Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5030, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866735

ABSTRACT

The intriguing biomineralization process in nature endows the mineralized biological materials with intricate microarchitected structures in a facile and orderly way, which provides an inspiration for processing ceramics. Here, we propose a simple and efficient manufacturing process to fabricate cellular ceramics in programmed cell-based 3D configurations, inspired by the biomineralization process of the diatom frustule. Our approach separates the ingredient synthesis from architecture building, enabling the programmable manufacturing of cellular ceramics with various cell sizes, geometries, densities, metastructures, and constituent elements. Our approach exploits surface tension to capture precursor solutions in the architected cellular lattices, allowing us to control the liquid geometry and manufacture cellular ceramics with high precision. We investigate the geometry parameters for the architected lattices assembled by unit cells and unit columns, both theoretically and experimentally, to guide the 3D fluid interface creation in arranged configurations. We manufacture a series of globally cellular and locally compact piezoceramics, obtaining an enhanced piezoelectric constant and a designed piezoelectric anisotropy. This bioinspired, surface tension-assisted approach has the potential to revolutionize the design and processing of multifarious ceramic materials for structural and functional applications in energy, electronics and biomedicine.

2.
ACS Appl Mater Interfaces ; 16(20): 25856-25868, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38726921

ABSTRACT

Artificial peroxisomes (AP) with enzyme-mimetic catalytic activity and recruitment ability have drawn a great deal of attention in fabricating protocell systems for scavenging reactive oxygen species (ROS), modulating the inflammatory microenvironment, and reprogramming macrophages, which is of great potential in treating inflammatory diseases such as rheumatoid arthritis (RA). Herein, a macrophage membrane-cloaked Cu-coordinated polyphthalocyanine-based AP (CuAP) is prepared with a macrocyclic conjugated polymerized network and embedded Cu-single atomic active center, which mimics the catalytic activity and coordination environment of natural superoxide dismutase and catalase, possesses the inflammatory recruitment ability of macrophages, and performs photoacoustic imaging (PAI)-guided treatment. The results of both in vitro cellular and in vivo animal experiments demonstrated that the CuAP under ultrasound and microbubbles could efficiently scavenge excess ROS in cells and tissues, modulate microenvironmental inflammatory cytokines such as interleukin-1ß, tumor necrosis factor-α, and arginase-1, and reprogram macrophages by polarization of M1 (proinflammatory phenotype) to M2 (anti-inflammatory phenotype). We believe this study offers a proof of concept for engineering multifaceted AP and a promising approach for a PAI-guided treatment platform for RA.


Subject(s)
Arthritis, Rheumatoid , Macrophages , Photoacoustic Techniques , Animals , Macrophages/metabolism , Mice , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/therapy , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Humans , Copper/chemistry , Copper/pharmacology
3.
Sci Robot ; 9(89): eadi8912, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598611

ABSTRACT

Nature abounds with examples of superior mobility through the fusion of aerial and ground movement. Drawing inspiration from such multimodal locomotion, we introduce a high-performance hybrid hopping and flying robot. The proposed robot seamlessly integrates a nano quadcopter with a passive telescopic leg, overcoming limitations of previous jumping mechanisms that rely on stance phase leg actuation. Based on the identified dynamics, a thrust-based control method and detachable active aerodynamic surfaces were devised for the robot to perform continuous jumps with and without position feedback. This unique design and actuation strategy enable tuning of jump height and reduced stance phase duration, leading to agile hopping locomotion. The robot recorded an average vertical hopping speed of 2.38 meters per second at a jump height of 1.63 meters. By harnessing multimodal locomotion, the robot is capable of intermittent midflight jumps that result in substantial instantaneous accelerations and rapid changes in flight direction, offering enhanced agility and versatility in complex environments. The passive leg design holds potential for direct integration with conventional rotorcraft, unlocking seamless hybrid hopping and flying locomotion.

4.
Mater Horiz ; 11(8): 2041-2042, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38506055

ABSTRACT

Correction for 'Exploring the Mpemba effect: a universal ice pressing enables porous ceramics' by Xiaodan Yang et al., Mater. Horiz., 2024, DOI: https://doi.org/10.1039/d3mh01869e.

5.
Mater Horiz ; 11(8): 1899-1907, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38314804

ABSTRACT

Piezoceramics with global porosity and local compaction are highly desired to exploit the combination of mechanical and electrical properties. However, achieving such a functional combination is challenging because of the lack of techniques for applying uniform pressure inside porous ceramic green parts. Nature provides many examples of generating strong forces inside the macro and micro channels via the state transformation of water. Inspired by these phenomena, we present a technique of "ice and fire", that is, water freezing (ice pressing) and high-temperature sintering (fire), to produce ideal porous piezoceramics. We introduce a new compaction method called the "ice pressing method", which manipulates liquid phase transition for compaction. This method has several advantages, including uniform pressure distribution, a wide pressure range, high effectiveness, and selective freezing. It can generate an ultrahigh pressure of up to 180 MPa on the piezoceramic green skeletons in minutes while retaining their functional pore structures. By exploiting the Mpemba phenomenon, we further accelerate the compaction procedure by 11%. The first ice-pressed and second fire-consolidated lead zirconate titanate (PZT) ceramics are highly densified and exhibit an outstanding piezoelectric response (d33 = 531 pC N-1), comparable to conventional pressed bulk counterparts and 10-20 times higher than those of unpressed materials. The novel ice pressing method breaks the limitation of lacking a compaction technique for porous ceramics. The versatile and effective ice pressing method is a green and low-cost route promoting applications in sensors, acoustics, water filtration, catalyst substrates, and energy harvesting.

6.
Adv Mater ; 36(3): e2308502, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37862005

ABSTRACT

The demand for economical and efficient data processing has led to a surge of interest in neuromorphic computing based on emerging two-dimensional (2D) materials in recent years. As a rising van der Waals (vdW) p-type Weyl semiconductor with many intriguing properties, tellurium (Te) has been widely used in advanced electronics/optoelectronics. However, its application in floating gate (FG) memory devices for information processing has never been explored. Herein, an electronic/optoelectronic FG memory device enabled by Te-based 2D vdW heterostructure for multimodal reservoir computing (RC) is reported. When subjected to intense electrical/optical stimuli, the device exhibits impressive nonvolatile electronic memory behaviors including ≈108 extinction ratio, ≈100 ns switching speed, >4000 cycles, >4000-s retention stability, and nonvolatile multibit optoelectronic programmable characteristics. When the input stimuli weaken, the nonvolatile memory degrades into volatile memory. Leveraging these rich nonlinear dynamics, a multimodal RC system with high recognition accuracy of 90.77% for event-type multimodal handwritten digit-recognition is demonstrated.

7.
Nat Commun ; 14(1): 7723, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001116

ABSTRACT

The rapid-developing soft robots and wearable devices require flexible conductive materials to maintain electric functions over a large range of deformations. Considerable efforts are made to develop stretchable conductive materials; little attention is paid to the frequent failures of integrated circuits caused by the interface mismatch of soft substrates and rigid silicon-based microelectronics. Here, we present a stretchable solder with good weldability that can strongly bond with electronic components, benefiting from the hierarchical assemblies of liquid metal particles, small-molecule modulators, and non-covalently crosslinked polymer matrix. Our self-solder shows high conductivity (>2×105 S m-1), extreme stretchability (~1000%, and >600% with chip-integrated), and high toughness (~20 MJ m-3). Additionally, the dynamic interactions within our solder's surface and interior enable a range of unique features, including ease of integration, component substitution, and circuit recyclability. With all these features, we demonstrated an application as thermoforming technology for three-dimensional (3D) conformable electronics, showing potential in reducing the complexity of microchip interfacing, as well as scalable fabrication of chip-integrated stretchable circuits and 3D electronics.

8.
Sci Adv ; 9(48): eadi6633, 2023 12.
Article in English | MEDLINE | ID: mdl-38019910

ABSTRACT

Sensor matrices are essential in various fields including robotics, aviation, health care, and industrial machinery. However, conventional sensor matrix systems often face challenges such as limited reconfigurability, complex wiring, and poor robustness. To address these issues, we introduce a one-wire reconfigurable sensor matrix that is capable of conforming to three-dimensional curved surfaces and resistant to cross-talk and fractures. Our frequency-located technology, inspired by the auditory tonotopy, reduces the number of output wires from row × column to a single wire by superimposing the signals of all sensor units with unique frequency identities. The sensor units are connected through a shared redundant network, giving great freedom for reconfiguration and facilitating quick repairs. The one-wire frequency-located technology is demonstrated in two applications-a pressure sensor matrix and a pressure-temperature multimodal sensor matrix. In addition, we also show its potential in monitoring strain distribution in an airplane wing, emphasizing its advantages in simplified wiring and improved robustness.


Subject(s)
Aircraft , Robotics
9.
Nat Commun ; 14(1): 6488, 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37838731

ABSTRACT

Nanoparticles, films, and patterns are three critical piezoelectric elements with widespread applications in sensing, actuations, catalysis and energy harvesting. High productivity and large-area fabrication of these functional elements is still a significant challenge, let alone the control of their structures and feature sizes on various substrates. Here, we report a fast and versatile electrostatic disc microprinting, enabled by triggering the instability of liquid-air interface of inks. The printing process allows for fabricating lead zirconate titanate free-standing nanoparticles, films, and micro-patterns. The as-fabricated lead zirconate titanate films exhibit a high piezoelectric strain constant of 560 pm V-1, one to two times higher than the state-of-the-art. The multiplexed tip jetting mode and the large layer-by-layer depositing area can translate into depositing speeds up to 109 µm3 s-1, one order of magnitude faster than current techniques. Printing diversified functional materials, ranging from suspensions of dielectric ceramic and metal nanoparticles, to insulating polymers, to solutions of biological molecules, demonstrates the great potential of the electrostatic disc microprinting in electronics, biotechnology and beyond.

10.
Nat Commun ; 14(1): 4094, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37433769

ABSTRACT

Piezoelectric biomaterials have attracted great attention owing to the recent recognition of the impact of piezoelectricity on biological systems and their potential applications in implantable sensors, actuators, and energy harvesters. However, their practical use is hindered by the weak piezoelectric effect caused by the random polarization of biomaterials and the challenges of large-scale alignment of domains. Here, we present an active self-assembly strategy to tailor piezoelectric biomaterial thin films. The nanoconfinement-induced homogeneous nucleation overcomes the interfacial dependency and allows the electric field applied in-situ to align crystal grains across the entire film. The ß-glycine films exhibit an enhanced piezoelectric strain coefficient of 11.2 pm V-1 and an exceptional piezoelectric voltage coefficient of 252 × 10-3 Vm N-1. Of particular significance is that the nanoconfinement effect greatly improves the thermostability before melting (192 °C). This finding offers a generally applicable strategy for constructing high-performance large-sized piezoelectric bio-organic materials for biological and medical microdevices.


Subject(s)
Biocompatible Materials , Fabaceae , Drug Delivery Systems , Electricity , Glycine
11.
ACS Appl Mater Interfaces ; 15(29): 35196-35205, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37459597

ABSTRACT

Although the crystal phase of two-dimensional (2D) transition metal dichalcogenides (TMDs) has been proven to play an essential role in fabricating high-performance electronic devices in the past decade, its effect on the performance of 2D material-based flash memory devices still remains unclear. Here, we report the exploration of the effect of MoTe2 in different phases as the charge-trapping layer on the performance of 2D van der Waals (vdW) heterostructure-based flash memory devices, where a metallic 1T'-MoTe2 or semiconducting 2H-MoTe2 nanoflake is used as the floating gate. By conducting comprehensive measurements on the two kinds of vdW heterostructure-based devices, the memory device based on MoS2/h-BN/1T'-MoTe2 presents much better performance, including a larger memory window, faster switching speed (100 ns), and higher extinction ratio (107), than that of the device based on the MoS2/h-BN/2H-MoTe2 heterostructure. Moreover, the device based on the MoS2/h-BN/1T'-MoTe2 heterostructure also shows a long cycle (>1200 cycles) and retention (>3000 s) stability. Our study clearly demonstrates that the crystal phase of 2D TMDs has a significant impact on the performance of nonvolatile flash memory devices based on 2D vdW heterostructures, which paves the way for the fabrication of future high-performance memory devices based on 2D materials.

12.
Nanomicro Lett ; 15(1): 131, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37209322

ABSTRACT

Most electronics such as sensors, actuators and energy harvesters need piezoceramic films to interconvert mechanical and electrical energy. Transferring the ceramic films from their growth substrates for assembling electronic devices commonly requires chemical or physical etching, which comes at the sacrifice of the substrate materials, film cracks, and environmental contamination. Here, we introduce a van der Waals stripping method to fabricate large-area and freestanding piezoceramic thin films in a simple, green, and cost-effective manner. The introduction of the quasi van der Waals epitaxial platinum layer enables the capillary force of water to drive the separation process of the film and substrate interface. The fabricated lead-free film, [Formula: see text] (BCZT), shows a high piezoelectric coefficient d33 = 209 ± 10 pm V-1 and outstanding flexibility of maximum strain 2%. The freestanding feature enables a wide application scenario, including micro energy harvesting, and covid-19 spike protein detection. We further conduct a life cycle analysis and quantify the low energy consumption and low pollution of the water-based stripping film method.

13.
ACS Appl Mater Interfaces ; 15(15): 19374-19383, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37036803

ABSTRACT

The human forearm is one of the most densely distributed parts of the human body, with the most irregular spatial distribution of muscles. A number of specific forearm muscles control hand motions. Acquiring high-fidelity sEMG signals from human forearm muscles is vital for human-machine interface (HMI) applications based on gesture recognition. Currently, the most commonly used commercial electrodes for detecting sEMG or other electrophysiological signals have a rigid nature without stretchability and cannot maintain conformal contact with the human skin during deformation, and the adhesive hydrogel used in them to reduce skin-electrode impedance may shrink and cause skin inflammation after long-term use. Therefore, developing elastic electrodes with stretchability and biocompatibility for sEMG signal recording is essential for developing HMI. Here, we fabricated a nanocomposite hybrid on-skin electrode by infiltrating silver nanowires (AgNWs), a one-dimensional (1D) nano metal material with conductivity, into polydimethylsiloxane (PDMS), a silicone elastomer with a similar Young's modulus to that of the human skin. The AgNW on-skin electrode has a thickness of 300 µm and low sheet resistance of 0.481 ± 0.014 Ω/sq and can withstand the mechanical strain of up to 54% and maintain a sheet resistance lower than 1 Ω/sq after 1000 dynamic strain cycles. The AgNW on-skin electrode can record high signal-to-noise ratio (SNR) sEMG signals from forearm muscles and can reflect various force levels of muscles by sEMG signals. Besides, four typical hand gestures were recognized by the multichannel AgNW on-skin electrodes with a recognition accuracy of 92.3% using machine learning method. The AgNW on-skin electrode proposed in this study has great potential and promise in various HMI applications that employ sEMG signals as control signals.


Subject(s)
Gestures , Nanowires , Humans , Electromyography , Silver , Muscle, Skeletal/physiology , Electrodes , Machine Learning
14.
Adv Mater ; 35(20): e2211598, 2023 May.
Article in English | MEDLINE | ID: mdl-36857506

ABSTRACT

Although 2D materials are widely explored for data storage and neuromorphic computing, the construction of 2D material-based memory devices with optoelectronic responsivity in the short-wave infrared (SWIR) region for in-sensor reservoir computing (RC) at the optical communication band still remains a big challenge. In this work, an electronic/optoelectronic memory device enabled by tellurium-based 2D van der Waals (vdW) heterostructure is reported, where the ferroelectric CuInP2 S6 and tellurium channel endow this device with both the long-term potentiation/depression by voltage pulses and short-term potentiation by 1550 nm laser pulses (a typical wavelength in the conventional fiber optical communication band). Leveraging the rich dynamics, a fully memristive in-sensor RC system that can simultaneously sense, decode, and learn messages transmitted by optical fibers is demonstrated. The reported 2D vdW heterostructure-based memory featuring both the long-term and short-term memory behaviors using electrical and optical pulses in SWIR region has not only complemented the wide spectrum of applications of 2D materials family in electronics/optoelectronics but also paves the way for future smart signal processing systems at the edge.

15.
Adv Mater ; 35(12): e2210854, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36621966

ABSTRACT

Atomically 2D layered ferroelectric semiconductors, in which the polarization switching process occurs within the channel material itself, offer a new material platform that can drive electronic components toward structural simplification and high-density integration. Here, a room-temperature 2D layered ferroelectric semiconductor, bismuth oxychalcogenides (Bi2 O2 Se), is investigated with a thickness down to 7.3 nm (≈12 layers) and piezoelectric coefficient (d33 ) of 4.4 ± 0.1 pm V-1 . The random orientations and electrically dependent polarization of the dipoles in Bi2 O2 Se are separately uncovered owing to the structural symmetry-breaking at room temperature. Specifically, the interplay between ferroelectricity and semiconducting characteristics of Bi2 O2 Se is explored on device-level operation, revealing the hysteresis behavior and memory window (MW) formation. Leveraging the ferroelectric polarization originating from Bi2 O2 Se, the fabricated device exhibits "smart" photoresponse tunability and excellent electronic characteristics, e.g., a high on/off current ratio > 104 and a large MW to the sweeping range of 47% at VGS  = ±5 V. These results demonstrate the synergistic combination of ferroelectricity with semiconducting characteristics in Bi2 O2 Se, laying the foundation for integrating sensing, logic, and memory functions into a single material system that can overcome the bottlenecks in von Neumann architecture.

16.
Nat Commun ; 13(1): 7835, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36539426

ABSTRACT

Electrostatic adsorption is an important complement to the mechanical filtration for high-efficiency air filtering. However, the electrostatic charge decays with time, especially in humid conditions. In this work, a self-charging air filter is presented to capture airborne particles in an efficient and long-lasting manner without the need of external power sources. Leveraging the triboelectric effect between the electrospun poly(vinylidene fluoride) nanofiber film and nylon fabric, the self-charging air filter-based mask excited by breathing can continuously replenish electrostatic charges. As a result, its effective lifespan is up to 60 hours (including 30 hours of wearing), with a minimum filtration efficiency of 95.8% for 0.3-µm particles. The filtration efficiency and lifespan are significantly higher than those of a commercial surgical mask. Furthermore, we uncover the quantitative relation between filtration efficiency and surface electrostatic potential. This work provides an effective strategy to significantly prolong the electrostatic adsorption efficacy for high-performance air-filtering masks.


Subject(s)
Air Filters , Masks , Static Electricity , Filtration , Textiles
17.
Innovation (Camb) ; 3(5): 100301, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36051817

ABSTRACT

Extensive work have been done to harvest untapped water energy in formats of raindrops, flows, waves, and others. However, attaining stable and efficient electricity generation from these low-frequency water kinetic energies at both individual device and large-scale system level remains challenging, partially owing to the difficulty in designing a unit that possesses stable liquid and charge transfer properties, and also can be seamlessly integrated to achieve preferential collective performances without the introduction of tortuous wiring and redundant node connection with external circuit. Here, we report the design of water electricity generators featuring the combination of lubricant layer and transistor-like electrode architecture that endows enhanced electrical performances in different working environments. Such a design is scalable in manufacturing and suitable for facile integration, characterized by significant reduction in the numbers of wiring and nodes and elimination of complex interfacing problems, and represents a significant step toward large-scale, real-life applications.

18.
Sci Adv ; 8(36): eabp8738, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36083898

ABSTRACT

The human somatosensory system is capable of extracting features with millimeter-scale spatial resolution and submillisecond temporal precision. Current technologies that can render tactile stimuli with such high definition are neither portable nor easily accessible. Here, we present a wearable electrotactile rendering system that elicits tactile stimuli with both high spatial resolution (76 dots/cm2) and rapid refresh rates (4 kHz), because of a previously unexplored current-steering super-resolution stimulation technique. For user safety, we present a high-frequency modulation method to reduce the stimulation voltage to as low as 13 V. The utility of our high spatiotemporal tactile rendering system is highlighted in applications such as braille display, virtual reality shopping, and digital virtual experiences. Furthermore, we integrate our setup with tactile sensors to transmit fine tactile features through thick gloves used by firefighters, allowing tiny objects to be localized based on tactile sensing alone.

19.
Adv Sci (Weinh) ; 9(31): e2203565, 2022 11.
Article in English | MEDLINE | ID: mdl-35999427

ABSTRACT

Wearing masks has been a recommended protective measure due to the risks of coronavirus disease 2019 (COVID-19) even in its coming endemic phase. Therefore, deploying a "smart mask" to monitor human physiological signals is highly beneficial for personal and public health. This work presents a smart mask integrating an ultrathin nanocomposite sponge structure-based soundwave sensor (≈400 µm), which allows the high sensitivity in a wide-bandwidth dynamic pressure range, i.e., capable of detecting various respiratory sounds of breathing, speaking, and coughing. Thirty-one subjects test the smart mask in recording their respiratory activities. Machine/deep learning methods, i.e., support vector machine and convolutional neural networks, are used to recognize these activities, which show average macro-recalls of ≈95% in both individual and generalized models. With rich high-frequency (≈4000 Hz) information recorded, the two-/tri-phase coughs can be mapped while speaking words can be identified, demonstrating that the smart mask can be applicable as a daily wearable Internet of Things (IoT) device for respiratory disease identification, voice interaction tool, etc. in the future. This work bridges the technological gap between ultra-lightweight but high-frequency response sensor material fabrication, signal transduction and processing, and machining/deep learning to demonstrate a wearable device for potential applications in continual health monitoring in daily life.


Subject(s)
COVID-19 , Nanocomposites , Wearable Electronic Devices , Humans , Monitoring, Physiologic , Machine Learning
20.
Sci Adv ; 8(25): eabo7698, 2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35749507

ABSTRACT

Bubbles have been extensively explored as energy carriers ranging from boiling heat transfer and targeted cancer diagnosis. Yet, despite notable progress, the kinetic energy inherent in small bubbles remains difficult to harvest. Here, we develop a transistor-inspired bubble energy generator for directly and efficiently harvesting energy from small bubbles. The key points lie in designing dielectric surface with high-density electric charges and tailored surface wettability as well as transistor-inspired electrode configuration. The synergy between these features facilitates fast bubble spreading and subsequent departure, transforms the initial liquid/solid interface into gas/solid interface under the gating of bubble, and yields an output at least one order of magnitude higher than existing studies. We also show that the output can be further enhanced through rapid bubble collapse at the air/liquid interface and multiple bubbles synchronization. We envision that our design will pave the way for small bubble-based energy harvesting in liquid media.

SELECTION OF CITATIONS
SEARCH DETAIL
...