Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466627

ABSTRACT

Thymus medulla epithelium establishes immune self-tolerance and comprises diverse cellular subsets. Functionally relevant medullary thymic epithelial cells (mTECs) include a self-antigen-displaying subset that exhibits genome-wide promiscuous gene expression promoted by the nuclear protein Aire and that resembles a mosaic of extrathymic cells including mucosal tuft cells. An additional mTEC subset produces the chemokine CCL21, thereby attracting positively selected thymocytes from the cortex to the medulla. Both self-antigen-displaying and thymocyte-attracting mTEC subsets are essential for self-tolerance. Here, we identify a developmental pathway by which mTECs gain their diversity in functionally distinct subsets. We show that CCL21-expressing mTECs arise early during thymus ontogeny in mice. Fate-mapping analysis reveals that self-antigen-displaying mTECs, including Aire-expressing mTECs and thymic tuft cells, are derived from CCL21-expressing cells. The differentiation capability of CCL21-expressing embryonic mTECs is verified in reaggregate thymus experiments. These results indicate that CCL21-expressing embryonic mTECs carry a developmental potential to give rise to self-antigen-displaying mTECs, revealing that the sequential conversion of thymocyte-attracting subset into self-antigen-displaying subset serves to assemble functional diversity in the thymus medulla epithelium.


Subject(s)
Thymocytes , Transcription Factors , Mice , Animals , Thymocytes/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Mice, Inbred C57BL , Thymus Gland/metabolism , Cell Differentiation , Epithelial Cells/metabolism , Epithelium/metabolism
2.
bioRxiv ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-37873155

ABSTRACT

Thymus medulla epithelium establishes immune self-tolerance and comprises diverse cellular subsets. Functionally relevant medullary thymic epithelial cells (mTECs) include a self-antigen-displaying subset that exhibits genome-wide promiscuous gene expression promoted by the nuclear protein Aire and that resembles a mosaic of extrathymic cells including mucosal tuft cells. An additional mTEC subset produces the chemokine CCL21, thereby attracting positively selected thymocytes from the cortex to the medulla. Both self-antigen-displaying and thymocyte-attracting mTEC subsets are essential for self-tolerance. Here we identify a developmental pathway by which mTECs gain their diversity in functionally distinct subsets. We show that CCL21-expressing mTECs arise early during thymus ontogeny. Fate-mapping analysis reveals that self-antigen-displaying mTECs, including Aire-expressing mTECs and thymic tuft cells, are derived from CCL21-expressing cells. The differentiation capability of CCL21-expressing embryonic mTECs is verified in reaggregate thymus experiments. These results indicate that CCL21-expressing embryonic mTECs carry a developmental potential to give rise to self-antigen-displaying mTECs, revealing that the sequential conversion of thymocyte-attracting subset into self-antigen-displaying subset serves to assemble functional diversity in the thymus medulla epithelium.

3.
Biochem Biophys Res Commun ; 502(2): 283-288, 2018 07 12.
Article in English | MEDLINE | ID: mdl-29842883

ABSTRACT

TSP50, a testis-specific gene encoding a serine protease-like protein, was specifically expressed in the spermatocytes of testes but abnormally activated and expressed in many different kinds of cancers. Here, we aimed to analyze the expression of TSP50 in mouse embryo and its function in early embryonic development. Firstly, the distribution of TSP50 in oocytes and embryonic development was characterized by immunofluorescence, RT-PCR and western blotting, and the results showed that TSP50 was detected at all studied stages with a dynamic expression pattern. When overexpressed TSP50 in zygotes by microinjection, the zygotes development was highly accelerated. On the contrary, knocking down TSP50 expression by RNA interference greatly retarded the zygote development. Furthermore, TSP50 expression at embryonic day 6.5 (E6.5), day 8.5 (E8.5) and day 10.5 (E10.5) were increasingly enhanced, However, the expression of TSP50 decreased gradually in the development and differentiation of cardiac myocyte from E12.5 to postnatal (P0). Additionally, we found that TSP50 expression was decreased during cardiac myocyte differentiation of P19 cells. Overexpression of TSP50 could decrease the expression of GATA-4, and knockdown of TSP50 markedly increase the expression of GATA-4. Taken together, our data indicate that TSP50 may play an important role during the process of mouse embryonic development as well as myocardial cell differentiation.


Subject(s)
Embryonic Development/genetics , Embryonic Development/physiology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/enzymology , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Epithelial-Mesenchymal Transition/genetics , Epithelial-Mesenchymal Transition/physiology , Female , Fetal Heart/embryology , Fetal Heart/enzymology , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Gene Knockdown Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Pregnancy
4.
Apoptosis ; 22(11): 1404-1418, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28864870

ABSTRACT

The pro-inflammatory cytokine interleukin 6 (IL-6), via activating its downstream JAK/STAT3 and Ras/ERK signaling pathways, is involved in cell growth, proliferation and anti-apoptotic activities in various malignancies. To screen inhibitors of IL-6 signaling, we constructed a STAT3 and ERK dual-pathway responsive luciferase reporter vector (Co.RE). Among several candidates, the natural compound 20(S)-25-methoxyl-dammarane-3ß, 12ß, 20-triol (25-OCH3-PPD, GS25) was identified to clearly inhibit the luciferase activity of Co.RE. GS25 was confirmed to indeed inhibit activation of both STAT3 and ERK pathways and expression of downstream target genes of IL-6, and to predominantly decrease the viability of HepG2 cells via induction of cell cycle arrest and apoptosis. Interestingly, GS25 showed preferential inhibition of HepG2 cell viability relative to normal liver L02 cells. Further investigation showed that GS25 could not induce apoptosis and block activation of STAT3 and ERK pathways in L02 cells as efficiently as in HepG2 cells, which may result in differential effects of GS25 on malignant and normal liver cells. In addition, GS25 was found to potently suppress the expression of endogenous STAT3 at a higher concentration and dramatically induce p38 phosphorylation in HepG2 cells, which could mediate its anti-cancer effects. Finally, we demonstrated that GS25 also inhibited tumor growth in HepG2 xenograft mice. Taken together, these findings indicate that GS25 elicits its anti-cancer effects on HepG2 cells through multiple mechanisms and has the potential to be used as an inhibitor of IL-6 signaling. Thus, GS25 may be developed as a treatment for hepatocarcinoma with low toxicity on normal liver tissues as well as other inflammation-associated diseases.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Gene Expression Regulation, Neoplastic , Ginsenosides/pharmacology , Hepatoblastoma/drug therapy , Liver Neoplasms/drug therapy , STAT3 Transcription Factor/genetics , Animals , Antineoplastic Agents, Phytogenic/chemical synthesis , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Proliferation/drug effects , Female , Genes, Reporter , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Ginsenosides/chemistry , Hep G2 Cells , Hepatoblastoma/genetics , Hepatoblastoma/metabolism , Hepatoblastoma/pathology , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Luciferases/genetics , Luciferases/metabolism , MAP Kinase Signaling System/drug effects , Mice , Mice, Nude , STAT3 Transcription Factor/agonists , STAT3 Transcription Factor/metabolism , Tumor Burden/drug effects , Xenograft Model Antitumor Assays , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
5.
Int J Biochem Cell Biol ; 42(12): 1964-72, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20732443

ABSTRACT

SLC5A8 (Solute carrier family 5, member 8), proposed to be a potential tumor suppressor gene, is down-regulated by epigenetic changes in some colorectal cancer cells, and ectopic expression of SLC5A8 in SLC5A8-deficient colon cancer cell lines leads to suppression of the colony-forming ability of these cells. Activin A, a member of the transforming growth factor-ß (TGF-ß) superfamily, has been shown to inhibit the proliferation of a variety of tumor (and normal) human cell types. However, the mechanism(s) by which activin A exerts its inhibitory effects are not yet understood. In this study, we showed that activin A up-regulated SLC5A8 expression in colorectal cancer RKO cells and human embryonic kidney (HEK) 293T cells. To elucidate the underlying mechanism involved in this process, we investigated the activation of the Smad signaling pathway, and analyzed the effects of dominant negative Smad3 and Smad2 proteins on activin A-induced SLC5A8 expression. The results indicated that activin A-induced SLC5A8 expression was dependent on activation of Smad3. Further analysis showed that activin A induced SLC5A8 expression via transcriptional activation. Deletion analysis indicated that the CAGA elements located within the -273/-222 region of the human SLC5A8 promoter were responsive to activin A. Taken together, our results strongly suggest that activin A up-regulates SLC5A8 expression through the Smad signaling pathway, which also partially explains the inhibitory effects of activin A in RKO cells.


Subject(s)
Activins/pharmacology , Cation Transport Proteins/biosynthesis , Colonic Neoplasms/metabolism , Smad3 Protein/metabolism , Cation Transport Proteins/genetics , Cell Growth Processes/physiology , Cell Line, Tumor , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , HEK293 Cells , Humans , Monocarboxylic Acid Transporters , Promoter Regions, Genetic/drug effects , Signal Transduction , Smad3 Protein/genetics , Transcriptional Activation/drug effects , Transfection , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...