Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
MethodsX ; 10: 102171, 2023.
Article in English | MEDLINE | ID: mdl-37122368

ABSTRACT

Electromagnetic systems have been used extensively for the control of magnetically actuated objects, such as in microrheology and micro- robotics research. Therefore, optimizing the design of such systems is highly desirable. Some of the features that are lacking in most cur- rent designs are compactness, portability, and versatility. Portability is especially relevant for biomedical applications in which in vivo or in vitro testing may be conducted in locations away from the laboratory microscope. This document describes the design, fabrication, and imple- mentation of a compact, low-cost, versatile, and user-friendly device (the ModMag) capable of controlling multiple electromagnetic setups, includ- ing a two-dimensional 4-coil configuration, a 3-dimensional Helmholtz configuration, a 2-dimensional magnetic tweezer configuration, and a piezoelectric transducer for producing acoustic waves. All electronics for powering the systems are contained in a compact 10″x6"x3" case, which includes a 10″ touchscreen. A graphical user interface provides additional ease of use. The system can also be controlled remotely, allowing for more flexibility and the ability to interface with other software running on the remote computer such as proprietary camera software. Aside from the software and circuitry, we also describe the design of the electromagnetic coil setups and provide examples of the use of the ModMag in experiments.•Low cost and portable magnetic micro-robot manipulation device•Compatible with the 3 most common coil configurations (traditional, Helmholtz, tweezer).

2.
Genes (Basel) ; 14(2)2023 02 16.
Article in English | MEDLINE | ID: mdl-36833431

ABSTRACT

Age is an important physiological factor that affects the metabolism and immune function of beef cattle. While there have been many studies using the blood transcriptome to study the effects of age on gene expression, few have been reported on beef cattle. To this end, we used the blood transcriptomes of Japanese black cattle at different ages as the study subjects and screened 1055, 345, and 1058 differential expressed genes (DEGs) in the calf vs. adult, adult vs. old, and calf vs. old comparison groups, respectively. The weighted co-expression network consisted of 1731 genes. Finally, blue, brown, and yellow age-specific modules were obtained, in which genes were enriched in signaling pathways related to growth and development and immune metabolic dysfunction, respectively. Protein-protein interaction (PPI) analysis showed gene interactions in each specific module, and 20 of the highest connectivity genes were chosen as potential hub genes. Finally, we identified 495, 244, and 1007 genes by exon-wide selection signature (EWSS) analysis of different comparison groups. Combining the results of hub genes, we found that VWF, PARVB, PRKCA, and TGFB1I1 could be used as candidate genes for growth and development stages of beef cattle. CORO2B and SDK1 could be used as candidate marker genes associated with aging. In conclusion, by comparing the blood transcriptome of calves, adult cattle, and old cattle, the candidate genes related to immunity and metabolism affected by age were identified, and the gene co-expression network of different age stages was constructed. It provides a data basis for exploring the growth, development, and aging of beef cattle.


Subject(s)
Gene Regulatory Networks , Transcriptome , Cattle , Animals , Gene Expression Profiling , Genes, Regulator
3.
Vet Sci ; 10(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36851411

ABSTRACT

Negative energy balance (NEB) during the perinatal period leads to metabolic and immunological disorders in dairy cows, resulting in systemic responses and inflammation. The innate immune system is crucial for the host's protection and inflammatory response. However, systematic research is still lacking on how NEB affects the innate immune system to alter the 'host defense capability and inflammatory response. In this investigation, raw transcriptome data of adipose, blood, endometrial, hypothalamus, and liver tissues were downloaded from a public database, cleaned, aligned, quantified, and batch-corrected. The innate immune gene list was retrieved from innateDB, followed by the expression matrix of innate immune genes in various tissues for differential expression analysis, principle component analysis (PCA), and gene set enrichment analysis (GSEA). Under the effect of NEB, adipose tissue had the most differentially expressed genes, which were predominantly up-regulated, whereas blood GSEA had the most enriched biological processes, which were predominantly down-regulated. The gene sets shared by different tissues, which are predominantly involved in biological processes associated with defense responses and inflammation, were dramatically down-regulated in endometrial tissues and highly up-regulated in other tissues. Under the impact of NEB, LBP, PTX3, S100A12, and LCN2 play essential roles in metabolism and immunological control. In conclusion, NEB can downregulate the defensive response of innate immune genes in endometrial, upregulate the immune and inflammatory response of other tissues, activate the host defense response, and increase the systemic inflammatory response. The analysis of the effects of NEB on innate immune genes from the multiple tissues analysis provides new insights into the crosstalk between metabolism and immunity and also provides potential molecular targets for disease diagnosis and disease resistance breeding in dairy cows.

4.
Article in English | MEDLINE | ID: mdl-38962675

ABSTRACT

Bubble-propelled microrobots have an advantage of relatively swift movement compared to most other types of microrobots, which makes them well suited for applications such as micromanipulation or movement in flows, but their high speed also poses challenges in precisely controlling their motion. This study proposes automated control of the microrobots using visual feedback and steering with uniform magnetic fields to constrain the microrobot's moving direction. The implementation of a closed-loop control mechanism ensures precise autonomous navigation along prescribed trajectories. Experimental results demonstrate that this approach achieves satisfactory tracking performance, with an average error of 6. 7 µm for a microrobot with a diameter of 24 µm.

5.
Article in English | MEDLINE | ID: mdl-38952455

ABSTRACT

Microrobots, untethered miniature devices capable of performing tasks at the microscale, have gained significant attention in the fields of robotics and biomedicine. These devices hold immense potential for various industrial and scientific applications, including targeted drug delivery and cell manipulation. In this study, we present a novel magnetic rolling helical microrobot specifically designed for bio-compatible cell patterning. Our microrobot incorporates both open-loop and closed-loop control mechanisms, providing flexible, precise, and rapid control for various applications. Through experiments, we demonstrate the microrobot's ability to manipulate cells by pushing them while rolling and arranging cells into desired patterns. This result is particularly significant as it has implications for diverse biological applications such as tissue engineering and organoid development. Moreover, we showcase the effectiveness of our microrobot in a closed-loop control system, where it successfully follows a predetermined path from an origin to a destination. The combination of cellular manipulation capabilities and trajectory-tracking performance underlines the versatility and potential of our magnetic rolling helical microrobot. The ability to control and navigate the microrobot with high precision opens up new possibilities for advanced biomedical applications. These findings contribute to the growing body of knowledge in microbotics and pave the way for further research and development in the field.

6.
Genes (Basel) ; 13(9)2022 09 19.
Article in English | MEDLINE | ID: mdl-36140838

ABSTRACT

Maternal parity is an important physiological factor influencing beef cow reproductive performance. However, there are few studies on the influence of different calving periods on early growth and postpartum diseases. Here, we conducted blood transcriptomic analysis on cows of different parities for gene discovery. We used Short Time Series Expression Miner (STEM) analysis to determine gene expression levels in cows of various parities and divided multiple parities into three main periods (nulliparous, primiparous, and multiparous) for subsequent analysis. Furthermore, the top 15,000 genes with the lowest median absolute deviation (MAD) were used to build a co-expression network using weighted correlation network analysis (WGCNA), and six independent modules were identified. Combing with Exon Wide Selection Signature (EWSS) and protein-protein interaction (PPI) analysis revealed that TPCN2, KIF22, MICAL3, RUNX2, PDE4A, TESK2, GPM6A, POLR1A, and KLHL6 involved in early growth and postpartum diseases. The GO and KEGG enrichment showed that the Parathyroid hormone synthesis, secretion, and action pathway and stem cell differentiation function-related pathways were enriched. Collectively, our study revealed candidate genes and gene networks regulating the early growth and postpartum diseases and provided new insights into the potential mechanism of reproduction advantages of different parity selection.


Subject(s)
Lactation , Puerperal Disorders , Animals , Cattle/genetics , Core Binding Factor Alpha 1 Subunit , DNA-Binding Proteins , Female , Gene Expression Profiling , Gene Regulatory Networks , Humans , Intracellular Signaling Peptides and Proteins , Kinesins , Lactation/physiology , Parathyroid Hormone , Parity , Postpartum Period , Pregnancy , Protein Serine-Threonine Kinases , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...