Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Antimicrob Agents Chemother ; 68(8): e0152023, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38990014

ABSTRACT

Mycobacterium abscessus pulmonary infections are increasingly problematic, especially for immunocompromised individuals and those with underlying lung conditions. Currently, there is no reliable standardized treatment, underscoring the need for improved preclinical drug testing. We present a simplified immunosuppressed mouse model using only four injections of cyclophosphamide, which allows for sustained M. abscessus lung burden for up to 16 days. This model proved effective for antibiotic efficacy evaluation, as demonstrated with imipenem or amikacin.


Subject(s)
Amikacin , Anti-Bacterial Agents , Cyclophosphamide , Disease Models, Animal , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Animals , Cyclophosphamide/pharmacology , Mycobacterium abscessus/drug effects , Mice , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Amikacin/pharmacology , Amikacin/therapeutic use , Imipenem/pharmacology , Imipenem/therapeutic use , Lung/microbiology , Lung/drug effects , Immunocompromised Host , Female
3.
Ying Yong Sheng Tai Xue Bao ; 35(2): 424-430, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38523100

ABSTRACT

Canopy spectral composition significantly affects growth and functional traits of understory plants. In this study, we explored the optimal light condition suitable for enhancing Scutellaria baicalensis's yield and quality, aiming to provide scientific reference for the exploitation and utilization of medicinal plant resources in the understory of forests. We measured the responses of growth, morphology, biomass allocation, physiological traits, and secon-dary metabolites of S. baicalensis to different light qualities. S. baicalensis was cultured under five LED-light treatments including full spectrum light (control), ultraviolet-A (UV-A) radiation, blue, green, and red light. Results showed that UV-A significantly reduced plant height, base diameter, leaf thickness, leaf area ratio, and biomass of each organ. Red light significantly reduced base diameter, biomass, effective quantum yield of photosystem Ⅱ (ФPSⅡ), and total flavonoid concentration. Under blue light, root length and total biomass of S. baicalensis significantly increased by 48.0% and 10.8%, respectively, while leaf number and chlorophyll content significantly decreased by 20.0% and 31.6%, respectively. The other physiological and biochemical traits were consistent with their responses in control. Our results suggested that blue light promoted photosynthesis, biomass accumulation, and secondary metabolite synthesis of S. baicalensis, while red light and UV-A radiation negatively affected physiological and biochemical metabolic processes. Therefore, the ratio of blue light could be appropriately increased to improve the yield and quality of S. baicalensis.


Subject(s)
Plants, Medicinal , Scutellaria baicalensis , Scutellaria baicalensis/chemistry , Scutellaria baicalensis/metabolism , Photosynthesis , Flavonoids , Chlorophyll/metabolism
4.
Stem Cell Res Ther ; 14(1): 259, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726837

ABSTRACT

BACKGROUND: Mesenchymal stromal cells (MSCs) have broad potential as a cell therapy including for the treatment of drug-resistant inflammatory conditions with abnormal T cell proliferation such as graft-versus-host disease (GVHD). Clinical success, however, has been complicated by the heterogeneity of culture-expanded MSCs as well as donor variability. Here, we devise culture conditions that promote expansion of MSCs with enhanced immunomodulatory functions both in vitro and in animal models of GVHD. METHODS: Human bone marrow-derived MSCs were expanded at high-confluency (MSCHC) and low-confluency state (MSCLC). Their immunomodulatory properties were evaluated with in vitro co-culture assays based on suppression of activated T cell proliferation and secretion of pro-inflammatory cytokines from activated T cells. Metabolic state of these cells was determined, while RNA sequencing was performed to explore transcriptome of these MSCs. Ex vivo expanded MSCHC or MSCLC was injected into human peripheral blood mononuclear cells (PBMC)-induced GVHD mouse model to determine their in vivo therapeutic efficacy based on clinical grade scoring, human CD45+ blood count and histopathological examination. RESULTS: As compared to MSCLC, MSCHC significantly reduced both the proliferation of anti-CD3/CD28-activated T cells and secretion of pro-inflammatory cytokines upon MSCHC co-culture across several donors even in the absence of cytokine priming. Mechanistically, metabolic analysis of MSCHC prior to co-culture with activated T cells showed increased glycolytic metabolism and lactate secretion compared to MSCLC, consistent with their ability to inhibit T cell proliferation. Transcriptome analysis further revealed differential expression of immunomodulatory genes including TRIM29, BPIFB4, MMP3 and SPP1 in MSCHC as well as enriched pathways including cytokine-cytokine receptor interactions, cell adhesion and PI3K-AKT signalling. Lastly, we demonstrate in a human PBMC-induced GVHD mouse model that delivery of MSCHC showed greater suppression of inflammation and improved outcomes compared to MSCLC and saline controls. CONCLUSION: Our study provides evidence that ex vivo expansion of MSCs at high confluency alters the metabolic and transcriptomic states of these cells. Importantly, this approach maximizes the production of MSCs with enhanced immunomodulatory functions without priming, thus providing a non-invasive and generalizable strategy for improving the use of MSCs for the treatment of inflammatory diseases.


Subject(s)
Leukocytes, Mononuclear , Mesenchymal Stem Cells , Animals , Mice , Humans , Bone Marrow , Phosphatidylinositol 3-Kinases , Cytokines , Disease Models, Animal , DNA-Binding Proteins , Transcription Factors , Intercellular Signaling Peptides and Proteins
5.
Bioact Mater ; 27: 98-112, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37006826

ABSTRACT

Secretome derived from mesenchymal stem cells (MSCs) have profound effects on tissue regeneration, which could become the basis of future MSCs therapies. Hypoxia, as the physiologic environment of MSCs, has great potential to enhance MSCs paracrine therapeutic effect. In our study, the paracrine effects of secretome derived from MSCs preconditioned in normoxia and hypoxia was compared through both in vitro functional assays and an in vivo rat osteochondral defect model. Specifically, the paracrine effect of total EVs were compared to that of soluble factors to characterize the predominant active components in the hypoxic secretome. We demonstrated that hypoxia conditioned medium, as well as the corresponding EVs, at a relatively low dosage, were efficient in promoting the repair of critical-sized osteochondral defects and mitigated the joint inflammation in a rat osteochondral defect model, relative to their normoxia counterpart. In vitro functional test shows enhancement through chondrocyte proliferation, migration, and matrix deposition, while inhibit IL-1ß-induced chondrocytes senescence, inflammation, matrix degradation, and pro-inflammatory macrophage activity. Multiple functional proteins, as well as a change in EVs' size profile, with enrichment of specific EV-miRNAs were detected with hypoxia preconditioning, implicating complex molecular pathways involved in hypoxia pre-conditioned MSCs secretome generated cartilage regeneration.

6.
Bioengineering (Basel) ; 10(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36978745

ABSTRACT

Articular cartilage defects commonly result from trauma and are associated with significant morbidity. Since cartilage is an avascular, aneural, and alymphatic tissue with a poor intrinsic healing ability, the regeneration of functional hyaline cartilage remains a difficult clinical problem. Mesenchymal stem cells (MSCs) are multipotent cells with multilineage differentiation potential, including the ability to differentiate into chondrocytes. Due to their availability and ease of ex vivo expansion, clinicians are increasingly applying MSCs in the treatment of cartilage lesions. However, despite encouraging pre-clinical and clinical data, inconsistencies in MSC proliferative and chondrogenic potential depending on donor, tissue source, cell subset, culture conditions, and handling techniques remain a key barrier to widespread clinical application of MSC therapy in cartilage regeneration. In this review, we highlight the strategies to manage the heterogeneity of MSCs ex vivo for more effective cartilage repair, including reducing the MSC culture expansion period, and selecting MSCs with higher chondrogenic potential through specific genetic markers, surface markers, and biophysical attributes. The accomplishment of a less heterogeneous population of culture-expanded MSCs may improve the scalability, reproducibility, and standardisation of MSC therapy for clinical application in cartilage regeneration.

7.
Tissue Eng Part B Rev ; 28(5): 966-977, 2022 10.
Article in English | MEDLINE | ID: mdl-34569290

ABSTRACT

Mesenchymal stem cells (MSCs) have been demonstrated as promising cell sources for tissue regeneration due to their capability of self-regeneration, differentiation, and immunomodulation. MSCs also exert extensive paracrine effects through release of trophic factors and extracellular vesicles (EVs). However, despite extended exploration of MSCs in preclinical studies, the results are far from satisfactory due to the poor engraftment and low level of survival after implantation. Hypoxia preconditioning has been proposed as an engineering approach to improve the therapeutic potential of MSCs. During in vitro culture, hypoxic conditions can promote MSC proliferation, survival, and migration through various cellular responses to the reduction of oxygen tension. The multilineage differentiation potential of MSCs is altered under hypoxia, with consistent reports of enhanced chondrogenesis. Hypoxia also stimulates the paracrine activities of MSCs and increases the production of secretome both in terms of soluble factors as well as EVs. The secretome from hypoxia-preconditioned MSCs play important roles in promoting cell proliferation and migration, enhancing angiogenesis while inhibiting apoptosis and inflammation. In this review, we summarize current knowledge of hypoxia-induced changes in MSCs and discuss the application of hypoxia-preconditioned MSCs as well as hypoxic secretome in different kinds of disease models. Impact statement Mesenchymal stem cells (MSCs) have been applied in numerous cell-based and secretome-based therapies for tissue regeneration. Hypoxic conditions enhance the function of MSCs by increasing proliferation, survival, homing, differentiation, and paracrine activities. A timely up-to-date comprehensive overview of the effect of low oxygen tension to MSC, with emphasis on the influence and molecular mechanism of hypoxia preconditioning toward MSC's functionality is provided, including the therapeutic use of hypoxia-preconditioned MSC as well as hypoxic secretome in various prove-of-concept disease models. This knowledge would contribute to future engineering of MSC culture conditions for improved translational application.


Subject(s)
Mesenchymal Stem Cells , Humans , Cell Differentiation , Hypoxia , Wound Healing , Oxygen/pharmacology
8.
Int J Med Inform ; 129: 175-183, 2019 09.
Article in English | MEDLINE | ID: mdl-31445252

ABSTRACT

OBJECTIVE: The aim of this study was to conduct an effective assessment of peripherally inserted central venous catheter (PICC)-related thrombosis based on machine learning (ML) techniques considering genotype. DESIGN: We conducted a prospective cohort study of 348 cancer patients with PICCs who were admitted to the Department of Oncology of West China Hospital, over a 1-year period, between February 1, 2016, and February 31, 2017. We obtained the clinical attributes, onset, duration, and outcome of thrombosis from electronic health records. We assigned all patients to either the training or testing set, and used four models for comparison with the currently used criteria. RESULTS: ML methods showed good efficiency in PICC-related thrombosis risk assessment (with areas under the curve of 0.7733, 0.7869, 0.7833, and 0.7717 respectively) and outperform the currently used criteria (Seeley), which did not identify any positive case. CONCLUSIONS: Our research confirmed that ML approaches are powerful tools to identify cancer patients with a high risk of PICC-related thrombosis, which outperform the currently used criteria (Seeley). Moreover, our research also offers some indications on the predictors and risk factors of PICC-related thrombosis. From our research, more-precise assessments can be performed in cancer patients with PICCs to help decide the prophylaxis and effectively lower the incidence of PICC-related thrombosis.


Subject(s)
Catheterization, Peripheral , Machine Learning , Neoplasms/complications , Thrombosis/therapy , Catheterization, Central Venous , China , Hospitalization , Humans , Prospective Studies , Risk Assessment , Risk Factors , Thrombosis/complications
9.
Oncotarget ; 8(25): 41679-41689, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28415639

ABSTRACT

Endometriosis, an estrogen-dependent chronic gynecological disease, is common in reproductive-age women and profoundly affects their life quality. Although various pathogenic theories have been proposed, the origin of endometriosis remains unclear. Epithelial to mesenchymal transition (EMT) is a process that epithelial cells lose polarized organization of the cytoskeleton and cell-to-cell contacts, acquiring the high motility of mesenchymal cells. These changes are thought to be prerequisites for the original establishment of endometriotic lesions. However, no study exactly indicates which type of EMT occurs in endometriosis. In this review, we conclude that two different types of EMT may participate in this disease. Besides, two stimulating signals, hypoxia and estrogen, can through different pathways to activate the EMT process in endometriosis. Those pathways involve many cellular factors such as TGF-beta and Wnt, ultimately leading to cell proliferation and migration. As infertility is becoming a serious and intractable issue for women, EMT, during the implantation process, is gaining attention. In this review, we will describe the known functions of EMT in endometriosis, and suggest further studies that may aid in the development of medical therapy.


Subject(s)
Endometriosis/diagnosis , Epithelial-Mesenchymal Transition/physiology , Infertility/etiology , Endometriosis/pathology , Estrogens/metabolism , Female , Humans , Infertility/pathology
SELECTION OF CITATIONS
SEARCH DETAIL