Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 283
Filter
1.
Infect Dis Poverty ; 13(1): 56, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090685

ABSTRACT

BACKGROUND: Non-pharmaceutical measures and travel restrictions have halted the spread of coronavirus disease 2019 (COVID-19) and influenza. Nonetheless, with COVID-19 restrictions lifted, an unanticipated outbreak of the influenza B/Victoria virus in late 2021 and another influenza H3N2 outbreak in mid-2022 occurred in Guangdong, southern China. The mechanism underlying this phenomenon remains unknown. To better prepare for potential influenza outbreaks during COVID-19 pandemic, we studied the molecular epidemiology and phylogenetics of influenza A(H3N2) and B/Victoria that circulated during the COVID-19 pandemic in this region. METHODS: From January 1, 2018 to December 31, 2022, we collected throat swabs from 173,401 patients in Guangdong who had acute respiratory tract infections. Influenza viruses in the samples were tested using reverse transcription-polymerase chain reaction, followed by subtype identification and sequencing of hemagglutinin (HA) and neuraminidase (NA) genes. Phylogenetic and genetic diversity analyses were performed on both genes from 403 samples. A rigorous molecular clock was aligned with the phylogenetic tree to measure the rate of viral evolution and the root-to-tip distance within strains in different years was assessed using regression curve models to determine the correlation. RESULTS: During the early period of COVID-19 control, various influenza viruses were nearly undetectable in respiratory specimens. When control measures were relaxed in January 2020, the influenza infection rate peaked at 4.94% (39/789) in December 2021, with the influenza B/Victoria accounting for 87.18% (34/39) of the total influenza cases. Six months later, the influenza infection rate again increased and peaked at 11.34% (255/2248) in June 2022; influenza A/H3N2 accounted for 94.51% (241/255) of the total influenza cases in autumn 2022. The diverse geographic distribution of HA genes of B/Victoria and A/H3N2 had drastically reduced, and most strains originated from China. The rate of B/Victoria HA evolution (3.11 × 10-3, P < 0.05) was 1.7 times faster than before the COVID-19 outbreak (1.80 × 10-3, P < 0.05). Likewise, the H3N2 HA gene's evolution rate was 7.96 × 10-3 (P < 0.05), which is 2.1 times faster than the strains' pre-COVID-19 evolution rate (3.81 × 10-3, P < 0.05). CONCLUSIONS: Despite the extraordinarily low detection rate of influenza infection, concealed influenza transmission may occur between individuals during strict COVID-19 control. This ultimately leads to the accumulation of viral mutations and accelerated evolution of H3N2 and B/Victoria viruses. Monitoring the evolution of influenza may provide insights and alerts regarding potential epidemics in the future.


Subject(s)
COVID-19 , Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza, Human , Molecular Epidemiology , Phylogeny , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/virology , COVID-19/transmission , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , China/epidemiology , Influenza, Human/epidemiology , Influenza, Human/virology , Influenza B virus/genetics , Influenza B virus/isolation & purification , Influenza B virus/classification , SARS-CoV-2/genetics , Adult , Middle Aged , Male , Female , Pandemics , Young Adult , Aged , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Adolescent , Neuraminidase/genetics , Child , Child, Preschool
2.
Front Cell Infect Microbiol ; 14: 1399782, 2024.
Article in English | MEDLINE | ID: mdl-39027137

ABSTRACT

Background: Accurate detection of influenza virus in clinical samples requires correct execution of all aspects of the detection test. If the viral load in a sample is below the detection limit, a false negative result may be obtained. To overcome this issue, we developed a modified transport medium (MTM) for clinical sample transportation to increase viral detection sensitivity. Method: We first validated the MTM using laboratory-stocked influenza A viruses (IAVs: H1N1, H3N2, H7N3, H9N2) and influenza B viruses (IBVs: Yamagata, Victoria). We also tested clinical samples. A total of 110 patients were enrolled and a pair of samples were collected to determine the sensitivity of real-time polymerase chain reaction (RT-PCR) following MTM treatment. Result: After 24 h culturing in MTM, the viral loads were increased, represented by a 10-fold increase in detection sensitivity for H1N1, H9N2, and IBVs, a 100-fold increase for H3N2, and a 1,000-fold increase for H7N3. We further tested the effects of MTM on 19 IAV and 11 IBV stored clinical samples. The RT-PCR results showed that the positive detection rate of IAV samples increased from 63.16% (12/19) without MTM culturing to 78.95% (15/19) after 48 h culturing, and finally 89.47% (17/19) after 72 h culturing. MTM treatment of IBV clinical samples also increased the positive detection rate from 36.36% (4/11, 0 h) to 63.64% (7/11, 48 h) to 72.73% (8/11, 72 h). For clinical samples detected by RT-PCR, MTM outperformed other transport mediums in terms of viral detection rate (11.81% increase, P=0.007). Conclusion: Our results demonstrated that the use of MTM for clinical applications can increase detection sensitivity, thus facilitating the accurate diagnosis of influenza infection.


Subject(s)
Influenza A virus , Influenza B virus , Influenza, Human , Sensitivity and Specificity , Specimen Handling , Viral Load , Humans , Influenza, Human/diagnosis , Influenza, Human/virology , Influenza A virus/isolation & purification , Influenza A virus/genetics , Influenza B virus/isolation & purification , Influenza B virus/genetics , Specimen Handling/methods , Real-Time Polymerase Chain Reaction/methods , Culture Media/chemistry , Middle Aged , Female , Adult , Male
3.
Bioact Mater ; 39: 630-642, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38883312

ABSTRACT

The precise combination of conflicting biological properties through sophisticated structural and functional design to meet all the requirements of anastomotic healing is of great demand but remains challenging. Here, we develop a smart responsive anastomotic staple (Ti-OH-MC) by integrating porous titanium anastomotic staple with multifunctional polytannic acid/tannic acid coating. This design achieves dynamic sequential regulation of antibacterial, anti-inflammatory, and cell proliferation properties. During the inflammatory phase of the anastomotic stoma, our Ti-OH-MC can release tannic acid to provide antibacterial and anti-inflammatory properties, together with immune microenvironment regulation function. At the same time, as the healing progresses, the multifunctional coating gradually falls off to expose the porous structure of the titanium anastomotic staple, which promotes cell adhesion and proliferation during the later proliferative and remodeling phases. As a result, our Ti-OH-MC exceeds the properties of clinically used titanium anastomotic staple, and can effectively promote the healing. The staple's preparation strategy is simple and biocompatible, promising for industrialisation and clinical application. This work provides an effective anastomotic staple for anastomotic stoma healing and serve as a reference for the functional design and preparation of other types of titanium-based tissue repair materials.

4.
China CDC Wkly ; 6(21): 469-477, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38854464

ABSTRACT

Introduction: The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demonstrates increased transmissibility compared to earlier strains, contributing to a significant number of fatalities in Hong Kong Special Administrative Region (HKSAR), China. Adequate medical resources and medications are essential in mitigating these deaths. This study evaluates the effects of supplementary resources from the Chinese mainland during the fifth wave of the pandemic in HKSAR. Methods: Vector autoregression (VAR) was employed to analyze data from the Oxford coronavirus disease 2019 (COVID-19) Government Response Tracker to assess the effectiveness of control measures during five waves of the pandemic in HKSAR. Additionally, a transmission dynamics model was created to investigate the influence of supplementary medical resources from the Chinese mainland and oral medications on mortality. Results: In the initial four waves, workplace closures, restrictions on public events, international travel bans, and shielding the elderly significantly influenced pandemic management. Contrarily, during the fifth wave, these measures showed no notable effects. When comparing a situation without extra medical resources or COVID-19 oral medication, there was a 17.7% decrease in COVID-19 fatalities with mainland medical resources and an additional 10.2% reduction with oral medications. Together, they contributed to a 26.6% decline in fatalities. Discussion: With the rapid spread of the virus, regional reallocation of medical resources may reduce mortality even when the local healthcare system is overstretched.

5.
China CDC Wkly ; 6(21): 478-486, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38854463

ABSTRACT

Background: This study provides a detailed analysis of the daily fluctuations in coronavirus disease 2019 (COVID-19) case numbers in London from January 31, 2020 to February 24, 2022. The primary objective was to enhance understanding of the interactions among government pandemic responses, viral mutations, and the subsequent changes in COVID-19 case incidences. Methods: We employed the adaptive Fourier decomposition (AFD) method to analyze diurnal changes and further segmented the AFD into novel multi-component groups consisting of one to three elements. These restructured components were rigorously evaluated using Pearson correlation, and their effectiveness was compared with other signal analysis techniques. This study introduced a novel approach to differentiate individual components across various time-frequency scales using basis decomposition methods. Results: Analysis of London's daily COVID-19 data using AFD revealed a strong correlation between the "stay at home" directive and high-frequency components during the first epidemic wave. This indicates the need for sustained implementation of vaccination policies to maintain their effectiveness. Discussion: The AFD component method provides a comprehensive analysis of the immediate and prolonged impact of governmental policies on the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This robust tool has proven invaluable for analyzing COVID-19 pandemic data, offering critical insights that guide the formulation of future preventive and public health strategies.

6.
Front Cell Infect Microbiol ; 14: 1412478, 2024.
Article in English | MEDLINE | ID: mdl-38903942

ABSTRACT

In the post-COVID-19 era, the co-circulation of respiratory viruses, including influenza, SARS-CoV-2, and respiratory syncytial virus (RSV), continues to have significant health impacts and presents ongoing public health challenges. Vaccination remains the most effective measure for preventing viral infections. To address the concurrent circulation of these respiratory viruses, extensive efforts have been dedicated to the development of combined vaccines. These vaccines utilize a range of platforms, including mRNA-based vaccines, viral vector vaccines, and subunit vaccines, providing opportunities in addressing multiple pathogens at once. This review delves into the major advancements in the field of combined vaccine research, underscoring the strategic use of various platforms to tackle the simultaneous circulation of respiratory viruses effectively.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , SARS-CoV-2 , Humans , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/immunology , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19 Vaccines/immunology , Vaccines, Combined/immunology , Vaccines, Combined/administration & dosage , Vaccine Development , Viral Vaccines/immunology , Influenza, Human/prevention & control , Influenza, Human/immunology , Respiratory Syncytial Virus Vaccines/immunology , Vaccination , Animals
7.
J Dairy Sci ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876225

ABSTRACT

Mitochondrial dysfunction has been reported to occur in the mammary gland of dairy cows suffering from ketosis. Prohibitin 2 (PHB2) plays a crucial role in regulating mitophagy, which clears impaired mitochondria to maintain normal mitochondrial function. Therefore, the current study aimed to investigate how PHB2 mediates mitophagy, thereby influencing mitochondrial function in the bovine mammary epithelial cell MAC-T. First, mammary gland tissue and blood samples were collected from healthy cows (control; n = 15, BHB <0.6 mM) and cows with clinical ketosis (CK; n = 15, BHB >3.0 mM). Compared with the control group, the CK group exhibited lower dry matter intake (DMI), milk production, milk protein, milk lactose, and serum glucose. In contrast, milk fat, serum nonesterified fatty acids (NEFA) and BHB were greater in CK group. The protein abundance of PHB2, peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α), mitofusin 2 (MFN2) in whole cell lysates (WCL), as well as PHB2, sequestosome-1 (SQSTM1, also called p62), microtubule-associated protein 1 light chain 3-II (LC3-II), and ubiquitinated proteins in mitochondrial fraction were significantly lower in the CK group. ATP content of mammary gland tissue in CK group was lower than that of healthy cows. Second, MAC-T were cultured and treated with NEFA (0, 0.3, 0.6, 1.2 mM). MAC-T treated with 1.2 mM NEFA displayed decreased protein abundance of PHB2, PGC-1α, MFN2 in WCL, as well as protein abundance of PHB2, p62, LC3-II, and ubiquitinated proteins in mitochondrial fraction. The content of ATP and JC-1 aggregates in 1.2 mM NEFA group were lower than in the 0 mM NEFA group. Additionally, 1.2 mM NEFA disrupted the fusion between mitochondria and lysosomes. MAC-T were then pretreated with 100 nM rapamycin, followed by treatment with or without NEFA. Rapamycin alleviated impaired mitophagy and mitochondria dysfunction induced by 1.2 mM NEFA. Third, MAC-T were transfected with small interfering RNA to silence PHB2 or a plasmid for overexpression of PHB2, followed by treatment with or without NEFA. The silencing of PHB2 aggravated 1.2 mM NEFA induced impaired mitophagy and mitochondrial dysfunction, whereas the overexpression of PHB2 alleviated these effects. Overall, this study provides evidence that PHB2, in regulation of mitophagy, is a mechanism for bovine mammary epithelial cells to counteract NEFA-induced mitochondrial dysfunction.

8.
Org Lett ; 26(27): 5811-5816, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38940397

ABSTRACT

A practical strategy for the construction of diverse phosphonyl and thiofunctionalized sulfoxonium ylides via controllable monofunctionalization of hybrid I(III)/S(VI) ylides is presented. This process allows efficient P-H insertion of I(III)/S(VI) ylides under Cu catalysis, enabling the synthesis of phosphonyl sulfoxonium ylides, whereas reaction with sulfur-containing reagents including AgSCF3, KSC(S)OR, and KSCN under mild conditions resulted in α-trifluoromethylthiolation, dithiocarbanation, and thiocyanation of sulfoxonium ylides accordingly. Of note, wide substrate compatibility (108 examples), excellent efficiency (up to 99% yield), gram-scale experiments, and various product derivatizations highlight the synthetic utility of this protocol.

9.
Fundam Res ; 4(3): 430-441, 2024 May.
Article in English | MEDLINE | ID: mdl-38933199

ABSTRACT

Corona virus disease 2019 (COVID-19) has exerted a profound adverse impact on human health. Studies have demonstrated that aerosol transmission is one of the major transmission routes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pathogenic microorganisms such as SARS-CoV-2 can survive in the air and cause widespread infection among people. Early monitoring of pathogenic microorganism transmission in the atmosphere and accurate epidemic prediction are the frontier guarantee for preventing large-scale epidemic outbreaks. Monitoring of pathogenic microorganisms in the air, especially in densely populated areas, may raise the possibility to detect viruses before people are widely infected and contain the epidemic at an earlier stage. The multi-scale coupled accurate epidemic prediction system can provide support for governments to analyze the epidemic situation, allocate health resources, and formulate epidemic response policies. This review first elaborates on the effects of the atmospheric environment on pathogenic microorganism transmission, which lays a theoretical foundation for the monitoring and prediction of epidemic development. Secondly, the monitoring technique development and the necessity of monitoring pathogenic microorganisms in the atmosphere are summarized and emphasized. Subsequently, this review introduces the major epidemic prediction methods and highlights the significance to realize a multi-scale coupled epidemic prediction system by strengthening the multidisciplinary cooperation of epidemiology, atmospheric sciences, environmental sciences, sociology, demography, etc. By summarizing the achievements and challenges in monitoring and prediction of pathogenic microorganism transmission in the atmosphere, this review proposes suggestions for epidemic response, namely, the establishment of an integrated monitoring and prediction platform for pathogenic microorganism transmission in the atmosphere.

10.
Phytomedicine ; 129: 155680, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38728923

ABSTRACT

OBJECTIVE: Influenza, a viral respiratory illness, leads to seasonal epidemics and occasional pandemics. Given the rising resistance and adverse reactions associated with anti-influenza drugs, Traditional Chinese Medicine (TCM) emerges as a promising approach to counteract the influenza virus. Specifically, Haoqin Qingdan Tang (HQQDT), a TCM formula, has been employed as an adjuvant treatment for influenza in China. However, the active compounds and underlying mechanisms of HQQDT remain unknown. AIM: The aim of this study was to investigate HQQDT's antiviral and anti-inflammatory activities in both in vivo and in vitro, and further reveal its active ingredients and mechanism. METHODS: In vivo and in vitro experiments were conducted to verify the antiviral and anti-inflammatory activities of HQQDT. Subsequently, the active ingredients and mechanism of HQQDT were explored through combining high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (HPLC-Q-TOF-MS) analysis and network pharmacology. Finally, the examinations of cell cytokines and signaling pathways aimed to elucidate the predicted mechanisms. RESULTS: The results indicated that HQQDT exhibited inhibitory effects on influenza viruses A/PR/8/34 (H1N1), A/HK/1/68 (H3N2), and A/California/4/2009 (H1N1) in vitro. Furthermore, HQQDT enhanced the survival rate of influenza-infected mice, reduced the lung index and lung virus titer, and mitigated lung tissue damage in vivo. The proinflammatory cytokine expression levels upon influenza virus infection in PR8-induced A549 cells or mice were suppressed by HQQDT, including IL-6, IL-1ß, CCL2, CCL4, IP-10, interferon ß1 (IFN-ß1), the interferon regulatory factor 3 (IRF3), and hemagglutinin (HA). Twenty-two active components of HQQDT against influenza were identified using HPLC-Q-TOF-MS analysis. Based on network pharmacological predictions, the JAK/STAT signaling pathway is considered the most relevant for HQQDT's action against influenza. Finally, western blot assays revealed that HQQDT regulated the protein level of the JAK/STAT signaling pathway in PR8-infected A549 cells and lung tissue. CONCLUSION: These findings verified the antiviral and anti-inflammatory effects of HQQDT through JAK-STAT signaling pathway in influenza infections, laying the foundation for its further development.


Subject(s)
Antiviral Agents , Drugs, Chinese Herbal , Influenza A virus , Janus Kinases , Orthomyxoviridae Infections , Signal Transduction , Animals , Dogs , Female , Humans , Mice , A549 Cells , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Chromatography, High Pressure Liquid , Cytokines/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Influenza A virus/drug effects , Influenza A Virus, H1N1 Subtype/drug effects , Janus Kinases/metabolism , Lung/drug effects , Lung/virology , Madin Darby Canine Kidney Cells , Mice, Inbred BALB C , Network Pharmacology , Orthomyxoviridae Infections/drug therapy , Signal Transduction/drug effects , STAT Transcription Factors/metabolism
11.
Comput Biol Med ; 176: 108563, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761498

ABSTRACT

Boundary conditions (BCs) is one pivotal factor influencing the accuracy of hemodynamic predictions on intracranial aneurysms (IAs) using computational fluid dynamics (CFD) modeling. Unfortunately, a standard procedure to secure accurate BCs for hemodynamic modeling does not exist. To bridge such a knowledge gap, two representative patient-specific IA models (Case-I and Case-II) were reconstructed and their blood flow velocity waveforms in the internal carotid artery (ICA) were measured by ultrasonic techniques and modeled by discrete Fourier transform (DFT). Then, numerical investigations were conducted to explore the appropriate number of samples (N) for DFT modeling to secure the accurate BC by comparing a series of hemodynamic parameters using in-vitro validated CFD modeling. Subsequently, a comprehensive comparison in hemodynamic characteristics under patient-specific BCs and a generalized BC based on a one-dimensional (1D) model was conducted to reinforce the understanding that a patient-specific BC is pivotal for accurate hemodynamic risk evaluations on IA pathophysiology. In addition, the influence of the variance of heart rate/cardiac pulsatile period on hemodynamic characteristics in IA models was studied preliminarily. The results showed that N ≥ 16 for DFT model is a decent choice to secure the proper BC profile to calculate time-averaged hemodynamic parameters, while more data points such as N ≥ 36 can ensure the accuracy of instantaneous hemodynamic predictions. In addition, results revealed the generalized BC could overestimate or underestimate the hemodynamic risks on IAs significantly; thus, patient-specific BCs are highly recommended for hemodynamic modeling for IA risk evaluation. Furthermore, this study discovered the variance of heart rate has rare influences on hemodynamic characteristics in both instantaneous and time-averaged parameters under the assumption of an identical blood flow rate.


Subject(s)
Hemodynamics , Intracranial Aneurysm , Models, Cardiovascular , Intracranial Aneurysm/physiopathology , Intracranial Aneurysm/diagnostic imaging , Humans , Hemodynamics/physiology , Blood Flow Velocity/physiology , Ultrasonography/methods , Male , Carotid Artery, Internal/physiopathology , Carotid Artery, Internal/diagnostic imaging , Cerebrovascular Circulation/physiology , Fourier Analysis , Computer Simulation , Female
13.
EClinicalMedicine ; 71: 102582, 2024 May.
Article in English | MEDLINE | ID: mdl-38618202

ABSTRACT

Background: GST-HG171 is a potent, broad-spectrum, orally bioavailable small-molecule 3C like protease inhibitor that has demonstrated greater potency and efficacy compared to Nirmatrelvir in pre-clinical studies. We aimed to evaluate the efficacy and safety of orally administered GST-HG171 plus Ritonavir in patients with coronavirus disease 2019 (COVID-19) infected with emerging XBB and non-XBB variants. Methods: This randomised, double-blind, placebo-controlled phase 2/3 trial was conducted in 47 sites in China among adult patients with mild-to-moderate COVID-19 with symptoms onset ≤72 h. Eligible patients were randomised 1:1 to receive GST-HG171 (150 mg) plus Ritonavir (100 mg) or corresponding placebo tablets twice daily for 5 days, with stratification factors including the risk level of disease progression and vaccination status. The primary efficacy endpoint was time to sustained recovery of clinical symptoms within 28 days, defined as a score of 0 for 11 COVID-19-related target symptoms for 2 consecutive days, assessed in the modified intention-to-treat (mITT) population. This trial was registered at ClinicalTrials.gov (NCT05656443) and Chinese Clinical Trial Registry (ChiCTR2200067088). Findings: Between Dec 19, 2022, and May 4, 2023, 1525 patients were screened. Among 1246 patients who underwent randomisation, most completed basic (21.2%) or booster (74.9%) COVID-19 immunization, and most had a low risk of disease progression at baseline. 610 of 617 who received GST-HG171 plus Ritonavir and 603 of 610 who received placebo were included in the mITT population. Patients who received GST-HG171 plus Ritonavir showed shortened median time to sustained recovery of clinical symptoms compared to the placebo group (13.0 days [95.45% confidence interval 12.0-15.0] vs. 15.0 days [14.0-15.0], P = 0.031). Consistent results were observed in both SARS-CoV-2 XBB (45.7%, 481/1053 of mITT population) and non-XBB variants (54.3%, 572/1053 of mITT population) subgroups. Incidence of adverse events was similar in the GST-HG171 plus Ritonavir (320/617, 51.9%) and placebo group (298/610, 48.9%). The most common adverse events in both placebo and treatment groups were hypertriglyceridaemia (10.0% vs. 14.7%). No deaths occurred. Interpretation: Treatment with GST-HG171 plus Ritonavir has demonstrated benefits in symptom recovery and viral clearance among low-risk vaccinated adult patients with COVID-19, without apparent safety concerns. As most patients were treated within 2 days after symptom onset in our study, confirming the potential benefits of symptom recovery for patients with a longer duration between symptom onset and treatment initiation will require real-world studies. Funding: Fujian Akeylink Biotechnology Co., Ltd.

14.
Asian J Surg ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38609833

ABSTRACT

BACKGROUND: There exists continuous controversy regarding the benefit of primary tumor resection (PTR) for stage IV colorectal cancer (CRC) patients. Little is known about how to predict the patients' benefit from PTR. This study aimed to develop a tool for surgical benefit prediction. METHODS: Stage IV CRC patients diagnosed between 2010 and 2015 from the Surveillance, Epidemiology and End Results database were included. Patients receiving PTR who survived longer than the median cancer-specific survival (CSS) time of those who did not undergo PTR were considered to benefit from surgery. Logistic regression analysis identified prognostic factors influencing surgical benefit, based on which a nomogram was constructed. The data of patients who underwent PTR from our institution was used for external validation. A user-friendly webserver was then built for convenient clinical use. RESULTS: The median CSS of the PTR group was 23 months, significantly longer than that of the non-PTR group (7 months, P < 0.001). In the PTR group, 23.3% of patients did not benefit from surgery. Logistic regression analysis identified age, marital status, tumor location, CEA level, chemotherapy, metastasectomy, tumor size, tumor deposits, number of examined lymph nodes, N stage, histological grade and number of distant metastases as independently associated with surgical benefit. The established prognostic nomogram demonstrated satisfactory performance in both the internal and external validation. CONCLUSION: PTR was associated with prolonged CSS in stage IV CRC. The proposed nomogram could be used as an evidenced-based platform for risk-to-benefit assessment to select appropriate patients for undergoing PTR.

15.
Br J Pharmacol ; 181(13): 2053-2069, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38500396

ABSTRACT

BACKGROUND AND PURPOSE: Severe influenza virus-infected patients have high systemic levels of Th1 cytokines (including IFN-γ). Intrapulmonary IFN-γ increases pulmonary IFN-γ-producing T lymphocytes through the CXCR3 pathway. Virus-infected mice lacking IP-10/CXCR3 demonstrate lower pulmonary neutrophilic inflammation. AMG487, an IP-10/CXCR3 antagonist, ameliorates virus-induced lung injury in vivo through decreasing viral loads. This study examined whether AMG487 could treat H1N1 virus-induced mouse illness through reducing viral loads or decreasing the number of lymphocytes or neutrophils. EXPERIMENTAL APPROACH: Here, we studied the above-mentioned effects and underlying mechanisms in vivo. KEY RESULTS: H1N1 virus infection caused bad overall condition and pulmonary inflammation characterized by the infiltration of lymphocytes and neutrophils. From Day-5 to Day-10 post-virus infection, bad overall condition, pulmonary lymphocytes, and IFN-γ concentrations increased, while pulmonary H1N1 viral titres and neutrophils decreased. Both anti-IFN-γ and AMG487 alleviated virus infection-induced bad overall condition and pulmonary lymphocytic inflammation. Pulmonary neutrophilic inflammation was mitigated by AMG487 on Day-5 post-infection, but was not mitigated by AMG487 on Day-10 post-infection. H1N1 virus induced increases of IFN-γ, IP-10, and IFN-γ-producing lymphocytes and activation of the Jak2-Stat1 pathways in mouse lungs, which were inhibited by AMG487. Anti-IFN-γ decreased IFN-γ and IFN-γ-producing lymphocytes on Day-5 post-infection. AMG487 but not anti-IFN-γ decreased viral titres in mouse lung homogenates or BALF. Higher virus load did not increase pulmonary inflammation and IFN-γ concentrations when mice were treated with AMG487. CONCLUSION AND IMPLICATIONS: AMG487 may ameliorate H1N1 virus-induced pulmonary inflammation through decreasing IFN-γ-producing lymphocytes rather than reducing viral loads or neutrophils.


Subject(s)
Influenza A Virus, H1N1 Subtype , Interferon-gamma , Lymphocytes , Orthomyxoviridae Infections , Animals , Interferon-gamma/metabolism , Mice , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/drug therapy , Lymphocytes/immunology , Lymphocytes/drug effects , Lymphocytes/metabolism , Mice, Inbred C57BL , Pneumonia/drug therapy , Pneumonia/virology , Pneumonia/immunology , Pneumonia/metabolism , Female , Lung/immunology , Lung/virology , Lung/pathology , Lung/drug effects , Lung/metabolism , Male , Antiviral Agents/pharmacology
16.
Chemosphere ; 354: 141497, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452981

ABSTRACT

During the anammox process, mitigation of biomass washout to increase sludge retention is an important parameter of process efficiency. Signal molecular stimulants (SMS) initiate the sludge granulations controlled by programmed cell death (PCD) of microorganisms. In this study, the aerobic granular sludge (AGS), cell fragments, extracellular polymeric substances (EPS), and AGS process effluent were tested as SMS to identify their effect on anammox granulation. The results showed that the addition of SMS increased the nitrogen removal efficiency to varying degrees, whereas the addition of AGS process supernatant, as SMS, increased the ammonia removal efficiency up to 96%. The addition of SMS was also found to increase EPS production and contributed to sludge granulation. In this process, the proportion of PCD increased and both Gaiella and Denitratisoma abundance increased from 3.54% to 5.59%, and from 1.8% to 3.42%, respectively. In conclusion, PCD was found important to increase anaerobic ammonia oxidation performance through the granulation mechanism.


Subject(s)
Anaerobic Ammonia Oxidation , Sewage , Bioreactors , Ammonia , Nitrogen/metabolism , Apoptosis , Oxidation-Reduction
17.
Front Cell Infect Microbiol ; 14: 1347710, 2024.
Article in English | MEDLINE | ID: mdl-38500506

ABSTRACT

Background: Influenza A virus have a distinctive ability to exacerbate SARS-CoV-2 infection proven by in vitro studies. Furthermore, clinical evidence suggests that co-infection with COVID-19 and influenza not only increases mortality but also prolongs the hospitalization of patients. COVID-19 is in a small-scale recurrent epidemic, increasing the likelihood of co-epidemic with seasonal influenza. The impact of co-infection with influenza virus and SARS-CoV-2 on the population remains unstudied. Method: Here, we developed an age-specific compartmental model to simulate the co-circulation of COVID-19 and influenza and estimate the number of co-infected patients under different scenarios of prevalent virus type and vaccine coverage. To decrease the risk of the population developing severity, we investigated the minimum coverage required for the COVID-19 vaccine in conjunction with the influenza vaccine, particularly during co-epidemic seasons. Result: Compared to the single epidemic, the transmission of the SARS-CoV-2 exhibits a lower trend and a delayed peak when co-epidemic with influenza. Number of co-infection cases is higher when SARS-CoV-2 co-epidemic with Influenza A virus than that with Influenza B virus. The number of co-infected cases increases as SARS-CoV-2 becomes more transmissible. As the proportion of individuals vaccinated with the COVID-19 vaccine and influenza vaccines increases, the peak number of co-infected severe illnesses and the number of severe illness cases decreases and the peak time is delayed, especially for those >60 years old. Conclusion: To minimize the number of severe illnesses arising from co-infection of influenza and COVID-19, in conjunction vaccinations in the population are important, especially priority for the elderly.


Subject(s)
COVID-19 , Coinfection , Influenza A virus , Influenza Vaccines , Influenza, Human , Aged , Humans , Middle Aged , Influenza, Human/epidemiology , Influenza, Human/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Vaccine Efficacy , Coinfection/epidemiology , SARS-CoV-2 , Vaccination
18.
Emerg Infect Dis ; 30(4): 826-828, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526372

ABSTRACT

In 2022, we assessed avian influenza A virus subtype H5N6 seroprevalence among the general population in Guangdong Province, China, amid rising numbers of human infections. Among the tested samples, we found 1 to be seropositive, suggesting that the virus poses a low but present risk to the general population.


Subject(s)
Influenza in Birds , Influenza, Human , Animals , Humans , Influenza in Birds/epidemiology , Seroepidemiologic Studies , Influenza, Human/epidemiology , China/epidemiology , Birds
19.
Nat Microbiol ; 9(4): 1075-1088, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38553607

ABSTRACT

Although vaccines are available for SARS-CoV-2, antiviral drugs such as nirmatrelvir are still needed, particularly for individuals in whom vaccines are less effective, such as the immunocompromised, to prevent severe COVID-19. Here we report an α-ketoamide-based peptidomimetic inhibitor of the SARS-CoV-2 main protease (Mpro), designated RAY1216. Enzyme inhibition kinetic analysis shows that RAY1216 has an inhibition constant of 8.4 nM and suggests that it dissociates about 12 times slower from Mpro compared with nirmatrelvir. The crystal structure of the SARS-CoV-2 Mpro:RAY1216 complex shows that RAY1216 covalently binds to the catalytic Cys145 through the α-ketoamide group. In vitro and using human ACE2 transgenic mouse models, RAY1216 shows antiviral activities against SARS-CoV-2 variants comparable to those of nirmatrelvir. It also shows improved pharmacokinetics in mice and rats, suggesting that RAY1216 could be used without ritonavir, which is co-administered with nirmatrelvir. RAY1216 has been approved as a single-component drug named 'leritrelvir' for COVID-19 treatment in China.


Subject(s)
COVID-19 , Vaccines , Humans , Animals , Mice , Rats , SARS-CoV-2 , COVID-19 Drug Treatment , Kinetics , Lactams , Nitriles , Mice, Transgenic
20.
Lancet Infect Dis ; 24(5): 535-545, 2024 May.
Article in English | MEDLINE | ID: mdl-38330975

ABSTRACT

BACKGROUND: Onradivir (ZSP1273) is a novel anti-influenza A virus inhibitor. Preclinical studies show that onradivir can inhibit influenza A H1N1 and H3N2 replication and increase the survival rate of infected animals. In this study, we aimed to evaluate the safety and efficacy of three onradivir dosing regimens versus placebo in outpatients with acute uncomplicated influenza A virus infection. METHODS: We did a multicentre, double-blind, randomised, placebo-controlled, phase 2 trial at 20 clinical sites in China. Eligible participants were adults (18-65 years) with an influenza-like illness screened by rapid antigen testing at the first clinical visit, had the presence of a fever (axillary temperature ≥38·0°C), and had the presence of at least one moderate systemic and one respiratory symptom within 48 h of symptom onset. Patients were excluded if they were pregnant, allergic to onradivir, or had received any influenza antiviral medication within 7 days before enrolment. Participants were randomly assigned (1:1:1:1) into four groups by an interactive web response system: onradivir 200 mg twice per day group, onradivir 400 mg twice per day group, onradivir 600 mg once per day group, and a matching placebo group. A 5-day oral treatment course was initiated within 48 h after symptoms onset. The primary outcome was the time to alleviate influenza symptoms in the modified intention-to-treat population. Safety was a secondary outcome. We evaluated the patients' self-assessed severity of seven influenza symptoms on a 4-point ordinal scale, and the treatment-emergent adverse events in all patients. This trial is registered with ClinicalTrials.gov, number NCT04024137. FINDINGS: Between Dec 7, 2019, and May 18, 2020, a total of 205 patients were screened; of whom, 172 (84%) were randomly assigned to receive onradivir (n=43 in the 200 mg twice per day group; n=43 in the 400 mg twice per day group; and n=43 in the 600 mg once per day group), or placebo (n=42). Median age was 22 years (IQR 20-26). All three onradivir groups showed decreased median time to alleviate influenza symptoms (46·92 h [IQR 24·00-81·38] in the 200 mg twice per day group, 54·87 h [23·67-110·62] in the 400 mg twice per day group, and 40·05 h [17·70-65·82] in the 600 mg once per day) compared with the placebo group (62·87 h [36·40-113·25]). The median difference between the onradivir 600 mg once per day group and the placebo group was -22·82 h (p=0·0330). The most frequently reported treatment-emergent adverse event was diarrhoea (71 [42%] of 171), ranging from 33-65% of the patients in onradivir-treated groups compared with 10% in the placebo group; no serious adverse events were observed. INTERPRETATION: Onradivir showed a safety profile comparable to placebo, as well as higher efficacy than placebo in ameliorating influenza symptoms and lowering the viral load in adult patients with uncomplicated influenza infection, especially the onradivir 600 mg once per day regimen. FUNDING: National Multidisciplinary Innovation Team Project of Traditional Chinese Medicine, National Natural Science Foundation of China, Guangdong Science and Technology Foundation, Guangzhou Science and Technology Planning Project, Emergency Key Program of Guangzhou Laboratory, Macao Science and Technology Development Fund, and Guangdong Raynovent Biotech.


Subject(s)
Antiviral Agents , Influenza, Human , Humans , Influenza, Human/drug therapy , Adult , Male , Double-Blind Method , Female , Middle Aged , Antiviral Agents/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Young Adult , Adolescent , Aged , Treatment Outcome , China , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL