHP cells were performed to identify differentially expressed proteins, including Poly(C)-binding protein 1 (PCBP1). PCBP1 expression level in 20 cases of L-OHP sensitive patients and 20 cases of L-OHP refractory patients was analyzed by immunohistochemistry. Chemoresistance and Akt activation in HT-29 and HT-29/L-OHP cells were analyzed by MTT assay and Western blot analysis. We identified 37 proteins showing differential expression in HT-29/L-OHP and HT-29 cells. In particular, PCBP1 protein level increased 15.6 fold in HT-29/L-OHP cells compared to HT-29 cells. Knockdown of PCBP1 sensitized HT-29/L-OHP and HT-29 cells to L-OHP, while overexpression of PCBP1 increased L-OHP resistance in HT-29 cells. In addition, PCBP1 expression was significantly higher in tumor samples from L-OHP refractory patients than in those from L-OHP responsive patients. Furthermore, we found that knockdown of PCBP1 inhibited the activation of Akt in HT-29/L-OHP and HT-29 cells. In conclusion, our findings suggest that PCBP1 is a molecular marker of L-OHP resistance in colorectal cancer and a promising target for colorectal cancer therapy.


Subject(s)
Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm/physiology , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Antineoplastic Agents/pharmacology , Blotting, Western , Colorectal Neoplasms/metabolism , DNA-Binding Proteins , Electrophoresis, Gel, Two-Dimensional , Gene Knockdown Techniques , HT29 Cells , Humans , Immunohistochemistry , Organoplatinum Compounds/pharmacology , Oxaliplatin , RNA-Binding Proteins , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
3.
Int J Clin Exp Pathol ; 8(12): 16007-13, 2015.
Article in English | MEDLINE | ID: mdl-26884876

ABSTRACT

Interferon-induced transmembrane protein 1 (IFITM1) has recently been implicated in tumorigenesis. However, the prognostic value of IFITM1 in colorectal cancer remains unknown. The present study aimed to examine the expression and prognostic significance of IFITM1 in human colorectal cancer. IFITM1 expression was analyzed in 144 archived, paraffin-embedded colorectal cancer tissues and corresponding normal colorectal mucosa by immunohistochemistry. The correlation of IFITM1 with clinic-pathological features and overall survival of colorectal cancer patients was evaluated. IFITM1 was overexpressed in colonic cancer tissues but not in rectal cancer tissues, compared to control normal tissues. The expression of IFITM1 was significantly higher in patients with poor differentiation (P=0.031). The patients with higher IFITM1 expression had worse overall survival outcomes than those with lower IFITM1 expression in rectal cancer (P=0.037). Univariate Cox regression suggested that older age and poorly differentiation status predict shorter overall survival in colorectal cancer (P<0.05). However, IFITM1 expression was not a significant prognostic factor for survival by univariate or multivariate analyses. In conclusion, high expression of IFITM1 is associated with poor prognosis of rectal cancer. IFITM1 may serve as an independent prognostic biomarker for colorectal cancer.


Subject(s)
Antigens, Differentiation/analysis , Biomarkers, Tumor/analysis , Colorectal Neoplasms/chemistry , Adult , Aged , Aged, 80 and over , Cell Differentiation , Chi-Square Distribution , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Colorectal Neoplasms/surgery , Female , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Male , Middle Aged , Multivariate Analysis , Neoplasm Staging , Predictive Value of Tests , Proportional Hazards Models , Prospective Studies , Risk Factors , Time Factors , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL