Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 302
Filter
1.
Front Vet Sci ; 11: 1438295, 2024.
Article in English | MEDLINE | ID: mdl-39132444

ABSTRACT

KPT-335 (Verdinexor) is a novel SINE that potently inhibits the nucleoprotein Exportin 1 (XPO1/CRM1) of tumor cell lines and reduces the replication level of the influenza virus. KPT-335 is mainly used for the treatment of canine tumors. Drugs for the effective treatment of feline tumors are currently unavailable in China. KPT-335 may have potential in the treatment of cat tumors. However, the effects of KPT-335 in cats are unreported, and no relevant methodology has been established for pharmacokinetic studies. In this study, a UPLC-MS/MS method was developed to determine KPT-335 concentrations in cat plasma, followed by pharmacokinetic studies. Briefly, plasma proteins are precipitated with acetonitrile, and the supernatant was collected for detection after centrifugation. The linearity for KPT-335 in cat plasma was in the range of 5-1,000 ng/mL. Satisfactory accuracy and precision were obtained. The intra-day accuracy was between -4.10% and 10.48%, the precision was ≤4.65%; the inter-day accuracy was between -0.11% and 8.09%, and the precision was ≤5.85%. Intra-day and inter-day accuracy and precision were within regulatory limits. The results of preliminary pharmacokinetic studies were as follows: Tmax was 1.46 ± 0.51 h; Cmax was 239.54 ± 190.60 ng·mL-1; T1/2 was 5.16 ± 2.30 h; AUC0-t was 1439.85 ± 964.64 ng·mL-1·h. The AUC0-∞ was 1589.82 ± 1003.75 ng·mL-1·h. The purpose of this study was to develop a rapid and simple UPLC-MS/MS method to detect KPT-335 concentration in cat plasma and to conduct preliminary pharmacokinetic studies to support the future application of KPT-335 in felines.

2.
Virology ; 598: 110196, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098183

ABSTRACT

Reovirus (Reo) has shown promising potential in specifically killing tumor cells, and offering new possibilities for ovarian cancer (OC) treatment. However, neutralizing antibodies in the ascites from OC patients greatly limit the further application of Reo. In this study, we employed cationic liposomes (Lipo) to deliver Reo, significantly enhancing its ability to enter OC cells and its effectiveness in killing these cells under ascitic conditions. Pre-treatment with the MßCD inhibitor notably decreased Reo-mediated tumor cell death, indicating that Lipo primarily enables Reo's cellular uptake through caveolin-mediated endocytosis. Our results demonstrate that Lipo effectively facilitates the entry of Reo into the cytoplasm and triggers cell apoptosis. The above findings provide a new strategy to overcome the obstacle of neutralizing antibodies in the clinical application of Reo.


Subject(s)
Antibodies, Neutralizing , Liposomes , Ovarian Neoplasms , Reoviridae , Female , Humans , Ovarian Neoplasms/immunology , Antibodies, Neutralizing/immunology , Reoviridae/immunology , Reoviridae/physiology , Cell Line, Tumor , Oncolytic Virotherapy/methods , Apoptosis , Animals , Cations , Oncolytic Viruses/immunology , Mice
3.
Cancer Invest ; 42(6): 527-537, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965994

ABSTRACT

Despite the emergence of various treatment strategies for rectal cancer based on neoadjuvant chemoradiotherapy, there is currently a lack of reliable biomarkers to determine which patients will respond well to neoadjuvant chemoradiotherapy. Through collecting hematological and biochemical parameters data of patients prior to receiving neoadjuvant chemoradiotherapy, we evaluated the predictive value of systemic inflammatory indices for pathological response and prognosis in rectal cancer patients. We found that baseline GRIm-Score was an independent predictor for MPR in rectal cancer patients. However, no association was observed between several commonly systemic inflammation indices and long-term outcome.


Subject(s)
Neoadjuvant Therapy , Rectal Neoplasms , Humans , Rectal Neoplasms/pathology , Rectal Neoplasms/therapy , Rectal Neoplasms/immunology , Male , Female , Middle Aged , Neoadjuvant Therapy/methods , Aged , Chemoembolization, Therapeutic/methods , Prognosis , Treatment Outcome , Adult , Chemoradiotherapy/methods
4.
Chem Sci ; 15(28): 11092-11098, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39027277

ABSTRACT

Highly constrained bicyclic scaffolds are ubiquitous and attracting increasing interest in pharmaceutical and biotechnology discoveries owing to the enhanced activities. Herein, we report a protocol to access highly substituted constrained bicycloalkanes from readily accessible α-silyl alcohols and olefins through a bibase-promoted Brook rearrangement/radical-polar crossover cyclization (RPCC) process. Of note, the practical procedure features broad substrate scope and good group tolerance under mild and operationally simple conditions, using an inexpensive organic photocatalyst. Gram-scale preparation and diverse synthetic transformations demonstrate opportunities to rapidly construct molecular complexity. Mechanistic studies have indicated that the transformation involves a bibase-promoted radical transfer rearrangement addition/radical-polar crossover cyclization relay sequence, which differs from traditional solitary RPCC reactions.

5.
J Cell Physiol ; 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946173

ABSTRACT

Amino acids are essential building blocks for proteins, crucial energy sources for cell survival, and key signaling molecules supporting the resistant growth of tumor cells. In tumor cells, amino acid metabolic reprogramming is characterized by the enhanced uptake of amino acids as well as their aberrant synthesis, breakdown, and transport, leading to immune evasion and malignant progression of tumor cells. This article reviews the altered amino acid metabolism in tumor cells and its impact on tumor microenvironment, and also provides an overview of the current clinical applications of amino acid metabolism. Innovative drugs targeting amino acid metabolism hold great promise for precision and personalized cancer therapy.

6.
Child Care Health Dev ; 50(4): e13302, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953565

ABSTRACT

BACKGROUND: In the digital age, bullying manifests in two distinct forms: traditional bullying and cyberbullying. Children's peer relationships are important predictors of bullying, and bullying in turn predicts peer relationships. However, few researchers have noted the bidirectional relationship between peer relationships and bullying. METHODS: The present study used a two-wave cross-lagged longitudinal design to fill this gap. The potential sex differences were also examined in this relationship. The sample consisted of 527 Chinese children aged 8 to 12 years (M = 9.69, SD = .96; 53.5% female). Participants completed peer nominations for peer acceptance, peer rejection and social dominance, as well as self-reports of traditional bullying and cyberbullying. RESULTS: Results showed that peer rejection at the first time point (T1) significantly and positively predicted traditional bullying perpetration, cyberbullying perpetration and cyberbullying victimization at the second time point (T2). Traditional bullying victimization at T1 significantly and negatively predicted peer acceptance and social dominance at T2. The results also revealed significant male and female differences. For instance, among boys, peer acceptance at T1 significantly and negatively predicted cyberbullying victimization at T2. In contrast, this relationship was not observed among girls. The present findings have important implications for understanding the cyclical relationship between peer relationships and bullying and providing practical guidance for improving peer relationships and reducing bullying.


Subject(s)
Bullying , Crime Victims , Interpersonal Relations , Peer Group , Humans , Male , Female , Child , Bullying/psychology , China , Crime Victims/psychology , Longitudinal Studies , Sex Factors , Cyberbullying/psychology , Social Dominance , Child Behavior/psychology , East Asian People
7.
Synth Syst Biotechnol ; 9(4): 759-765, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39007090

ABSTRACT

Pichia pastoris, a methylotrophic yeast, can utilize methanol as a carbon source and energy source to synthesize high-value chemicals, and is an ideal host for biomanufacturing. Constructing the P. pastoris cell factory is somewhat impeded due to the absence of genetic tools for manipulating multi-gene biosynthetic pathways. To broaden its application in the field of metabolic engineering, this study identified and screened 15 novel integration sites in P. pastoris using CRISPR-Cpf1 genome editing technology, with EGFP serving the reporter protein. These integration sites have integration efficiencies of 10-100 % and varying expression strengths, which allow for selection based on the expression levels of genes as needed. Additionally, these integrated sites are applied in the heterologous biosynthesis of P. pastoris, such as the astaxanthin biosynthetic pathway and the carbon dioxide fixation pathway of the Calvin-Benson-Bassham (CBB) cycle. During the three-site integration process, the 8 genes of the CBB cycle were integrated into the genome of P. pastoris. This indicates the potential of these integration sites for integrating large fragments and suggests their successful application in metabolic engineering of P. pastoris. This may lead to improved efficiency of genetic engineering in P. pastoris.

8.
Environ Sci Technol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012227

ABSTRACT

The occurrence of biofouling restricts the widespread application of membrane bioreactors (MBRs) in wastewater treatment. Regulation of quorum sensing (QS) is a promising approach to control biofouling in MBRs, yet the underlying mechanisms are complex and remain to be illustrated. A fundamental understanding of the relationship between QS and membrane biofouling in MBRs is lacking, which hampers the development and application of quorum quenching (QQ) techniques in MBRs (QQMBRs). While many QQ microorganisms have been isolated thus far, critical criteria for selecting desirable QQ microorganisms are still missing. Furthermore, there are inconsistent results regarding the QQ lifecycle and the effects of QQ on the physicochemical characteristics and microbial communities of the mixed liquor and biofouling assemblages in QQMBRs, which might result in unreliable and inefficient QQ applications. This review aims to comprehensively summarize timely QQ research and highlight the important yet often ignored perspectives of QQ for biofouling control in MBRs. We consider what this "information" can and cannot tell us and explore its values in addressing specific and important questions in QQMBRs. Herein, we first examine current analytical methods of QS signals and discuss the critical roles of QS in fouling-forming microorganisms in MBRs, which are the cornerstones for the development of QQ technologies. To achieve targeting QQ strategies in MBRs, we propose the substrate specificity and degradation capability of isolated QQ microorganisms and the surface area and pore structures of QQ media as the critical criteria to select desirable functional microbes and media, respectively. To validate the biofouling retardation efficiency, we further specify the QQ effects on the physicochemical properties, microbial community composition, and succession of mixed liquor and biofouling assemblages in MBRs. Finally, we provide scale-up considerations of QQMBRs in terms of the debated QQ lifecycle, practical synergistic strategies, and the potential cost savings of MBRs. This review presents the limitations of classic QS/QQ hypotheses in MBRs, advances the understanding of the role of QS/QQ in biofouling development/retardation in MBRs, and builds a bridge between the fundamental understandings and practical applications of QQ technology.

9.
Biomater Sci ; 12(16): 4226-4241, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38984522

ABSTRACT

Objectives: The technique of guided bone regeneration (GBR) has been widely used in the field of reconstructive dentistry to address hard tissue deficiency. The objective of this research was to manufacture a novel bi-layered asymmetric membrane that incorporates demineralized dentin matrix (DDM), a bioactive bone replacement derived from dentin, in order to achieve both soft tissue isolation and hard tissue regeneration simultaneously. Methods: DDM particles were harvested from healthy, caries-free permanent teeth. The electrospinning technique was utilized to synthesize bi-layered DDM-loaded PLGA/PLA (DPP) membranes. We analyzed the DPP bilayer membranes' surface topography, physicochemical properties and degradation ability. Rat skull critical size defects (CSDs) were constructed to investigate in vivo bone regeneration. Results: The synthesized DPP bilayer membranes possessed suitable surface characteristics, acceptable mechanical properties, good hydrophilicity, favorable apatite forming ability and suitable degradability. Micro-computed tomography (CT) showed significantly more new bone formation in the rat skull defects implanted with the DPP bilayer membranes. Histological evaluation further revealed that the bone was more mature with denser bone trabeculae. In addition, the DPP bilayer membrane significantly promoted the expression of the OCN matrix protein in vivo. Conclusions: The DPP bilayer membranes exhibited remarkable biological safety and osteogenic activity in vivo and showed potential as a prospective candidate for GBR applications in the future.


Subject(s)
Bone Regeneration , Dentin , Skull , Animals , Bone Regeneration/drug effects , Skull/injuries , Skull/pathology , Skull/diagnostic imaging , Skull/drug effects , Rats , Dentin/chemistry , Rats, Sprague-Dawley , Membranes, Artificial , Male , Wound Healing/drug effects , X-Ray Microtomography , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Tissue Scaffolds/chemistry , Osteogenesis/drug effects
10.
Talanta ; 278: 126530, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39002260

ABSTRACT

In this work, a series of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) radicals bearing different functional groups were exploited as a simple catalyst to promote electrochemiluminescence (ECL) generation in luminol/H2O2 system. These TEMPO radicals were found to facilitate the electrochemical oxidation of H2O2 and luminol through different catalytic mechanisms, as well as the subsequent ECL generation of luminol/H2O2 system. The electrochemical oxidation and luminol ECL generation could be tuned by the functional group on the para-position of TEMPO, for which the structure/activity relationship was revealed. Finally, with the combination of enzymatic system, luminol ECL enhancement up to 9.6-fold was obtained through the catalysis of 4-hydroxyl-TEMPO. The enhanced luminol ECL allows acquiring brighter ECL images in a single-electrochemical system (SEES) for multiplex detection of cholesterol, H2O2 and glucose.

11.
Virology ; 598: 110171, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39018682

ABSTRACT

In addition to chemotherapy, oncolytic viruses are an efficient treatment for acute myeloid leukemia (AML). Like other oncolytic viruses, the anti-tumor efficacy of reovirus when administered intravenously is reduced due to the presence of neutralizing antibodies. In this study, we evaluated the role of exosomes in human umbilical cord-derived mesenchymal stem cells (UC-MSCs) to deliver reovirus to AML cells. We show that UC-MSCs loaded with reovirus can deliver reovirus to tumor cells without cellular contact. We further demonstrate that the exosome inhibitor, GW4869, inhibits the release of exosomes as well as inhibited the transfer of reovirus from UC-MSCs to tumor cells. Mechanistically, we show that exosomes derived from reovirus-infected UC-MSCs (MSCREO-EXOs) have a tumor lysis effect and transmit reovirus to tumor cells mainly through clathrin-mediated endocytosis (CME) and macropinocytosis. In addition, we demonstrate the feasibility of using MSC-derived exosomes (MSC-EXOs) as a reovirus carrier to exert an anti-tumor effect on AML cells. Collectively, our data indicate that UC-MSCs transfer reovirus to AML cells via exosome release and prompt further study of MSC-EXOs as a potential reovirus carrier to treat AML.


Subject(s)
Exosomes , Leukemia, Myeloid, Acute , Mesenchymal Stem Cells , Oncolytic Virotherapy , Oncolytic Viruses , Umbilical Cord , Humans , Exosomes/metabolism , Mesenchymal Stem Cells/virology , Mesenchymal Stem Cells/metabolism , Leukemia, Myeloid, Acute/therapy , Umbilical Cord/cytology , Oncolytic Viruses/physiology , Oncolytic Virotherapy/methods , Cell Line, Tumor , Reoviridae/physiology , Aniline Compounds/pharmacology , Endocytosis , Benzylidene Compounds
12.
Surgery ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38890101

ABSTRACT

BACKGROUND: This study aimed to observe the occurrence of recurrent laryngeal nerve injury after McKeown esophagectomy for esophageal squamous cell carcinoma, as well as its recovery and influencing factors within 7 months after surgery. METHODS: From July 2020 to July 2021, among all patients who underwent minimally invasive McKeown esophagectomy, 90 patients who developed vocal cord paralysis after surgery were included in the study. These patients underwent endoscopic vocal cord function assessment every 1 to 2 months and continued until 7 months postoperatively. RESULTS: Among all 388 patients undergoing esophagectomy, 23.2% (90/388) of patients suffered postoperative vocal cord paralysis. Left, right, and bilateral injuries were confirmed in 73 (81.1%), 12 (13.3%), and 5 patients (5.6%), respectively. With a median recovery time being 183 days, the cumulative overall recovery rate was 65.4% at 7 months, 68.6% for the left side, 55.6% for the right, and 20.0% for bilateral injuries. In multivariable analysis, cervical paraoesophageal lymph node dissection and conventional thoracoscopic-assisted esophagectomy were demonstrated to be independent risk factors associated with non-recovery of vocal cord paralysis. CONCLUSIONS: After intensive endoscopic follow-up, a cumulative vocal cord paralysis recovery rate of 65.4% within 7 months was observed in patients after minimally invasive McKeown esophagectomy. Cervical paraoesophageal lymph node dissection and conventional thoracoscopic-assisted esophagectomy were demonstrated to be risk factors hindering vocal cord paralysis recovery.

13.
J Thorac Dis ; 16(5): 2948-2962, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38883642

ABSTRACT

Background: Esophageal cancer remains a significant burden of lethal cancers worldwide, particularly in China. This is an annual report of Shanghai Chest Hospital (SCH) on surgical treatment for esophageal cancer patients in 2017. Methods: All patients who received surgical treatment for esophageal cancer at SCH in 2017 were given a detailed summary of clinical information based on the database of SCH. Kaplan-Meier method was used to present their survival, subgroup analyses, and multivariate Cox regression analysis were used to estimate the potential risk factors for prognosis. Results: In 2017, a total of 663 patients received surgical treatment (628 esophagectomies and 35 endoscopic resections) for esophageal cancer at SCH. Of the patients who underwent esophagectomy, 292 patients received perioperative treatment, majority of which was postoperative treatment (47.9%). Only 69 (10.4%) patients received preoperative treatment. Minimally invasive techniques were used in 444 (70.7%) patients and robotic-assisted esophagectomies were used in 130 (20.7%) patients. Complete resection (R0) was achieved in 90.3% of esophagectomy patients. The 5-year overall survival (OS) rate after esophagectomy was 52.5%. Conclusions: The 5-year OS of patients with esophageal cancer can reach 52.5% after surgical treatment in 2017 at SCH. The exact beneficiaries of neoadjuvant therapy are still unclear in the 2017 cohort.

14.
Front Oncol ; 14: 1389250, 2024.
Article in English | MEDLINE | ID: mdl-38854720

ABSTRACT

Background: Distinguishing between prostatic cancer (PCa) and chronic prostatitis (CP) is sometimes challenging, and Gleason grading is strongly associated with prognosis in PCa. The continuous-time random-walk diffusion (CTRW) model has shown potential in distinguishing between PCa and CP as well as predicting Gleason grading. Purpose: This study aimed to quantify the CTRW parameters (α, ß & Dm) and apparent diffusion coefficient (ADC) of PCa and CP tissues; and then assess the diagnostic value of CTRW and ADC parameters in differentiating CP from PCa and low-grade PCa from high-grade PCa lesions. Study type: Retrospective (retrospective analysis using prospective designed data). Population: Thirty-one PCa patients undergoing prostatectomy (mean age 74 years, range 64-91 years), and thirty CP patients undergoing prostate needle biopsies (mean age 68 years, range 46-79 years). Field strength/Sequence: MRI scans on a 3.0T scanner (uMR790, United Imaging Healthcare, Shanghai, China). DWI were acquired with 12 b-values (0, 50, 100, 150, 200, 500, 800, 1200, 1500, 2000, 2500, 3000 s/mm2). Assessment: CTRW parameters and ADC were quantified in PCa and CP lesions. Statistical tests: The Mann-Whitney U test was used to evaluate the differences in CTRW parameters and ADC between PCa and CP, high-grade PCa, and low-grade PCa. Spearman's correlation of the pathologic grading group (GG) with CTRW parameters and ADC was evaluated. The usefulness of CTRW parameters, ADC, and their combinations (Dm, α and ß; Dm, α, ß, and ADC) to differentiate PCa from CP and high-grade PCa from low-grade PCa was determined by logistic regression and receiver operating characteristic curve (ROC) analysis. Delong test was used to compare the differences among AUCs. Results: Significant differences were found for the CTRW parameters (α, Dm) between CP and PCa (all P<0.001), high-grade PCa, and low-grade PCa (α:P=0.024, Dm:P=0.021). GG is correlated with certain CTRW parameters and ADC(α:P<0.001,r=-0.795; Dm:P<0.001,r=-0.762;ADC:P<0.001,r=-0.790). Moreover, CTRW parameters (α, ß, Dm) combined with ADC showed the best diagnostic efficacy for distinguishing between PCa and CP as well as predicting Gleason grading. The differences among AUCs of ADC, CTRW parameters and their combinations were not statistically significant (P=0.051-0.526). Conclusion: CTRW parameters α and Dm, as well as their combination were beneficial to distinguish between CA and PCa, low-grade PCa and high-grade PCa lesions, and CTRW parameters and ADC had comparable diagnostic performance.

15.
Microbiome ; 12(1): 104, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845047

ABSTRACT

BACKGROUND: Ruminant gut microbiota are critical in ecological adaptation, evolution, and nutrition utilization because it regulates energy metabolism, promotes nutrient absorption, and improves immune function. To study the functional roles of key gut microbiota in sheep and goats, it is essential to construct reference microbial gene catalogs and high-quality microbial genomes database. RESULTS: A total of 320 fecal samples were collected from 21 different sheep and goat breeds, originating from 32 distinct farms. Metagenomic deep sequencing and binning assembly were utilized to construct a comprehensive microbial genome information database for the gut microbiota. We successfully generated the largest reference gene catalogs for gut microbiota in sheep and goats, containing over 162 million and 82 million nonredundant predicted genes, respectively, with 49 million shared nonredundant predicted genes and 1138 shared species. We found that the rearing environment has a greater impact on microbial composition and function than the host's species effect. Through subsequent assembly, we obtained 5810 medium- and high-quality metagenome-assembled genomes (MAGs), out of which 2661 were yet unidentified species. Among these MAGs, we identified 91 bacterial taxa that specifically colonize the sheep gut, which encode polysaccharide utilization loci for glycan and mucin degradation. CONCLUSIONS: By shedding light on the co-symbiotic microbial communities in the gut of small ruminants, our study significantly enhances the understanding of their nutrient degradation and disease susceptibility. Our findings emphasize the vast potential of untapped resources in functional bacterial species within ruminants, further expanding our knowledge of how the ruminant gut microbiota recognizes and processes glycan and mucins. Video Abstract.


Subject(s)
Bacteria , Feces , Gastrointestinal Microbiome , Goats , Mucins , Polysaccharides , Animals , Goats/microbiology , Sheep/microbiology , Mucins/metabolism , Polysaccharides/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Feces/microbiology , Metagenome , Genome, Bacterial , Metagenomics/methods , Phylogeny , High-Throughput Nucleotide Sequencing
16.
Cancer Drug Resist ; 7: 16, 2024.
Article in English | MEDLINE | ID: mdl-38835342

ABSTRACT

Aim: Glioma accounts for 81% of all cancers of the nervous system cancers and presents one of the most drug-resistant malignancies, resulting in a relatively high mortality rate. Despite extensive efforts, the complete treatment options for glioma remain elusive. The effect of isocucurbitacin B (isocuB), a natural compound extracted from melon pedicels, on glioma has not been investigated. This study aims to investigate the inhibitory effect of isocuB on glioma and elucidate its underlying mechanisms, with the objective of developing it as a potential therapeutic agent for glioma. Methods: We used network pharmacology and bioinformatics analysis to predict potential targets and associated pathways of isocuB in glioma. Subsequently, the inhibitory effect of isocuB on glioma and its related mechanisms were assessed through Counting Kit-8 (CCK-8), wound healing, transwell, Western blot (WB), reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and other in vitro experiments, alongside tumor formation experiments in nude mice. Results: Based on this investigation, it suggested that isocuB might inhibit the growth of gliomas through the PI3K-AKT and MAPK pathways. Additionally, we proposed that isocuB may enhance glioma drug sensitivity to temozolomide (TMZ) via modulation of hsa-mir-1286a. The CCK-8 assay revealed that isocuB exhibited inhibitory effects on U251 and U87 proliferation and outperformed TMZ. Wound healing and transwell experiments showed that isocuB inhibited the invasion and migration of U251 cells by suppressing the activity of MMP-2/9, N-cadherin, and Vimentin. The TdT-mediated dUTP-biotin nick end labeling (TUNEL) and flow cytometry (FCM) assays revealed that isocuB induced cell apoptosis through inhibition of BCL-2. Subsequently, we conducted RT-qPCR and WB experiments, which revealed that PI3K/AKT and MAPK pathways might be involved in the mechanism of the inhibition isocuB on glioma. Additionally, isocuB promoted the sensitivity of glioma U251 to TMZ by inhibiting hsa-mir-1286a. Furthermore, we constructed TMZ-resistant U251 strains and demonstrated effective inhibition by isocuB against these resistant strains. Finally, we confirmed that isocuB can inhibit tumor growth in vivo through experiments on tumors in nude mice. Conclusion: IsocuB may protect against glioma by acting on the PI3K/AKT and MAPK pathways and promote the sensitivity of glioma U251 to TMZ by inhibiting hsa-mir-1286a.

17.
ACS Synth Biol ; 13(6): 1647-1662, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38860708

ABSTRACT

Monoterpenoids are an important subclass of terpenoids that play important roles in the energy, cosmetics, pharmaceuticals, and fragrances fields. With the development of biotechnology, microbial synthesis of monoterpenoids has received great attention. Yeasts such Saccharomyces cerevisiae and Yarrowia lipolytica are emerging as potential hosts for monoterpenoids production because of unique advantages including rapid growth cycles, mature gene editing tools, and clear genetic background. Recently, advancements in metabolic engineering and fermentation engineering have significantly enhanced the accumulation of monoterpenoids in cell factories. First, this review introduces the biosynthetic pathway of monoterpenoids and comprehensively summarizes the latest production strategies, which encompass enhancing precursor flux, modulating the expression of rate-limited enzymes, suppressing competitive pathway flux, mitigating cytotoxicity, optimizing substrate utilization, and refining the fermentation process. Subsequently, this review introduces four representative monoterpenoids. Finally, we outline the future prospects for efficient construction cell factories tailored for the production of monoterpenoids and other terpenoids.


Subject(s)
Metabolic Engineering , Monoterpenes , Saccharomyces cerevisiae , Yarrowia , Yarrowia/metabolism , Yarrowia/genetics , Metabolic Engineering/methods , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Monoterpenes/metabolism , Fermentation , Biosynthetic Pathways/genetics , Terpenes/metabolism , Gene Editing/methods
18.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38908013

ABSTRACT

Mulberry leaves (MLs) are an unconventional feed with fiber and various active ingredients, and are acknowledged as likely to regulate lipid metabolism, while the molecular mechanism remains undefined. Therefore, our objective was to define the role of MLs on the overall lipid metabolism. We conducted a feeding experiment of three groups on growing mutton sheep fed with dried mulberry leaves (DMLs), with fermented mulberry leaves (FMLs), or without MLs (as control). Analyses of transcriptome and widely target lipids demonstrated the addition of MLs triggered big perturbations in genes and metabolites related to glycerolipid, phospholipid, ether lipid, and sphingolipid metabolism. Additionally, the variations of the above lipids in the treatment of MLs possibly facilitate immunity enhancement of growing mutton sheep via the activation of complement and coagulation cascades. Furthermore, treatments with MLs could expedite proceedings of lipid degradation and fatty acid ß oxidation in mitochondria, thereby to achieve the effect of lipid reduction. Besides, added DMLs also fuel fatty acid ß-oxidation in peroxisomes and own much stronger lipolysis than added FMLs, possibly attributed to high fiber content in DMLs. These findings establish the novel lipid-lowering role and immune protection of MLs, which lays the foundation for the medicinal application of MLs.


Mulberry leaves (MLs) are rich in a wide variety of active ingredients and are also a kind of traditional Chinese medicine with the same origin as medicine and food. Previous studies have found that MLs may regulate lipid metabolism. But the exact mechanism remains unclear. Our study reveals that ML supplement not only alters lipid metabolism including glycerol phospholipid, ether lipid as well as sphingolipid metabolism, which may help to improve immunity but also promote fatty acid degradation as well as ß oxidation to achieve the effect of fat reduction.


Subject(s)
Animal Feed , Diet , Dietary Supplements , Fatty Acids , Lipid Metabolism , Morus , Plant Leaves , Animals , Lipid Metabolism/drug effects , Sheep , Fatty Acids/metabolism , Animal Feed/analysis , Diet/veterinary , Oxidation-Reduction
19.
Int Immunopharmacol ; 137: 112524, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38909494

ABSTRACT

Ischemic stroke (IS) is a serious threat to human health. The naturally derived small molecule (E)-5-(2-(quinolin-4-yl) ethenyl) benzene-1,3-diol (RV01) is a quinolinyl analog of resveratrol with great potential in the treatment of IS. The aim of this study was to investigate the potential mechanisms and targets for the protective effect of the RV01 on IS. The mouse middle cerebral artery occlusion and reperfusion (MCAO/R) and oxygen-glucose deprivation and reperfusion (OGD/R) models were employed to evaluate the effects of RV01 on ischemic injury and neuroprotection. RV01 was found to significantly increase the survival of SH-SY5Y cells and prevent OGD/R-induced apoptosis in SH-SY5Y cells. Furthermore, RV01 reduced oxidative stress and mitochondrial damage by promoting mitophagy in OGD/R-exposed SH-SY5Y cells. Knockdown of CK2α' abolished the RV01-mediated promotion on mitophagy and alleviation on mitochondrial damage as well as neuronal injury after OGD/R. These results were further confirmed by molecular docking, drug affinity responsive target stability and cellular thermal shift assay analysis. Importantly, in vivo study showed that treatment with the CK2α' inhibitor CX-4945 abolished the RV01-mediated alleviation of cerebral infarct volume, brain edema, cerebral blood flow and neurological deficit in MCAO/R mice. These data suggest that RV01 effectively reduces damage caused by acute ischemic stroke by promoting mitophagy through its interaction with CK2α'. These findings offer valuable insights into the underlying mechanisms through which RV01 exerts its therapeutic effects on IS.


Subject(s)
Casein Kinase II , Infarction, Middle Cerebral Artery , Ischemic Stroke , Mice, Inbred C57BL , Mitophagy , Neuroprotective Agents , Resveratrol , Animals , Mitophagy/drug effects , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Casein Kinase II/metabolism , Casein Kinase II/antagonists & inhibitors , Male , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Resveratrol/pharmacology , Resveratrol/therapeutic use , Mice , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Cell Line, Tumor , Apoptosis/drug effects , Oxidative Stress/drug effects , Disease Models, Animal , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Molecular Docking Simulation , Quinolines/pharmacology , Quinolines/therapeutic use , Mitochondria/drug effects , Mitochondria/metabolism , Naphthyridines , Phenazines
20.
J Nanobiotechnology ; 22(1): 287, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797862

ABSTRACT

Periodontitis is a prevalent chronic inflammatory disease, which leads to gradual degradation of alveolar bone. The challenges persist in achieving effective alveolar bone repair due to the unique bacterial microenvironment's impact on immune responses. This study explores a novel approach utilizing Metal-Organic Frameworks (MOFs) (comprising magnesium and gallic acid) for promoting bone regeneration in periodontitis, which focuses on the physiological roles of magnesium ions in bone repair and gallic acid's antioxidant and immunomodulatory properties. However, the dynamic oral environment and irregular periodontal pockets pose challenges for sustained drug delivery. A smart responsive hydrogel system, integrating Carboxymethyl Chitosan (CMCS), Dextran (DEX) and 4-formylphenylboronic acid (4-FPBA) was designed to address this problem. The injectable self-healing hydrogel forms a dual-crosslinked network, incorporating the MOF and rendering its on-demand release sensitive to reactive oxygen species (ROS) levels and pH levels of periodontitis. We seek to analyze the hydrogel's synergistic effects with MOFs in antibacterial functions, immunomodulation and promotion of bone regeneration in periodontitis. In vivo and in vitro experiment validated the system's efficacy in inhibiting inflammation-related genes and proteins expression to foster periodontal bone regeneration. This dynamic hydrogel system with MOFs, shows promise as a potential therapeutic avenue for addressing the challenges in bone regeneration in periodontitis.


Subject(s)
Bone Regeneration , Chitosan , Drug Delivery Systems , Hydrogels , Metal-Organic Frameworks , Periodontitis , Periodontitis/drug therapy , Hydrogels/chemistry , Bone Regeneration/drug effects , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Animals , Chitosan/chemistry , Chitosan/analogs & derivatives , Mice , Drug Delivery Systems/methods , Dextrans/chemistry , Male , Reactive Oxygen Species/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Delayed-Action Preparations/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL